
A. Whitening Details
As Σ̂ is a real symmetric matrix, it can be decomposed as Σ̂ = QΛQT , where Q is an orthogonal matrix with column qi

being the i-th eigenvector of Σ̂, and Λ is the diagonal matrix with the element Λii = λi being the i-th eigenvalue of Σ̂. Since
the regularization of Σ̂ ensures that its eigenvalues are real and positive, the whitening matrix Λ− 1

2QT , where the inverse
square root is taken elementwise (because Λ is diagonal), can be used to build white feature vectors

w =
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)
(x− µ̂) , (6)

such that the linear projection on the left is (Σ̂−1)
1
2 , the square root matrix (not elementwise) of the empirical precision

matrix (inverse of the empirical covariance matrix):
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Therefore the Mahalanobis distance (Equation 1) can be expressed as ∥w ∥2:
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∴ DM (x) = ∥w ∥2 , (10)

where ∥ · ∥2 is the Euclidean norm. In short, Equation 6 provides an alternative to compute the anomaly score as

DM (fN (I)) = ∥Λ− 1
2QT (fN (I)− µ̂) ∥2 . (11)

Notice that the entry wi (the i-th row of the white vector w) corresponds to the projection of the centered feature vector
(x − µ̂) onto the eigenvector qi from Σ̂ scaled by λ

− 1
2

i . In practice, this step makes it simpler to obtain a reduced model
because it can be reproduced by choosing the entries from w.

Assuming eigenvalues λi (and respective eigenvectors qi) to be sorted in increasing order, the entries wi are equally
sorted because the rows of

(
Λ− 1

2QT
)

follow the same order. Therefore a reduced model Q′ ⊆ Q consists of selecting
the entries wi with the same indexes of the selected eigencomponents in Q′. Example: if Q′ = {q75 , q11 , q15}, then
∥w′ ∥2 = ∥ (w75 , w11 , w15)

T ∥2.



B. Experiment 1: test set overfit
Figure 6 represents the AUROC performance for component-wise analysis (k vs. AUROC curves), as described in the

Section 5. It provides a visual depiction of how individual components within nodes perform across different categories.
Each row in the graph represents a category, while each column represents a node.

The x-axis of the graph corresponds to the number of components k (i.e. ”how much is d reduced to?”). In this exper-
iment, we rank all the eigencomponents of the Σ̂. The Y-axis indicates the AUROC value, which measures the predictive
performance of the components.

The graph includes separate curves that represent different approaches used in the analysis. It shows the AUROC per-
formance of the greedy search for both traversal modes (Bottom-Up and Top-Down) compared to the results obtained from
other dimension reduction strategies, including PCA,NPCA, and the supspace ”[Φ2,Φ3]” introduced in [10].

Figure 7 is part of the same experiment but the X-axis is restricted to the k ≤ 40 components (out of d), the Y-axis
remains the same with the respective AUROCs. These graphs also include the PCA, NPCA results with a horizontal dashed
line marking the highest AUROC for the respective method. We also mark the AUROC performance with no dimension
reduction (d components) with a horizontal dashed line to highlight the importance of the component selection.

Exceptional case 1: toothbrush is easier Our analysis revealed an exceptional case in the category of “toothbrush”, where
all the nodes achieved nearly-maximum performance. This outcome suggests that detecting anomalies in this category is
comparatively easier than in other categories. Although, it must be noted that this category has the smallest test set with only
30 anomalous images while others have nearly twice or three times as many, and it only has one anomaly type while others
such as “pill”, “screw”, and “zipper” have between 5 and 7 anomaly types. See Table 1 in Appendix J.

Exceptional case 2: very low-dimensional categories The greedy eigencomponent selection achieves particularly impres-
sive results in categories “wood”, “leather”, “tile”, and “bottle”. A perfect score (100% AUROC) is consistently achieved
with less than 5 eigencomponents in several nodes.



Figure 6: Experiment 1: all plots.







Figure 7: Experiment 1: all plots. Zoom on the X-axis k ≤ 40 components.



C. Experiment 1: A Comparative Analysis with Other Methods
Figure 8 shows the best AUROC (Y-axis) out of all values of k per node N (X-axis shows the node index) for our

proposed GreedyES - Bottom-Up approach (Experiment 1, Sec. 5) and the scenario without any dimension reduction. It
compares the AUROC of other dimensionality reduction techniques, demonstrating their effectiveness when combined with
various backbone architectures.

PatchCore with Wide ResNet-50-2 Backbone: Represented by a dashed blue line, PatchCore [14] employs a Wide
ResNet-50-2 backbone. A notable feature of this method is its use of a memory bank subsampling strategy, our plot shows
the one which samples at a rate of 25%.

Gaussian-AD* with EfficientNetB4 Backbone: Our subfigures also include two dashed lines (orange and green) corre-
sponding to Gaussian-AD in [12, 13]. Both of these methods utilize the EfficientNetB4, that offers high AD results at
medium complexity.

NPCA 1% (Orange Line): This line illustrates the performance when utilizing the NPCA 1% of retained variance.
NPCA method focuses on retaining those principal components that account for the least variance in the normal
data, offering a unique way to reduce dimensionality

No-Dimensional Reduction (Green Line): The green dashed line shows the results when there is no dimensionality
reduction applied. This serves as a baseline to understand the raw capabilities of the EfficientNetB4 backbone
without any reduction techniques interfering.

Figure 8: Experiment 1: best AUROC out of all values of k per node for both Bottom-Up and no-dimensional reduction
scenarios. The dashed blue line corresponds to the results of PatchCore algorithm from [14]. The dashed orange and green
lines refer to the results from [12, 13], using Gaussian-AD* EfficientNetB4 as a backbone, the orange line focuses on NPCA
method of 1%, and the green one shows the result with no-dimensional reduction.



D. Experiment 2: per anomaly type
Figure 9 shows all the scenarios, as discussed in Section 6, of the results obtained from Experiment 2. These plots grant

critical insights into the performance of the various anomaly types, along with the influence of the component selection
strategy on the generalization process. Figure 9 also includes a juxtaposition of the results from Experiment 2 along with the
results from Experiment 1 for reference.

The line plots illustrate the number of eigencomponents on the X-axis and the corresponding AUROC values on the Y-
axis. Notice that each curve corresponds to a different Wgreedy / Weval splits, so they do not match the same performance at
the point k = d.

Notice that category “toothbrush” is not in the results of this experiment as it only has one anomaly type.



Figure 9: Experiment 2: all plots.



E. Experiment 3: fixed number of images
Figure 10 shows all the scenarios, as discussed in Section 7, of the results obtained from Experiment 3. The figure also

includes a comparison of the results from Experiment 3 with both Bottom-Up and Top-Down traversal modes employed
in Experiment 1. The line plots in the figure depict the number of eigencomponents on the X-axis and the corresponding
AUROC values on the Y-axis.

These plots show the performance of the various seeds along with their (cross-seed) mean performance and the curve
from Experiment 1 for reference, providing valuable insights into the generalization capacity of the greedy eigencomponent
selection.



Figure 10: Experiment 3: all plots.



F. Regimes
Figure 11 is derived from the results of Experiment 1, where we distinguish three main regimes from the greedy eigen-

component selection of the Bottom-Up traversal mode. We designate the “Rise” in blue, the “Plateau” in red, and the “Drop”
in green. The use of distinct colors provides a better visualisation and differentiation of these three regimes.

We selected representative cases and based this choice on a certain criteria: we included cases were AUROC reaches
the score of 1, and deliberately focused on showing only ≥ f5 because starting from this node we can clearly observe
different regimes and because they achive the best performance. We also excluded categories such as “screw” and “grid” as
their results didn’t align with our regime analysis, meaning the results made it hard to distinguish these three regimes.

The Rise regime (blue): This phase represents the initial selection of eigencomponents where each new addition signifi-
cantly boosts the performance.

The Plateau regime (red): In this phase the addition of more eigencomponents doesn’t significantly improve or degrade
the performance. In fact, for most cases with only several exceptions we observe almost all the time a 100% AUROC.

The Drop regime (green): Finally, the ’Drop’ regime represents the phase where adding more eigencomponents starts to
degrade the performance. This can happen due to the incorporation of noisy, irrelevant, or redundant components which don’t
contribute positively and are simply bad components.

The most interesting cases would be “cable”, “capsule”, “pill”, “transistor”, and “zipper” with the nodes f6 and f7
because we can see clearly all the three regimes and utilize its eigencomponents for further analysis mentioned in Sections G
and H.

Figure 11: Experiment 1: eigencomponents regimes.



G. Minimal Number of Dimensions at Maximum AUROC
Figure 12 shows an analysis of the optimal dimension reduction size for all the scenarios in Experiment 1 (Section 5).

We select minimal number of dimensions k such that its corresponding AUROC is maximal – it corresponds to the left most
point of the plateau regime (see Figure 11 in the Appendix F).

The X-axis corresponds to the node depth in EfficientNetB0 and the Y-axis shows its corresponding optimal number of
components k (dots, scaled on the left) and the dashed line (scaled on the right) shows the original feature vector size d. The
marker color represent a point’s corresponding AUROC scaled from 0.90 to 1.00 (light blue to pink).

The optimal number of components (left y-axis) of high-performance models (pink markers) has a negative trend relative
to the node depth (deeper nodes implicate less components), while the original embedding size (right y-axis) is bigger. In
other words, higher dimensional embeddings tend to be capable of encoding the normality of the images in lower dimensional
subspaces.

Figure 12: Experiment 1: minimal number of (reduced) dimensions k at maximum AUROC.



H. Are the best components from the smallest or largest eigenvalues? Both.
We analyse if the order that components show up in the Bottom-Up component selection relates to PCA or NPCA.

Figure 13 shows the step index vs. the component index of all the runs with EfficientNetB0 using the Bottom-Up strategy.
The x-axis is the step index, which corresponds to the depth of the search tree in greedy, so it represents, from left to right,

the order that the eigencomponents were added. The y-axis is the component index, which corresponds to the eigenvalues
order, so it represents, from bottom to top, the smallest to highest eigenvalues. PCA’s graph would be a line with slope −1
(first component is the largest, last component is the smallest), and NPCA’s would be a line with slope 1 (first component is
the smallest, last component is the largest).

The most relevant nodes are from f5 to f8 because they achieve the best performances (see Figures 6 and 3). The most
relevant components are generally the first 10 to 30 ones (left most part of each plot; see Figure 12) because that generally
corresponds to the “rise” regime (see Section F). The cases with most visible regimes are plotted with the same regime colors
used in Figure 11.

Despite some exceptionally structured cases like (some nodes from) categories bottle and tile, which are similar to the PCA
component sorting, most plots are disordered and seemingly random. This shows there is no relation between eigenvalue
magnitude (i.e. the amount of variance encoded in an eigencomponent) and utility for AD, which was implicitely assumed
in previous works using PCA, NPCA, and in [10]. Notice this lack of entanglement between the two is particularly visible at
the first (therefore most useful) components.



Figure 13: Step index vs. component index.



I. Are the eigencomponents from the plateau and drop regions redundant? Or noisy?

Can one say that the components selected after the “rise” regime (cf. definition of regimes in Section F) are contain redun-
dant, noisy, or even spurious information? Figures 15 and 14 present the outcomes of two simulations aimed at addressing
these questions.

The d eigencomponents of a Gaussian model are sorted as they were yielded by the results of the Bottom-Up greedy
search using the full test set (i.e. overfit), so a dimension reduction with k components corresponds to the k-th step (or depth)
of the search tree traversal. This order of eigencomponents is interpreted as “from the most useful to the least useful (or most
harmful)” relative to the AD performance.

Starting at a position k′ ∈ {1, . . . , d} of this list, the eigencomponents before it are retained, the rest is discarded, then
synthetic axes are progressively added to replace the discarded ones. The respective performance of each simulated dimension
reduction (original plus synthetic axes) is recorded and compared to the the original dimension reduction with the same size
k. Example: for a feature vector with size d = 10, a starting position k′ = 4, and simulated k = 5, the first 3 components are
from the actual eigendecomposition (according to the greedy search order) and the two last components are synthetic.

Two starting positions k′ are considered: the first and the last position of the “plateau” regime, which corresponds to retain-
ing, respectively, the “rise” components and the “rise + plateau” components. Two types of synthetic signal are considered:
noise (Figure 14) and redundant signals (Figure 15). The noise is drawn from a standard normal distribution (all axes are
independent). The redundant signal is a Gaussian random projection6 of the k′ − 1 retained axes (original eigencomponents)
– in other words, multiple random linear combinations of the existing signal. Four scenarios, considering the combinations
of the aforementioned parameters, are considered tested with the feature vector size k ∈ {k′, . . . , d}.

Figure 14: Simulated performance with noise signal. Red/green: replacement starts at the start/end of the ”plateau” regime.

To make a fair comparison between the simulated performance and the original performance, the scale of a synthetic axis
at position i is chosen such that its empirical standard deviation on the test set σ̂(i)

test equals that of the original component at

6We use the implementation from scikit-learn (sklearn.random projection.GaussianRandomProjection).



the position i in the sorted list. Each scenario is repeated with 30 different random seeds; Figure 14 and Figure 15 show the
minimum, average, and maximum performance seen at each dimension reduction size k.

Most cases (category and node combination) show a consistent behavior: compared to the components in the “plateau”
regime, noise deteriorates the performance, and faster (less synthetic axes) than the redundant signal, which often remains
close to the plateau’s performance.

These results suggest that the eigencomponents in the plateau regime behave like redundant synthetic data, actually with
more stable behavior than the latter. The eigencomponents in the drop regime, however, have spurious features that do not
discriminate the normal from the anomalous class – in fact provoking a faster performance drop than pure noise.

Figure 15: Simulated performance with redundant signal. Red/green: replacement starts at the start/end of the ”plateau”
regime.

J. MVTec-AD Dataset Overview
The table provides a comprehensive overview of the MVTec-AD dataset and the data split used in Experiment 3, described

in Section 7. It displays the number of images for each anomaly type within every category. Additionally, it includes specific
counts of anomalous images used for training purposes.

As in Experiment 3, we establish a minimum number of anomalous images 15 in Wgreedy and randomly select images
from all anomaly types, this table shows the number of images allocated for the greedy eigencomponent selection. The
remaining anomalous images not included in the greedy set Wgreedy constitute the evaluation set Weval, and all the normal
images from MVTec-AD’s test set are shared by both.



Category Test set split Images per
anomaly type

Greedy
search split

Evaluation
split

Train split
(only normal
images)

bottle broken small 22 5 17
contamination 21 5 16
broken large 20 5 15
Total 63 15 48 209
good 20

cable missing wire 10 2 8
cable swap 12 2 10
bent wire 13 2 11
cut inner insulation 14 2 12
poke insulation 10 2 8
missing cable 12 2 10
cut outer insulation 10 2 8
combined 11 2 9
Total 92 16 76 224
good 58

capsule poke 21 3 18
faulty imprint 22 3 19
squeeze 20 3 17
crack 23 3 20
scratch 23 3 20
Total 109 15 94 219
good 23

carpet cut 17 3 14
thread 19 3 16
hole 17 3 14
metal contamination 17 3 14
color 19 3 16
Total 89 15 74 280
good 28

grid broken 12 3 9
thread 11 3 8
bent 12 3 9
glue 11 3 8
metal contamination 11 3 8
Total 57 15 42 264
good 21

hazelnut print 17 4 13
hole 18 4 14
cut 17 4 13
crack 18 4 14
Total 70 16 54 391
good 40

leather glue 19 3 16
cut 19 3 16
fold 17 3 14
poke 18 3 15
color 19 3 16
Total 92 15 77 245
good 32

metal nut color 22 4 18
bent 25 4 21
scratch 23 4 19
flip 23 4 19
Total 93 16 77 220
good 22



Category Test set split Images per
anomaly type

Greedy
search split

Evaluation
split

Train split
(only normal
images)

pill color 25 3 22
scratch 24 3 21
contamination 21 3 18
combined 17 3 14
faulty imprint 19 3 16
pill type 9 3 6
crack 26 3 23
Total 141 21 120 267
good 26

screw scratch head 24 3 21
thread top 23 3 20
scratch neck 25 3 22
thread side 23 3 20
manipulated front 24 3 21
Total 119 15 104 320
good 41

tile test,glue strip 18 3 15
test,gray stroke 16 3 13
test,oil 18 3 15
test,crack 17 3 14
test,rough 15 3 12
Total 84 15 69 230
good 33

toothbrush defective 30 15 15
Total 30 15 15 60
good 12

transistor cut lead 10 4 6
misplaced 10 4 6
damaged case 10 4 6
bent lead 10 4 6
Total 40 16 24 213
good 60

wood color 8 3 5
liquid 10 3 7
hole 10 3 7
combined 11 3 8
scratch 21 3 18
Total 60 15 45 247
good 19

zipper combined 16 3 13
broken teeth 19 3 16
split teeth 18 3 15
squeezed teeth 16 3 13
rough 17 3 14
fabric interior 16 3 13
fabric border 17 3 14
Total 119 21 98 240
good 32

Table 1: MVTec-AD Image Count Details (for Experiment 3)


