
A. Broader Impact Statement
Uncertainty estimation is important for general safe use of machine learning models. Most models used in practice do not

have any kind of proper uncertainty estimation, which prevents the user from evaluating if the model believes its answers
to be correct or not. One reason uncertainty estimation methods are not used in practice is computational performance, as
ensembling or monte carlo sampling increases the computational cost of a prediction radically.

Sub-ensembles allow for an approximate uncertainty estimation at a much lower computational cost, and we expect that
uncertainty estimation methods will have increased use due to less computational limitations.

Possible negative societal impact is that sub-ensembles provide only an approximation to full ensemble, and the approx-
imation quality is unknown, so incorrect or misleading uncertainty predictions can mislead the final user into trusting or
mistrusting an incorrect or correct prediction. Additional research is needed to validate and bound the uncertainty estimated
produced by a sub-ensemble.

B. Additional Regression Information and Results
Figure 9 presents the samples used to train and test the toy regression examples, drawn from the distribution we mention

in the paper. Table 2 presents numerical comparisons in terms of negative log-likelihood for the train and test sets.
All networks (Deep Ensembles and Deep Sub-Ensembles) used for this example were trained using Adam [7] with a

learning α = 0.001, using the heteroscedastic Gaussian log-likelihood loss, for 50 epochs and a batch size B = 32.

−2 0 2

−1

0

1

x

y
=

f(
x)

(a) Training Set

−6 −4 −2 0 2 4 6

−1

0

1

x

y
=

f(
x)

(b) Testing Set

Figure 9: Samples used as training and testing set for the Toy Regression problem

Sub-Ensembles (SE-1) Sub-Ensembles (SE-2) Deep Ensembles

of Ensembles Train NLL Test NLL Train NLL Test NLL Train NLL Test NLL

1 -2.20 116.8 -2.01 195.1 -2.23 2409.7
5 -2.33 5.2 -2.22 1.46 -2.22 0.7
15 -2.34 2.5 -2.25 0.42 -2.17 0.5

Table 2: Numerical comparison between Deep Ensembles and Deep Sub-Ensembles in terms of negative log-likelihood for
the Toy Regression problem

C. Detailed Neural Network Architectures
We use the following notation to describe neural network architectures. Conv(Nf , Fw × Fh) is a 2D convolutional layer

with Nf filters of width Fw and height Fh. MP(Pw × Ph) is a 2D Max-Pooling layer with sub-sampling size Pw × Ph, and
FC(n) is a fully connected layer with n output neurons. BN() represents a Batch Normalization layer.

Each Deep Sub-Ensemble architecture configuration was designed to test the trade-off between computation and er-
ror/uncertainty quality, so we divided a given neural network architecture into blocks of layers, and then selected blocks
to make sub-ensembles, starting from the block that produced the network output and moving backwards. We leave a more
fine-grained analysis of this trade-off for future work.

Most architectures are trained using the Adam optimizer [7], using a learning rate α = 0.001. No data augmentation was
used, except for CIFAR10 training. The standard cross-entropy loss is used to train all classification models.

C.1. Simple CNN for MNIST

We used a simple CNN architecture for the MNIST dataset, namely configuration:

Conv(32, 3× 3)-BN()-Conv(64, 3× 3)-BN()-MP(2× 2)-FC(128)-FC(10).

All learnable layers use the ReLU activation, except for the last FC layer which uses softmax for classification. This network
is trained with the Adam optimizer for 30 epochs with a batch size B = 32.

Given the neural network architecture described above, we defined two sub-ensemble configurations for task networks:

SE-1 MP(2× 2)-FC(128)-FC(10)

SE-2 Conv(64, 3× 3)-BN()-MP(2× 2)-FC(128)-FC(10)

The trunk network consists of the layers that are left in the best network when removing layers to form the task network.

C.2. Batch Normalized VGG-like for SVHN

For evaluation on the SVHN dataset, we use a simple architecture that is similar to the VGG network with Batch Normal-
ization. We first define a VGG module/block as a stack of two 3 × 3 convolutions and one 2 × 2 Max-Pooling layer, with
Batch Normalization in between:

VGG(n) = Conv(n, 3× 3)-BN()-Conv(n, 3× 3)-BN()-MP(2× 2)

Then we used the following configuration as base network: VGG(32)-VGG(64)-VGG(128)-Conv(128, 3 × 3)-BN()-
VGG(128)-FC(128)-BN()-FC(10). All learnable layers use ReLU activations, except for the last FC layer which uses a
softmax activation.

Given this architecture we defined four sub-ensemble task network configurations:

SE-1 FC(128)-BN()-FC(10)

SE-2 Conv(128, 3× 3)-BN()-VGG(128)-FC(128)-BN()-FC(10)

SE-3 VGG(128)-Conv(128, 3× 3)-BN()-VGG(128)-FC(128)-BN()-FC(10)

SE-4 VGG(64)-VGG(128)-Conv(128, 3× 3)-BN()-VGG(128)-FC(128)-BN()-FC(10)

In each configuration, the trunk network consists of the layers that are left in the base network when removing the layers to
form the task network. We train these architectures for 30 epochs with Adam and using a batch size B = 32.

C.3. ResNet-20 for CIFAR10

For CIFAR10 we used ResNet-20. We prefer this network because of its faster training due to its depth and it obtains good
classification performance.

We use a residual connection module ResLayer(n, s), as defined in [5], where n is the number of filters, and s is the
convolution stride. This module contains two 3 × 3 convolutional layers and an additive residual connection between the
input and the last convolutional layer’s output. If strides are larger than one, then a 1 × 1 strided convolution is applied
to the input, to make dimensions compatible for the addition operation in the residual connection. ReLU activations are
used in the convolutional layers, and after the additive residual connection. Batch Normalization layers are added after each
convolutional layer.

A residual stack ResStack(n, s) consists of three residual modules, the first with a given stride, and the final two with a
stride S = 1. The full ResNet-20 network can be now defined as:

ResLayer(16, 1)-ResStack(16, 1)-ResStack(32, 2)-ResStack(64, 2)-GAP()-FC(10)

Where GAP is the Global Average Pooling layer and the last FC layer uses a softmax activation. Give the ResNet-20
architecture above, we define two sub-ensemble task network configurations:

SE-1 ResStack(64, 2)-GAP()-FC(10)

SE-2 ResStack(32, 2)-ResStack(64, 2)-GAP()-FC(10)

As before, the trunk network is formed by the remaining layers of the architecture after removing the task layers.
All CIFAR10 architectures are trained using Adam, for 100 epochs, and a batch size B = 128. We use data augmentation

by performing random horizontal flips, and randomly shifting the image horizontally and vertically by up to 4 pixels.

D. Additional Out of Distribution Detection Results
This section presents the ROC curves and entropy distribution for the out of distribution detection results in the main

paper.

1 5 10 15

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

(a) Deep Sub-Ensembles (SE-1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e
(b) Deep Ensembles

Figure 10: ROC Curves for out-of-distribution detection using entropy on SVHN vs CIFAR10. Note how the AUC greatly
increases when M > 1.

ID 1 ID 5 ID 15
OOD 1 OOD 5 OOD 15

0 1 2

0

5

10

Entropy

D
en

si
ty

(a) Deep Sub-Ensembles (SE-1)

0 1 2

0

5

10

Entropy

D
en

si
ty

(b) Deep Ensembles

Figure 11: Entropy distributions for in-distribution (ID, SVHN) and out of distribution (OOD, CIFAR10) samples

E. Intra-Ensemble Correlation Analysis
We wish to study the behavior of predictions of a sub-ensemble, and how it compares to a full ensemble. For this purpose

we compute the intra-ensemble correlation of the predictions on the SVHN and CIFAR10 datasets. This is estimated by
computing the correlation between predictions made by an ensemble of M - 1 members, and the predictions made by a newly
trained ensemble member (completing M members).

These results are presented in Figure 12. In both datasets it can be seen that an SE-1 sub-ensemble has the highest
correlation among ensemble members, which indicates that there is reduced variety in the predictions. A ensemble (in red)
has the lowest correlation in both cases. Note that in all models and ensemble configurations, the correlation decreases as
ensemble members are added, which is the expected behavior.

DE SE-1 SE-2

0 5 10 15

0.96

0.98

Ensembles

C
or

re
la

tio
n

SVHN

0 5 10 15

0.8

0.9

Ensembles

C
or

re
la

tio
n

CIFAR10

Figure 12: Intra-ensemble Correlation on SVHN and CIFAR10 as the number of ensembles is varied, compared across
multiple sub-ensemble configurations.

Results using the SE-2 sub-ensemble configuration indicate a decreased correlation in comparison to SE-1, with values
being closer to a full ensemble. These results add to the evidence that a sub-ensemble behaves as an approximation to a full
ensemble.

F. Accuracy as Function of Confidence for SVHN-CIFAR10 OOD Detection
For the out of distribution detection task in SVHN-CIFAR10 datasets, we also evaluate the quality of predicted probabil-

ities as an additional result and validation. In the paper we evaluated the OOD detection capabilities in terms of the output
distribution entropy, and we also expect that the probability confidence values can also be individually used for out of dis-
tribution detection. For OOD samples, low confidence values should be produced, while for ID samples, high confidence
values should be outputted.

To test this hypothesis, we analyze the probability predictions in the OOD and ID datasets. For each prediction, we use the
maximum probability maxc pe(yc |x) as confidence score, and the predicted class based on the maximum probability. We
compute the accuracy for samples ID-OOD where ye = maxc pe(yc |x) > τ as a function of the confidence score threshold
τ . We expect that as τ increases, the set of samples maxc pe(yc |x) > τ should converge to the ID dataset, as the most
confidence samples should belong to the ID dataset and be correctly classified. Any prediction made in the OOD dataset will
generally be wrong, as the model is just guessing these samples, and this will decrease overall accuracy.

The baseline accuracy is 26032
26032+10000 ∼ 72.2%, corresponding to always predicting the ID dataset (SVHN) correctly.

Results are shown in Figure 13 as the number of ensemble members is varied for M ∈ {1, 5, 10, 15}.
Our results show how the predicted probabilities improve in quality as more ensemble members are used. We see that the

plots are ordered exactly by the number of ensembles layers, configuration SE-1 being the lowest quality, and configuration
SE-3 being comparable to the full deep ensemble.

We believe these results add confirmatory evidence that sub-ensembles behave as an approximation to deep ensembles.

DE SE-1 SE-2 SE-3

0 0.2 0.4 0.6 0.8 1
70

80

90

100

Confidence (τ)

A
cc

(%
)f

or
y e

>
τ

(a) M = 1 ensemble members

0 0.2 0.4 0.6 0.8 1
70

80

90

100

Confidence (τ)

A
cc

(%
)f

or
y e

>
τ

(b) M = 5 ensemble members

0 0.2 0.4 0.6 0.8 1
70

80

90

100

Confidence (τ)

A
cc

(%
)f

or
y e

>
τ

(c) M = 10 ensemble members

0 0.2 0.4 0.6 0.8 1
70

80

90

100

Confidence (τ)

A
cc

(%
)f

or
y e

>
τ

(d) M = 15 ensemble members

Figure 13: Accuracy vs confidence plot for SVHN-CIFAR10 out of distribution detection. Accuracy is computed for ye =
maxc pe(yc |x) larger than a confidence threshold τ .

G. Computational Performance Results

In this section we provide numerical details of the results that were presented in Figures 10 and 11 of the paper. Compu-
tational complexity results for CIFAR10 are presented in Table 3, while results for SVHN are presented in Table 4 and 5. In
all tables we present summarized results for M ∈ {1, 5, 10, 15}.

DE SE-1 SE-2

M Error (%) NLL FLOPs Error (%) NLL FLOPs Speedup Error (%) NLL FLOPs Speedup

1 13.79 % 0.78 82 M 14.74 % 0.87 82 M 1.00 15.04 % 0.95 82 M 1.00
5 8.21 % 0.49 410 M 10.75 % 0.57 187 M 2.19 9.27 % 0.51 292 M 1.40
10 7.68 % 0.48 820 M 10.03 % 0.53 319 M 2.58 8.66 % 0.49 555 M 1.48
15 7.41 % 0.48 1.2 G 9.69 % 0.52 450 M 2.74 8.40 % 0.48 819 M 1.50

Table 3: Numerical computational performance results on CIFAR10 with ResNet-20

DE SE-1 SE-2

M Error (%) NLL FLOPs Error (%) NLL FLOPs Speedup Error (%) NLL FLOPs Speedup

1 5.58 % 0.55 92 M 5.86 % 0.59 92 M 1.00 5.54 % 0.54 92 M 1.00
5 3.98 % 0.29 459 M 5.21 % 0.57 92 M 4.97 4.72 % 0.38 149 M 3.08
10 3.72 % 0.27 918 M 5.16 % 0.58 93 M 9.87 4.58 % 0.36 221 M 4.16
15 3.63 % 0.26 1.4 G 5.19 % 0.58 94 M 14.70 4.54 % 0.35 292 M 4.72

Table 4: Numerical computational performance results on SVHN with a VGG-like network, for DE vs SE-1/SE-2

DE SE-3 SE-4

M Error (%) NLL FLOPs Error (%) NLL FLOPs Speedup Error (%) NLL FLOPs Speedup

1 5.58 % 0.55 92 M 6.48 % 0.65 92 M 1.00 6.47 % 0.66 92 M 1.00
5 3.98 % 0.29 459 M 4.33 % 0.32 262 M 1.75 4.23 % 0.31 376 M 1.22
10 3.72 % 0.27 918 M 4.09 % 0.29 476 M 1.93 4.05 % 0.28 731 M 1.26
15 3.63 % 0.26 1.4 G 4.06 % 0.28 689 M 2.00 3.93 % 0.27 1.1 G 1.27

Table 5: Numerical computational performance results on SVHN with a VGG-like network, for DE vs SE-3/SE-4

H. Drop Probability Tuning for MC-Dropout and MC-DropConnect

While producing baselines that use Dropout and DropConnect, we found that the drop probability p can have a large
impact in the resulting error and negative log-likelihood, so we decided to tune the value of p independently in each dataset
(SVHN or CIFAR10), and for MC-Dropout and MC-DropConnect.

For this purpose, for each model architecture we trained 10 instances of that model, and we varied the
Dropout/DropConnect probability in p ∈ {0.1, 0.15, 0.25,
0.30, 0.40, 0.50, 0.60}, which contains many values common in the literature, and others used to cover a wide spectrum. For
each model, we draw samples in range M ∈ {1− 15} and compute classification error and negative log-likelihood for each
set of samples. We estimate the mean and standard deviation of each metric as the number of samples M is varied.

Results are presented in Figure 14 for SVHN, and Figure 15 and for CIFAR10.

p = 0.1 p = 0.15 p = 0.25 p = 0.30 p = 0.40 p = 0.50 p = 0.60

5 10 15

5

6

7

8

Samples (M)

E
rr

or
(%

)

5 10 15
0.3

0.4

0.5

0.6

Samples (M)

N
L

L

(a) DropConnect

5 10 15

5.5

6

6.5

Samples (M)

E
rr

or
(%

)

5 10 15

0.5

0.6

0.7

Samples (M)

N
L

L

(b) Dropout

Figure 14: Error and Negative log-likelihood as # of Samples is varied for MC-DropConnect and MC-Dropout on SVHN

p = 0.1 p = 0.15 p = 0.25 p = 0.30 p = 0.40 p = 0.50 p = 0.60

5 10 15
10

20

30

Samples (M)

E
rr

or
(%

)

5 10 15

1

1.5

Samples (M)

N
L

L

(a) DropConnect

5 10 15

12

13

14

Samples (M)

E
rr

or
(%

)

5 10 15

0.7

0.8

Samples (M)

N
L

L

(b) Dropout

Figure 15: Error and Negative log-likelihood as # of Samples is varied for MC-DropConnect and MC-Dropout on CIFAR10

We use a criteria of minimum error to select the best drop probability, as indicated by our tuning results. For SVHN, we
use p = 0.4 for DropConnect, and p = 0.5 for Dropout. In CIFAR10, we use p = 0.1 for both DropConnect and Dropout.

