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Figure 1: Interaction context for Prompting. Our method aims to capture various types of information related to a per-

son’s interaction with their environment. (1) Person-person information contributes to their interaction. (2) Person-object

information contributes what is the person doing with the object. (3) Person-context gives the environment information. (4)
Person-memory reference before and after frames to conclude what happened. By combining the interaction token with text

tokens, we create interaction-aware prompting that enhances the model’s ability to generalize to unseen action classes.

Abstract

The goal of spatial-temporal action detection is to deter-
mine the time and place where each person’s action occurs
in a video and classify the corresponding action category.
Most of the existing methods adopt fully-supervised learn-
ing, which requires a large amount of training data, mak-
ing it very difficult to achieve zero-shot learning. In this
paper, we propose to utilize a pre-trained visual-language
model to extract the representative image and text fea-
tures, and model the relationship between these features
through different interaction modules to obtain the inter-
action feature. In addition, we use this feature to prompt
each label to obtain more appropriate text feature. Finally,
we calculate the similarity between the interaction feature
and the text feature for each label to determine the action
category. Our experiments on J-HMDB and UCF101-24
datasets demonstrate that the proposed interaction mod-
ule and prompting make the visual-language features bet-
ter aligned, thus achieving excellent accuracy for zero-shot
spatio-temporal action detection. The code will be avail-
able at https://github.com/webber2933/iCLIP.

1. Introduction

Video understanding refers to the process of extracting

meaningful information from video data, which includes

tracking objects and people, recognizing actions and events,

and understanding the overall context and narrative of a

video. Two important tasks within video understanding are

action recognition and action detection. Action recognition

aims to classify a whole video into an appropriate class,

without specifying the temporal locations. For example, a

video may be classified as ”walking” or ”running” based on

the actions performed by the people in the video. As for ac-

tion detection, in addition to recognizing specific actions or

activities, it also needs to specify the temporal duration (i.e.,

start/end time) of the action in an untrimmed video. Com-

pared with these two tasks, spatio-temporal action detection

is more challenging because it requires localizing the space

and time where each person’s action occurs, and classifying

the associated action class at the same time.

Conventional action detection methods rely on super-

vised learning and require a large number of videos per class

with costly annotation for training. However, this approach

severely limits the scalability of the task. To address this
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problem, few-shot, and zero-shot learning have attracted

much attention. Few-shot learning aims to recognize new

classes with only a few examples, whereas zero-shot learn-

ing aims to predict unseen classes, which are different from

the classes in the training data. In this scenario, the com-

monly used approach is to project training class names into

some semantic space. When the semantic space is aligned

with a visual feature space, a model trained from existing

classes can be applied to the new ones. This approach can

greatly improve the scalability of action detection to a larger

number of classes without requiring costly annotations for

training.

Recently, large pretrained Visual-Language models [24,

8, 31] are often used in advancing zero-shot learning, be-

cause these models offer a strong alignment between text

and visual modality by projecting their embedding into the

same feature space. With a large amount of training data,

these models have a strong ability for generalization and

therefore perform well in many different zero-shot tasks

like image classification. Due to its good performance on

recognizing images, there are recent works [9, 20] combin-

ing with these models to achieve zero-shot action detection,

whilst existing works mostly focus on temporal detection,

which does not localize in the spatial domain for action de-

tection.

In this paper, we explore spatio-temporal action detec-

tion in the zero-shot scenario (ZSSTAD). The task involves

detecting all persons in a video and identifying their ac-

tion classes, even when the actions are unseen or unknown.

While some prior works [6, 18, 19, 16] simply exploit pre-

trained models to make an inference with all labels of the

dataset, we aim to have better performance in ZSSTAD by

training additional parameters. To tackle this challenging

problem, we propose a new architecture called Interaction-

CLIP (iCLIP), which uses CLIP [24] encoders to extract

important feature, including person, object, and context,

for recognizing actions. We develop interaction modules

to combine the information that people interact with these

features. Through this approach, we obtain an ”interaction

feature” that can more accurately describe the action. Be-

sides, We add a module called Interaction-Aware Prompt-

ing, which uses our interaction feature to prompt the orig-

inal CLIP text embedding of each label. This helps us de-

scribe each label more completely through the action of the

current person, thus increasing its discriminability and al-

lowing us to better classify the action. In summary, our

contributions are summarized as follows:

- We explore the zero-shot spatial-temporal action de-

tection problem, which has not been studied much be-

fore. Our method can learn how to model a person’s

actions through the training class and transfer knowl-

edge to the unseen class.

- To solve this problem, we introduce a novel method,

iCLIP, that integrates human interaction features and

learning-to-prompt in the same framework.

- The experiments show that our interaction feature can

be used to detect unseen actions more accurately than

the naive CLIP image feature. This indicates that

the proposed model can make the pretrained visual-

language features (e.g., CLIP) better aligned in the

shared embedding space.

2. Related work

2.1. Vision-Language for Video Understanding

The detection of actions is often expressed through lan-

guage, either as individual words or complete sentences

(e.g., ”run,” ”drive a car”). As such, vision-language mod-

els offer a natural approach to action detection. The ma-

jority of research in this field has utilized the CLIP model

[24], which is highly effective at matching images with their

corresponding verbal descriptions. One recent study [20]

proposed a framework that uses CLIP as a backbone and

an alignment method for image-video adaptation, enabling

parallel localization and classification of actions. Another

approach that emphasizes efficiency is the use of prompting

language models pre-trained on image-text pairs, which has

shown success in downstream video understanding tasks,

including action detection [9]. Despite the progress made

in this area, there is currently no research exploring the use

of vision-language models for spatio-temporal action detec-

tion in the literature.

2.2. Spatio-Temporal Action Detection

The detection of actions in both space and time is a

crucial area of research, with broad applications spanning

from video understanding to autonomous vehicles. There

exists a rich body of work in this field, with numerous

studies published [3, 5, 11, 22, 27, 2]. The current stan-

dard approach involves utilizing a 3D CNN backbone to

extract video features, followed by cropping the region of

interest (ROI) - typically the person to be classified, along

with any relevant surrounding objects. Recent research in

spatio-temporal action detection emphasized modeling in-

teractions between the person being classified and the en-

vironment [22, 27, 29, 2, 15, 27, 30, 32]. To extract mean-

ing from these diverse feature sets, including person-object

and person-context interactions, most studies rely on cross-

attention. Despite the abundance of research on zero-shot

temporal action detection, the topic of zero-shot spatio-

temporal action detection has not been explored much at

the moment.
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Figure 2: Overview of iCLIP network: (1) The left shows that we use a text encoder to compute text embedding of each

action label. (2) The right figure shows that a frame is cropped into person images, object images, and a context image. Then

we use an image encoder to compute their features. (3) The middle shows that these features serve as input into interaction

blocks, which can aggregate the information of different interaction, and give us an ”interaction feature”. Finally, we use

Interaction-Aware Prompting to combine the text embedding with the interaction feature and calculate the similarity between

visual and text embedding.

2.3. Zero-shot Action Detection

Zero-shot temporal action detection (ZSTAD) has been

a well-explored topic in recent years, primarily due to the

emergence of vision-language models (ViL), with the CLIP

[24] model being the main backbone for this task. Previous

works [12, 4, 17] utilized word embedding methods such as

GLoVE [23] or word2vec for ZSTAD. More recent studies,

such as [20, 9, 21, 1], employed CLIP to extract features

from text data, specifically labels, and leveraged prompting

to align visual and text features to achieve zero-shot detec-

tion. Notably, despite the better image-text alignment capa-

bility for CLIP, previous works have utilized other feature

extraction methods, such as [14], which employed a GAN

approach to generate ”fake” text features for previously un-

seen action categories. Given the recent success of CLIP,

we adopt it as our feature extractor, as it is pre-trained on

image-text pairs and generates superior cross-modal repre-

sentations. However, our approach is fundamentally distinct

from the previous works as we tackle the more complex task

of zero-shot spatio-temporal action detection (ZSSTAD).

3. Proposed Method

3.1. Pretrained Visual-Language Model

In this paper, we use CLIP [24] as our pretrained visual-

language model because it provides an embedding space

that has rich visual and semantic information, allowing us to

align image and text to the same space. It mainly consists of

an image encoder and text encoder, and uses a large num-

ber of image-text pairs crawled on the Internet for model

training. In the process of training, it takes N correspond-

ing image-text pairs each time and obtains the embedding

of each image and text through the encoder, then calculates

the cosine similarity between these N × N combinations.

Through cross-entropy loss, that is, maximizing the cosine

similarity of the correct N image-text pairs, and simultane-

ously minimizing the cosine similarity of other wrong pairs,

it can jointly optimize image and text encoders. Because

CLIP has been quite successful for zero-shot image clas-

sification tasks, we choose to make further improvements

based on its feature embedding, so that we can learn more
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appropriate features to detect unseen actions.

3.2. Overall Framework

The overall structure of the proposed model, as shown

in Figure 2, is a multimodal framework composed of two

modalities, visual and text. Each of them is responsible for

modeling the interaction feature of the person and the text

feature of each label, respectively. Both the CLIP image

encoder and text encoder are frozen during our model train-

ing. Lastly, we combine the two parts by calculating the

cosine similarity between the interaction feature and each

label feature.

The visual component of our approach involves isolating

the frame containing the target person of interest, and sub-

sequently extracting relevant portions of the image which is

helpful to the classification of actions. These portions in-

clude persons, as well as objects overlapping with any per-

son in the scene. Following this, we employ a pre-trained

image encoder from CLIP to obtain person-specific, object-

specific, and contextual features from both the extracted

portions and the entire frame. To model the relationship

between the target individual and their surrounding envi-

ronment, similar to Faure et al. (2023) [2], we leverage

different interaction blocks to enrich the action features of

the target individual and obtain a final ”interaction feature.”

For the text part, we first pass each label name through

the pretrained text encoder of CLIP to obtain the original

text feature. Then, adapted from [21], instead of using the

video feature to prompt each label, we use our interaction

feature for prompting because the interaction feature can

describe the action of each target person in more details.

Through this approach, although the label features are fixed

at the beginning, after prompting, each target person can

have a set of label features of his own, thus leading to more

accurate action detection.

3.3. Interaction Feature Generation

Because human actions usually interact with other peo-

ple or objects, we use the Person interaction block to model

person-person interaction. Similarly, person-object interac-

tion will also be considered by the Object interaction block.

In addition, we use the Context interaction block to observe

the target person’s action from the perspective of the whole

image. Finally, considering that the action contains tempo-

ral motion, we use the memory block to take into account

the information before and after the current frame. Each in-

teraction block mainly uses the attention layer to model the

relationship between different features. We use the feature

of the target person as the initial query, and use different

features as the key and value in each block, making the tar-

get person feature contain more information step by step.

In more detail, the Person interaction block is a self-

attention layer (SA), and its computation is given by

P̄ = SA(P ) = softmax(
wq(P )× wk(P )T√

D
)× wv(P )

P̂ = P + LN(P̄ ),
(1)

where P is a batch of all the person features in the current

frame, D is the channel dimension of each person feature,

wq , wk, wv are used to project query, key, and value, re-

spectively, and LN denotes the layer normalization. As for

the Object, Context, and Memory blocks, they are cross-

attention layers (CA) that take two inputs. One is a batch of

the ”enhanced” person feature, i.e. the output from the last

interaction block, and the other input depends on the type

of this block. For the object feature, we take the objects in

the current frame which are detected by a pre-trained ob-

ject detector. And we use the image feature of the whole

current frame as our context feature. Then for the memory

feature, we take the context of a certain number of neigh-

boring frames. Figure 3 is the illustration of the interaction

block. The following equations roughly describe how these

blocks work:

P̄i−1 = CA(P̂i−1, Fb)

= softmax(
wq(P̂i−1)× wk(Fb)

T

√
D

)× wv(Fb)

P̂i = P̂i−1 + LN(P̄i−1)

(2)

where P̂i−1 is the output of the last interaction block, and

Fb is the object, context, or memory feature.

In addition, since the information of the current frame

makes an important role in classifying the action, after we

use these interaction blocks to compute the enhanced fea-

ture of the target person, we take the mean pooling of the

enhanced feature and the context feature as our final ”inter-

action feature”.

3.4. Interaction-Aware Prompting

For each target person, to have a set of label features that

suit him/her best, we adopt an approach from prior research

[21], which introduced a learnable prompting scheme for

generating textual representations automatically. Building

on this work, we develop a module that is specific to each

person’s interaction with one’s surrounding things, which

takes the interaction feature P̂ to prompt with each label Ci.

The module is made up of multiple blocks, each of which

includes a multi-head self-attention mechanism (MSA) fol-

lowed by a feed-forward network (FFN) that learns the

prompts.

C̄ = C +MSA(C, P̂ ),

Ĉ = C̄ + FFN(C̄),
(3)

where C is the original text embedding, and Ĉ is the

interaction-aware prompts. By treating the text embedding
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Figure 3: The interaction block takes two inputs. One is the

enhanced person feature P̂i−1, and the other is the person,

object, context, or memory feature Fb depending on the cur-

rent block.

C as the query and the interaction feature P̂ as key-value

pair to extract relevant interaction context from a target per-

son. The text representation is able to extract and incorpo-

rate the relevant interaction context. Essentially, the tech-

nique allows the text embedding to capture not only the

content of the text but also the relevant context in which

it was produced. Subsequently, we enhance the text embed-

ding C by incorporating the interaction-aware prompt Ĉ as

follows:

C̃ = C + Ĉ, (4)

where C̃ is the final textual representation to calculate simi-

larity with interaction features. The resulting enhanced text

embedding contains both the original text information and

the relevant interaction context, which can improve the ac-

curacy and effectiveness of downstream natural language

processing tasks.

3.5. Training and Inference

During training, we take a batch of N person boxes for

classifying their actions with the set of training labels. For

visual part, we obtain N interaction feature P̂ ∈ R
N×D,

where D is the feature dimension. For text, we first use a

text encoder to take the original text embedding of training

labels, and after our Interaction-Aware Prompting, we ob-

tain the final text embedding C̃ ∈ R
N×L×D, where L is the

number of training labels.

For each target person in this batch, we calculate the co-

sine similarity between the interaction feature pi ∈ R
D and

the label features suitable for the person C̄ ∈ R
L×D, the

training objective is to make pi and its paired action label ci
have the highest similarity among C̄. The model training is

achieved by optimizing the following loss:

L = − 1

N

N∑

i=1

(log
exp(pi · ci/τ)∑L
j=1 exp(pi · cj/τ)

), (5)

where pi and cj are L2-normalized, τ is a fixed temperature

parameter.

4. Experimental Results
4.1. Datasets

J-HMDB dataset [7] has 21 action classes and 928

videos in total, which contains 31,838 annotated frames.

There are up to 55 clips per class and each video clip has

15 to 40 frames, which is trimmed to contain a single ac-

tion. We report frame mAP results on split-1 of the dataset.

The IoU threshold for frame mAP is 0.5.

UCF101-24 dataset [26] consists of 24 action categories

with 3207 untrimmed videos with human bounding boxes

annotated frame by frame selected from the original UCF

dataset, which contains 101 action categories. We test our

method on the first split and report frame mAP with an IoU

threshold of 0.5.

4.2. Implementation Details

Person and Object Detector: We use Faster-RCNN

[25] with ResNet-50-FPN [13] backbone as our object

detector, which is pretrained on ImageNet, and fine-

tuned on MSCOCO. For person bounding boxes, we take

groundtruth boxes for training, and use the detected boxes

from [10] at inference time.

J-HMDB: We train the network for 7k iterations with 0.7k

iterations serving as linear warmup and the base learning

rate of 0.0002. Using SGD optimizer and 32 batch size to

train the model on 4 GPUs.

UCF101-24: We train the network for 10k iterations with

1k iterations serving as linear warmup and the decreased

base learning rate of 0.0002. We use SGD optimizer and 64

batch size to train the model on 8 GPUs.

4.3. Zero-Shot Spatial-Temporal Action Detection

In the zero-shot scenario, the training labels and test-

ing labels are disjoint, where Ctrain ∩ Ctest = ∅. Since

this scenario has not been studied in the spatial-temporal

action detection before, we follow the setting proposed by

[9]. In more detail, we evaluate two settings on J-HMDB

and UCF101-24: (1) taking 75% action categories for train-

ing and the remaining 25% for testing. (2) taking 50% ac-

tion categories for training, and the remaining 50% for test-

ing. Both settings use random sampling to split action cate-

gories. For the following results, we report the frame mAP

with 0.5 IoU threshold.
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Dataset model +IAP

J-HMDB
Baseline 59.46 57.41

iCLIP 65.41 66.83

UCF101-24
Baseline 66.34 70.74

iCLIP 71.00 72.47

Table 1: Zero-shot inference results in 75%v.s.25% la-
bels split. The baseline uses the image feature of whole

frame for inference. +IAP: Complete model that contains

Interaction-Aware Prompting.

Dataset model +IAP

J-HMDB
Baseline 42.31 44.55

iCLIP 44.29 45.18

UCF101-24
Baseline 58.90 61.86

iCLIP 59.78 60.30

Table 2: Zero-shot inference results in 50%v.s.50% la-
bels split. The baseline uses the image feature of whole

frame for inference. +IAP: Complete model that contains

Interaction-Aware Prompting.

model +prompting

ActionCLIP [28] 62.80 60.26

Efficient-Prompting [9] 58.60 60.28

iCLIP 65.41 66.83

Table 3: Comparison with CLIP-based Methods on J-
HMDB. The experiments are conducted in 75%v.s.25% la-

bels split on J-HMDB [7].

To the best of our knowledge, in this scenario, there are

no prior studies with which we can compare our model.

To address this issue, we propose a naive baseline based

on CLIP model that does not require further training. At

inference time, the baseline takes two inputs, one is the

frame where the target person is located, and the other is

the test label set. It then utilizes a text encoder to capture

textual features and an image encoder to extract visual fea-

tures from the entire image. Both encoders are obtained

from the pretrained CLIP model ViT-B/16. We then mea-

sure the similarity between these two types of features as

the classification scores. There are other options for the im-

plementation of baseline, for example, taking only a person

crop as a visual feature, but it will give a poor performance

since it contains less information than the whole image. The

only disadvantage of the baseline is that when two or more

people are doing different actions in the same frame, it will

classify them into the same action category. Because there

is no such scenario on J-HMDB and UCF101-24, the base-

line can perform well on these datasets without training.

Additionally, to conduct a fair comparison with our

model, we also use the entire image features to prompt each

label based on the original baseline (baseline + prompting).

Table 1 shows the zero-shot inference results in 75% v.s.

25% labels split. Without prompting, our model outper-

forms the baseline by 5.95 mAP on J-HMDB, and also 4.66

mAP on UCF101-24. This indicates that our interaction fea-

ture can more accurately describe the action than the naive

image feature, and thus shows that our model can effec-

tively combine different CLIP features to better recognize

unseen actions. On the other hand, the zero-shot inference

results are compared for 50% v.s. 50% labels split with the

same setting as 75% v.s. 25% presented in Table 2. On J-

HMDB, our model achieves an improvement of over 1.98

mAP without prompting and over 0.6 mAP with prompt-

ing. On UCF101-24, our model achieves an improvement

of over 0.88 mAP without prompting.

4.4. Comparison with CLIP-based Methods

To further demonstrate the efficacy of iCLIP, we exper-

iment with other methods on our setting. Because in the

J-HMDB dataset, each video only has one action label, we

choose to use other zero-shot action recognition methods to

classify videos into an action category, and annotate all de-

tected person boxes in the video with this action label. For a

fair comparison, we choose ActionCLIP [28] and Efficient-

Prompting [9] which also utilize CLIP encoders and dif-

ferent prompting strategies for zero-shot inference. Also,

we freeze the CLIP image and text encoders for the fol-

lowing experiments. For both methods, they use a tempo-

ral transformer to consider the temporal relationship across

frames then get the video feature. As for prompting, Ac-

tionCLIP [28] designs several discrete prompts which are

human-readable, while Efficient-Prompting [9] chooses to

train continuous prompt vectors to search the most suitable

prompts.

The result in Table 3 suggests that our method has the

best performance with or without prompting for labels.

When there is no prompting, all of these methods have the

same text embedding of each label, so the performance de-

pends on the ability of the visual feature to describe the ac-

tion. This indicates that even if the other two methods use

the video feature, which considers the information of the

entire video, our interaction feature can still achieve bet-

ter results since it describes actions from a more granular

perspective. The result also shows that, our Interaction-

Aware Prompting can generate more suitable label features

for each person than the hand-craft prompts used by Action-

CLIP, which has worse performance after prompting.

4.5. Ablation Study

Importance of interaction units : We conduct further in-

vestigation into the importance of different interaction units
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Dataset IP IC IO IM mAP

J-HMDB

� 59.79

� � 62.36

� � � 64.82

� � � � 65.41

UCF101-24

� 66.92

� � 70.34

� � � 70.90

� � � � 71.00

Table 4: Ablation study on importance of interaction units: This experiment shows the importance of various interaction

units. IP : Person unit; IO: Object unit; IC : Context unit; IM : Memory unit. The experiments are conducted in 75% v.s.

25% labels split and without prompting (IAP)

Dataset 1st 2nd 3rd 4th mAP

J-HMDB

IP IO IC IM 65.41
IP IC IO IM 64.32

IO IP IC IM 64.68

IO IC IP IM 62.32

IC IP IO IM 62.55

IC IO IP IM 62.37

Table 5: Ablation study of order of interaction units: We arrange the order of units to observe the performance. In this

experiment, we freeze memory units at last ordering, and the results show that the order of IP− > IO− > IC− > IM has

the best performance. The experiments are conducted in 75% v.s. 25% labels split and without prompting (IAP)

IP IC IO IM +IAP

� 66.92 70.74

� � 70.34 70.84

� � � 70.90 72.18

� � � � 71.00 72.47

Table 6: Ablation study of Interaction-Aware prompt-
ing: This experiment show the effects of Interaction-Aware

prompting. IP : Person unit; IO: Object unit; IC : Context

unit; IM : Memory unit; +IAP: Complete model that con-

tains Interaction-Aware Prompting. The experiments are

conducted in 75% v.s. 25% labels split on UCF101-24.

and present the results in Table 4. When there is no prompt-

ing, the text embedding of each label remains unchanged, so

the performance only depends on whether the visual feature

can be more similar to the correct label embedding. The re-

sult shows that on both J-HMDB and UCF101-24 datasets

when we plug in more interaction units to aggregate differ-

ent CLIP features, the performance will gradually improve.

This proves that each interaction unit can indeed help to

describe the action more completely, thus providing better

alignment between visual and text features. With all four

types of units, the model combines the most information

and achieves the highest performance.

Unit order: In order to investigate whether the order of

interaction units affects the model’s performance, we con-

duct experiments that change the order of units so that we

will not always go through the person unit first. How-

ever, we did not provide extensive experiments for this part,

as previous research [2] has already explored this topic.

Also, we freeze the memory unit IM into the last order

since the memory is used to model the continuity of the

action, it is more reasonable to integrate the information

of the current frame before we observe the neighboring

frames. The results show that changing the order of units

does not lead to any improvement in performance, as in-

dicated in the table 5. Nonetheless, we find that the best

performance is achieved when the interaction blocks are or-

dered as IP− > IO− > IC− > IM . The second best per-

formance is achieved when IO in the first order and IP in

the second order. We analyze that when describing an ac-

tion, it is better to take into account the important local in-

formation (surrounding person/object) first, and then further

use the overall scene (context) to supplement the descrip-

tion.

Interaction-Aware Prompting: In Table 6, we conduct
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Figure 4: The qualitative results on J-HMDB, which is tested on 25% unseen labels with confidence score. The labels from

left to right are ”clip”, ”catch”, ”throw”, ”pull up” respectively.

Figure 5: The qualitative results on UCF101-24, which is tested on 25% unseen labels with confidence score. The labels

from left to right are ”Floor Gymnastics”, ”Soccer Juggling”, ”Skate Boarding”, ”Ice Dancing” respectively.

experiments to assess the impact of Interaction-Aware

prompting on our model’s performance. We find that it

can help improve performance by using the interaction fea-

ture to prompt each label. The result shows that no mat-

ter in which combination, it has a higher frame mAP than

the results without prompting in Table 4. In addition, in

the case of prompting, the performance improves when we

plug in more types of interaction units. This also indicates

that our interaction feature is suitable for prompting because

with more complete information, we can describe each label

more appropriately.

4.6. Visualization

In order to better show our action detection results, we

select some examples from J-HMDB and UCF101-24 and

show the qualitative results with 75%v.s.25% labels split.

In Figure 4, for recognition of the unseen action ”clap”, the

information of the person (e.g., pose) is very critical. We

take this into account by the person interaction block of

our model, and the result indeed shows that with the per-

son block only, we already have a higher confidence score

than the baseline, which only uses the whole image to in-

fer the action. For other actions like ”catch”, it is necessary

to consider the relationship between people and objects, as

well as the continuity of actions, which can be done by our

object unit and memory interaction unit, respectively. In

Figure 5, our improvement for some examples in UCF101-

24 is also evident. For the examples ”SoccerJuggling” and

”SkateBoarding”, it is difficult for the baseline to use only

the whole frame to recognize, while our model can im-

prove the confidence score to almost 0.7 and 0.8, which

indicates that with our interaction module and Interaction-

Aware Prompting, we can effectively aggregate more infor-

mation and make visual features closer to the correct label

embedding.

5. Conclusion

In this work, we propose a novel method for zero-shot

spatio-temporal action detection, a task that has not been

studied much before. To address this problem, we introduce

the Interaction-CLIP , which leverages interaction context

by using different interaction blocks to extract surround-

ing information. The Interaction-Aware Prompting tech-

nique is designed to generate instance-level discriminative

textual representations. With these, our model can make

the pre-trained visual-language model provide better align-

ment, thus leading to more accurate action detection for un-

seen action classes. Extensive experiments show that our

iCLIP surpasses the baseline under a variety of zero-shot

settings. Overall, this work presents a new and effective

approach for zero-shot action detection by leveraging inter-

action context and prompts.
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