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Abstract

The central aim of Video Question Answering (VideoQA)
is to provide answers to questions posed in natural lan-
guage, relying on the content of the given videos. How-
ever, when applied to video streams like CCTV record-
ings and live broadcasts, the solver encounters more in-
tricate challenges. In such scenarios, the segment of the
video needed to answer a specific question is often a small
component of the entire video. To address these complexi-
ties, a recent and innovative problem domain called Online
Open-ended Video Question Answering (O2VQA) has been
introduced[18].

In this paper, we propose an architecture based on multi-
modal foundational transformers for the O2VQA task. The
architecture comprises three modules. The first module
is responsible for the coarse selection of the target video
segment relevant to answering the question. The second
module refines this coarse segment by leveraging a Tem-
poral Concept Spotting mechanism, enabling the capture
of temporal saliency and resulting in the identification of
frames most critical for addressing the question. Lastly, we
employ an end-to-end Video-Language Pre-training model
to provide the answer. To evaluate our proposed model,
we conduct experiments on the publicly available ATBS
dataset[18]. The results showcase the superiority of our
approach over current state-of-the-art models.

1. Introduction
In recent years, there has been a remarkable surge in re-

search focused on enhancing the understanding of multi-

modal models [5, 3, 13] focussed on vision and language.

Among these areas of study, Video Question Answering

(VideoQA) stands out as a prominent field due to its po-

tential to enable interactive AI systems that communicate

with the dynamic visual world using natural language.

Video Question Answering (VideoQA) involves a model

*equal contribution

Figure 1. Overview of the proposed architecture for O2VQA. We

use three modules, namely Coarse frame selection, Fine frame se-

lection, and Video Question Answering module

that receives a sequence of frames and corresponding nat-

ural language questions as input and produces answers to

those questions. The model needs to handle multimodal

inputs and comprehend various relationships in the data,

which include recognizing subject interactions, enumerat-

ing diverse objects, and discerning cause-and-effect rela-

tionships among actions depicted in the video.

Video Question Answering (VideoQA) has gained sig-

nificant popularity in recent studies [19, 40]; however, it re-

mains a challenge due to its requirement for models to pos-

sess a comprehensive understanding of videos to provide

accurate responses to questions. In comparison to Image

Question Answering, commonly known as Visual Question

Answering, VideoQA presents notably more complex hur-

dles. Primarily, the vast number of frames contained within

videos often includes irrelevant information not pertinent to

the specific question at hand. Moreover, the questions in

VideoQA go beyond mere recognition of visual elements

such as objects, actions, activities, and events; they demand

the ability to infer intricate semantic, spatial, temporal, and

causal relationships among these elements [37, 14]. This

multifaceted nature of VideoQA tasks significantly aug-

ments the complexity involved, thereby making it a com-

pelling and continuously evolving domain of research [45].

Existing research in VideoQA has primarily focused on

short, fixed-length videos [35, 11, 37, 23]. However, in

practical real-life scenarios, videos obtained from record-

ings, live streams, and CCTV footage are often much longer
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and vary in duration. This presents a significant challenge

since the relevant part of the video needed to answer a ques-

tion constitutes only a small portion compared to the en-

tirety of the video.

To bridge this gap and make VideoQA systems more ap-

plicable to real-world situations, a novel task called Online

Open-ended Video Question Answering (O2VQA) was in-

troduced by the authors of CEO-VQA paper [18]. In this

task, the VideoQA model is presented with a video of un-

predictable length and a related question. The objective

is to enable the model to autonomously identify the rele-

vant/target section of the video, collect enough information

from it, and then terminate to answer the question based

on that specific section. This new task aims to address the

challenges posed by long and variable-length videos, facil-

itating better adaptation of VideoQA systems to practical

applications.

Prevailing methods for O2VQA [18] adopt a two-step

approach whereby they first predict the target video segment

and subsequently employ a question-answering module on

the chosen segment. Nonetheless, this approach encoun-

ters two significant challenges. Firstly, any inaccuracies

in the target segment selection module reverberate into the

question-answering module. For example, if the segment

selection module selects an excessive number of frames be-

yond the actual ground truth, it introduces substantial noise

into the subsequent question-answering process. Secondly,

existing approaches for the question-answering module em-

ploy distinct text and video frames encoders [8, 4], subse-

quently fused using a transformer to predict the answer [32].

Unfortunately, this not only escalates the model’s parameter

count but has also demonstrated inferior performance com-

pared to using a unified backbone capable of concurrently

encoding all modalities [33, 1]. Thus, based on the work of

Wang et al. [33], we adopt a pre-trained multi-modal foun-

dational model featuring a unified backbone for effectively

encoding both video and text within our question-answering

module.

To address the O2VQA challenge, we present the Coarse

to Fine Frame Selection – Video Question Answering

(CoFFS-VideoQA) model, comprising three essential mod-

ules:

(a) a coarse frame selection module that identifies the

target segment in the video,

(b) a fine frame selection module to extract frames rele-

vant to the given question, and

(c) an end-to-end Video-Language pre-trained question-

answering (VideoQA) module.

In the coarse frame selection module, we leverage frame

and question embeddings to gauge their similarity. Employ-

ing a Fibonacci sampling technique, we sample frames and

utilize similarity thresholds to locate the boundaries of the

target segment in the video. Subsequently, the Fine frame

selection module uniformly samples frames from the iden-

tified segment and computes saliency scores for each frame,

aiding in the identification of crucial frames essential for an-

swering the question. This step effectively filters out noisy

frames, enhancing the overall performance of the VideoQA

module.

The VideoQA component employs an end-to-end model

that learns both video and language representations from

raw data. Following the pre-train and fine-tune approach

used in recent works [33], we adapt a model pre-trained on

video-text matching and masked language modeling to suit

the O2VQA task.

By combining these three modules, our CoFFS-

VideoQA model presents a holistic approach to address the

challenges of the O2VQA task, as depicted in Figure 1. The

model excels at selecting pertinent frames and delivering

precise question-answering capabilities.

Our proposed method is tested on the publicly available

ATBS [18] dataset and we show an improvement over the

current state-of-the-art (SOTA) model.

2. Related Work
Traditional methods for VideoQA used frame-level and

clip-level information using various techniques - graph neu-

ral networks [35], cross-modal attention [14, 23], attribute-

based attention [41], hierarchical attention [44, 43], multi-

step progressive attention memory [17], and multi-head at-

tention [22]. With the success of Transformer architec-

ture for vision and language tasks, pre-training on large-

scale datasets with video-text pairs, and fine-tuning for

downstream tasks, like VideoQA, has become the norm

[37, 33, 46]. Pre-training has shown improved performance

on downstream tasks. Pre-train and then fine-tune approach

has been used in recent works on Visual Storytelling [42],

and Text-to-Video retrieval [38]. In most of these works, the

pre-training is done on video-text pairs and then finetuned

on video-language tasks. In this work, following [33], we

use a model pre-trained on video-language tasks, and then

fine-tune it to VideoQA.

CLIP has demonstrated remarkable effectiveness in han-

dling image-text tasks. Recently, researchers have also di-

rected their attention towards employing CLIP for video-

text retrieval tasks [10, 26] and video recognition [16, 24,

27, 28]. In the context of video recognition, some studies

[24, 28] adopt CLIP as a reliable initialization for the vision

encoder, while others [16, 27] utilize it to model video-label

interactions.

Although these approaches partially capture the video-

label interactions, a more recent work [34] highlights the

potential of CLIP in modeling bidirectional cross-modal in-

teractions. Drawing inspiration from the success of CLIP in

modeling such interactions [34], we leverage CLIP in our

Fine frame selection module to identify the salient frames.
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Figure 2. The proposed CoFFS-VideoQA module takes the question and video as input. Coarse frame selection predicts the target segment

of the video, effectively removing the background component of the video. This is passed on to the Fine frame selection module which

selects the top K frames which are required to answer the question. Finally, a Video question answering module takes the frames and the

question as input and outputs an answer.

3. Proposed architecture

3.1. Problem Formulation

The task of O2VQA consists of a video V and a cor-

responding textual question Q. The goal is to predict the

correct answer for the given question. In open-ended Video

Question Answering, responses are initially given in free-

form natural language. However, a prevalent approach in-

volves transforming the task into a classification problem

by representing the answers using class labels [20, 33]. Fol-

lowing this, we model this as a classification task.

3.2. Overview

Precisely predicting the response in the O2VQA prob-

lem necessitates the model’s ability to identify the segment

of the video relevant to the posed question. Additionally, a

robust answering component is essential to predict the an-

swer by considering both the identified video segment and

the question. Keeping this in mind, our proposed CoFFS-

VideoQA model for O2VQA has three main components:

Coarse frame selection, Fine frame selection, and VideoQA

module. We expound further on each of the modules in the

following sections

3.2.1 Coarse frame selection

To distinguish the relevant part of the video from the

background video, we employ Coarse frame selection.

To demonstrate the superior performance of the Fine

frame selection and VideoQA modules, we build upon the

Coarse frame selection module introduced by Kong et al.

[18], which is also the current best-performing model for

O2VQA task.

In this module, we leverage the video and text encoders

used in BridgeFormer [12]. The pre-training regime of

Bridgeformer ensures that the encoders are capable of ex-

tracting fine-grained semantic associations across the text

and video modalities. Specfically, we use a 12-layer vision

transformer [9] to encode the video frames and DistilBERT

[31, 32] to encode the text. The cls tokens from both en-

coders are utilized to compute the similarity between the

video frames and the text. During video processing, when

the similarity surpasses a specified threshold cmax at any

point in the video, we consider that frame as the central

frame of interest. Subsequently, we sample frames on both

sides of the video using the Fibonacci sequence and cal-

culate the corresponding similarities. Sampling ceases as

soon as the similarity falls below another threshold cmin.

The first and last frames selected through this process con-

stitute the target segment, which serves as the input for the

Fine frame selection module.

3.3. Fine Frame Selection

In this module, we employ uniform frame sampling from

the target video segment to identify the most crucial frames

(among the sampled frames) required to answer the ques-

tion. The rationale behind uniform sampling is due to the

observation that there is not much variation between a few

consecutive frames, making it reasonable to treat them as

representative samples. This process involves two steps:

After predicting the start and end frames of the target seg-

ment, we compute a saliency score for each frame within
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Method What Who How Where When Overall

ALPRO [21] 19.16 33.58 77.27 25.0 54.55 24.8

CEO-VQA [18] 19.20 41.68 79.55 25.0 54.55 27.1

CoFFS-VideoQA (Ours) 21.26 43.54 79.55 28.57 60.00 29.2
Table 1. Comparison of our proposed model for O2VQA task with other models on ATBS [18] dataset. Best accuracies are in bold.

that segment. Based on these saliency scores, we select

the top K frames with the highest scores. To achieve this,

we draw inspiration from the approach presented in [34]

and leverage a multi-modal foundational model to calculate

the target segment-to-sentence level attention at a granular

level.

Specifically, we establish word-frame attention for each

word-frame pair by generating frame-level embeddings us-

ing CLIP [30]. Each frame within the target segment under-

goes processing through the Vision Transformer [9], which

constitutes the CLIP model, resulting in frame embeddings

denoted as {vt ∈ R
d | t = 1, 2, · · · , T}, where vt repre-

sents the embedding of the t-th frame, and T represents the

total number of frames in the target segment.

In the context of the CLIP model, the question is encoded

using the Transformer network [32]. Each word in the in-

put question is represented by the output of the last self-

attention block, forming the word representation {wp ∈
R

d | p = 1, 2, · · · ,W}
, where W is the total number of

words in the question Q.

To determine the relevance of each frame to the question,

we begin by computing the similarity between a word in

the question and a frame. This similarity measure is then

normalized using softmax across all frames, resulting in the

word-frame similarity. This process yields the normalized

similarity of a word with each frame.

Subsequently, for a given frame, we calculate the average

of all the normalized word similarities corresponding to that

frame, which forms the saliency score St for the particular

frame.

Stp =
exp

(
v�
t wp/τ

)
∑T

t=1 exp
(
v�
t wp/τ

) , (1)

where Stp is the similarity between the frame t and word p.

τ is the temperature of the softmax function. vt and wp are

the embeddings of t-th frame and p-th word respectively.

The saliency score for every frame is calculated by tak-

ing the mean of all the normalized word-frame similarities

with respect to the current frame as follows:

St = 1

W

W∑

p=1

Stp, (2)

where W is the number of words in the question and Stp is

normalized frame-word similarity.

Once the saliency scores are computed for all frames,

we proceed to select the top K frames based on their

saliency scores. These chosen frames are then utilized in

the question-answering module, collectively forming a new

video that serves as the input to the VideoQA module.

3.4. Video Question Answering Module

The third and final module in our architecture is Video

Question Answering (VideoQA) module which predicts the

answer given the most important frames. Unlike most ex-

isting works [36, 15] for VideoQA, which use separate en-

coders for text and video and later use complex fusion mod-

ules, we use a single backbone network for encoding both

the video and the text.

With the recent surge in the use of multi-modal founda-

tional models [7, 6] for many video-related tasks, we ex-

plore the usage of pre-trained models for VideoQA. We use

the slightly modified and pre-trained ViT [9] model pro-

vided by All-in-one (AIO) [33]. Specifically, ViT has been

modified to add support to text by using a learned word

embedding to encode the question. On the other hand, to

encode the input video, it is split into patches and passed

through a fully-connected layer. Learnable position and

modality type embeddings are added to each of the video

and text embeddings.

Finally, the video and the text embeddings are concate-

nated and passed through multiple modified transformer

layers, where each layer has a temporal token rolling mod-

ule [33], multi-head self-attention layer [32] and fully-

connected layer.

The token rolling module is mainly to model the tempo-

ral information in the ViT network. Token rolling has been

shown to be effective in modeling the long-range depen-

dencies between videos and text. We refer the reader to the

original paper [33] for further details.

The cls token of the final ViT layer is passed through a

two-layer fully connected (FC) layer to predict the answer

label. The output of the final FC layer is passed through a

softmax. The question-answering module is trained using

cross-entropy loss.

3.5. Implementation details

The VideoQA module has been implemented using Py-

Torch [29]. We use Adam optimizer with weight decay [25]

with an initial learning rate of 1e-4 and a weight decay of

0.01. The model is trained with a polynomial learning rate
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Figure 3. Examples from the ATBS [18] dataset where CoFFS-VideoQA predicts the answer correctly.

decay, with a warmup period of 2500 steps during which

it is linearly increased from 0 to the initial learning rate of

1e-4. The decay power is set to 1.

For the ’Fine frame selection’ (FFS) component, we use

ViT-B/16 [34, 9] model pre-trained by CLIP [30]. Specifi-

cally, we use an input resolution of 224*224 for the frames.

The vision transformer used for encoding the frames con-

tains 12 layers, 12 heads and has a width of 768. Similarly,

for encoding the text, we use a transformer with 8 heads, 12

layers, and with a width of 512. We note that this part of

the architecture is not trained. Finally, we set the number of

frames selected after FFS to be 7 i.e. K is set to 7.

4. Experiments

Within this section, an overview of the utilized dataset is

presented, along with the corresponding results.

4.1. Dataset

For the evaluation of the O2VQA task we use the An-

swer Target in Background Stream (ATBS) dataset [18]. In

order to replicate real-world scenarios, Kong et al. adopt a

Background + Target approach. This involves using a rel-

atively long background video, simulating an online video

stream, and a target short video clip containing essential in-

formation to answer the provided question. The target video

clip is inserted into the background video, after choosing a

random frame from the background video as the insertion

point. This is to simulate the natural and random appear-

ance of the target event within a dynamic video stream. The

background videos are taken from the Distinct Describable

Moments (DiDeMO) [2] dataset. The target video clips are

extracted from the MSRVTT dataset [39].

Every video clip from the MSRVTT dataset [39] is

paired with a unique background video that is randomly se-

lected from the DiDeMo dataset [2]. Prior to further pro-

cessing, both the frames of the target video clip and the

background video undergo resizing to a uniform size of 224

× 224 pixels.

In total, there are 10k videos in the dataset and we follow

previous work [18] to generate the train/val/test splits for a

fair comparison.

4.2. Results

We evaluate the performance of our proposed model on

the ATBS dataset to demonstrate the improved performance

of our model compared to the current SOTA models. We

compare the top-1% accuracy of our model with other mod-

els. We see that the proposed model outperforms the current

SOTA models on overall accuracy and also on almost all the

question types establishing the superiority of our model.

4.3. Qualitative analysis

In this section, we present examples from the dataset

demonstrating instances where the model performs accu-

rately and instances where it makes mistakes.

Correct predictions: Figure 3 displays multiple videos

alongside their corresponding questions and answers, both

predicted by the model and the ground truth. Notably, the

model exhibits a good performance in predicting answers

by effectively filtering out irrelevant frames.
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Figure 4. Examples from the ATBS [18] dataset where CoFFS-VideoQA predicts the answer incorrectly.

Figure 5. Inputs and outputs of the Fine frame selection (FFS) module: Each row corresponds to a video. A few sampled frames (which

act as inputs to FFS) for each video are shown in each row. The dotted lines show the frames selected by the FFS module.

Incorrect predictions: Figure 4 presents a collection of

videos where the model encounters challenges in accurately

predicting the answers. These challenges fall into three dis-

tinct categories:

a) Ambiguous answers: Within this category, instances

arise where predicting the subject’s activity in the video be-

comes intricate. The first case in the figure portrays this un-

certainty, as it remains difficult to deduce whether the child

is merely walking or playing.

b) Synonyms as answers: Notably, the model tends to

generate responses that are synonymous with the ground

truth. The second example within the figure exemplifies this

occurrence, where the model predicts the answer as ’talk,’

whereas the correct response is ’speak.’

c) Requires external knowledge: Certain questions ne-

cessitate knowledge beyond the model’s training data. In

the fourth example showcased in the image, the model’s

inability to predict ’Spongebob’s’ appearance arises from

lacking any prior exposure to the character.

By categorizing these challenges, we gain insights into

the limitations of the model’s predictive capabilities in var-

ious contexts, prompting further investigation and potential
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improvements.

Fine frame selection (FFS): Figure 5 displays both the

frames comprising the target segment, as predicted by the

coarse segmentation module and the frames selected by the

FFS module, which are deemed the most crucial ones for

answering the question. Notably, the module adeptly iden-

tifies and picks frames of utmost relevance to the question,

underscoring the significance of incorporating this module

in ensuring robust and accurate question-answering capa-

bilities.

5. Conclusion and Future Work
This work addresses the problem of using VideoQA for

real-world use cases. Previous works concerning this prob-

lem extracted the target segment followed by a question-

answering module which has a few drawbacks. Firstly,

errors occurring in the target segment selection module

have a cascading effect on the question-answering mod-

ule. For instance, the extra number of frames picked by the

segment selection module introduces substantial noise into

the question-answering process. Secondly, regarding the

VideoQA module, current approaches solely rely on sep-

arate text and video frame encoders to encode each modal-

ity independently. Later, a transformer is employed to fuse

these encodings and predict the answer. While on one hand,

this approach increases the number of model parameters, on

the other hand, it performs less effectively compared to uti-

lizing a unified backbone capable of simultaneously encod-

ing all modalities[33]. To tackle these issues, we adopt a

two-pronged approach. Firstly, we implement a Fine frame

selection module to filter frames, allowing only relevant

ones to be forwarded to the VideoQA module. Secondly,

we leverage a unified backbone architecture to efficiently

address the question and provide answers. We validated our

model on the publicly available ATBS [18] dataset to show

the efficacy of the model. In the future, we aim to integrate

all three modules into a unified architecture and train them

end-to-end.
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