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Abstract

Vision-language foundation models have had consider-
able increase in performances in the last few years. How-
ever, there is still a lack comprehensive evaluation methods
able to clearly explain their performances. We argue that a
more systematic approach to foundation model evaluation
would be beneficial to their use in real-world applications.
In particular, we think that those models should be evalu-
ated on a broad range of precise capabilities, in order to
bring awareness to the width of their scope and their po-
tential weaknesses. To that end, we propose a methodology
to build a taxonomy of multimodal capabilities for vision-
language foundation models. The proposed taxonomy is in-
tended as a first step towards an exhaustive evaluation of
vision-language foundation models.

1. Introduction

The development of foundation models in the last few
years has enabled new state-of-the-art performances across
many tasks in the fields of computer vision and natural lan-
guage processing tasks [73, 107]. Yet, monomodal mod-
els have shown to be limited in their ability to perform
some tasks [4], as they are not sufficiently grounded in
real-world situations to be able to grasp multimodal con-
cepts. Multimodality can be an effective approach to ground
models and reach a better understanding of human seman-
tics. This has resulted in a growing focus on multimodal
foundation models. In this paper, we specifically consider
vision-language foundation models, which use visual and
textual inputs [92, 17, 49, 39, 97, 2, 53]. These models have
been tested on many tasks, from image-to-text generation to
cross-modal retrieval or classification. Yet, recent work has
brought to light weaknesses in their understanding of multi-
modal concepts, i.e., concepts that cannot be captured by a
single modality. For instance, vision-language models have
a limited multimodal understanding of position [79, 80],
vision-language compositionality [65] and word order [93],
even though they are able to understand the basis of those

concepts at a monomodal level [79, 80]. This has prompted
the creation of dedicated evaluation tasks to assess those
capabilities [108, 59]. Although benchmarks have also at-
tempted to consider a wider spectrum of vision-language
capabilities [67, 59], no attempt has been made to provide
an exhaustive evaluation of those models.

Drawing inspiration from the work that has been carried
out for monomodal models, we aim at starting a discussion
on the comprehensive evaluation of vision-language foun-
dation models. Our goal is to reach a better explainability
of foundation models’ capabilities. Other important aspects
that should be taken into account when evaluating a founda-
tion model, such as environmental and societal impact, are
not the focus of this work. Foundation models are notori-
ously more difficult to evaluate than task-specific models.
Indeed, the latter can be reliably evaluated on one specific
task. Foundation models, on the other hand, are applicable
to many tasks and domains. Thus, they must be evaluated
on their whole scope of application. While researchers have
developed benchmarks committed to a comprehensive eval-
uation of monomodal foundation models [96, 55, 110], to
our knowledge, there has been no such proposal in the case
of vision-language models. We argue that it is essential
to assess the performance of multimodal vision-language
foundation models on a wide range of specific capabilities.
This would be the first step towards an exhaustive evalua-
tion of such models. In this work, we propose a taxonomy
of vision-language capabilities. Figure 1 shows a summary
of this taxonomy, presented in Section 4.

2. Evaluating Foundation Models

In this work, we consider vision-language foundation
models. In [8], the authors propose a definition of those
models. “A foundation model is any model that is trained
on broad data (generally using self-supervision at scale) that
can be adapted (e.g., fine-tuned) to a wide range of down-
stream tasks” That is to say, the goal of vision-language
foundation models is to serve as the basis of multiple tasks
by learning general representations of texts or images on
a large amount of data. The question of how to evaluate
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Figure 1. Summary of the suggested taxonomy

foundation models has still no clear answer. Indeed, re-
searchers can have different goals when evaluating a foun-
dation model. For instance, they can compare models to
human intelligence. In that respect, it is important to focus
on its generalization ability and its capacity to solve previ-
ously unseen tasks [21]. Yet, the evaluation of a foundation
model also aims to reach a better understanding of its pre-
cise capabilities and scope. Indeed, foundation models are
being used in real-world environments, where failures can
have considerable consequences. Those are more likely to
happen if users are unaware of potential weaknesses, or the
extent of their reliability.

2.1. Monomodal Foundation Models

There have been standardization efforts in the evalua-
tion of general-purpose models in Natural Language Pro-
cessing and Computer Vision, following the development
of multitask models. The fast development of language
models has led to benchmarks designed to test the multi-
task abilities of those models. For instance, GLUE [96] and
SuperGLUE [95] have gathered complex tasks to compare
models to human performance. Similar benchmarks have
been developed in Computer Vision. For instance, VTAB
[110] aims to evaluate representation learning algorithms
on a diverse range of 19 tasks (e.g., object counting, loca-
tion recognition, fine-grained classification, disease classi-
fication) in several domains. However, these benchmarks
offer limited insight on the explanation of a model’s perfor-
mance. To reach a better understanding of those black box
models, new methods have been developed [78]. Among
those methods, there has been an emergence of studies eval-
uating specific skills using probing tasks or other evaluation
methods [23, 74]. These have been established as a way
to understand what information is encoded in representa-
tions. Yet, probing tasks have also shown that they can lack
in robustness, being highly dependent on syntactic varia-
tions [76]. This has led to the development of methods to
stress test NLP models such as Checklist [77] or HELM
[55] with regard to robustness, but also bias and fairness.

Similar studies have also tested the robustness and bias of
models learning visual representations [38, 100].

With the emergence of foundation models, the question
of evaluation methods shifted from fine-tuning to few-shot
evaluations on a wide range of tasks. Indeed, it is less
resource consuming. For instance, [99], the authors de-
velop 1600 few-shot evaluation tasks for generative lan-
guage models. While some studies focus on gathering nu-
merous evaluation tasks [30], others have chosen to evalu-
ate those models on human examinations rather than ma-
chine learning benchmarks [112]. For the visual modal-
ity, Florence [107] and CLIP [72] authors also use sev-
eral visual and vision-language tasks and datasets to assess
their models. Some methods tackle the evaluation prob-
lem from a capability-centric perspective [89], or attempt
to build a taxonomy for the evaluation of language founda-
tion models[55]. This enables a more precise explanation
of their performances. However, building a comprehensive
evaluation benchmark is complicated, due to the variety of
possible applications. As a solution, authors rely on previ-
ous work in the field [55]. Thus, it is not aimed to be frozen
but to evolve with the inclusion of new applications[89].

Other difficulties impact the evaluation of foundation
models. First, the metrics used to evaluate those models are
not always appropriate, especially in the case of generative
models, either for texts [36] or for images [9]. The use of
human evaluation enables researchers to avoid the flaws of
metrics, but lack in standardization ability. In addition, the
evaluation of foundation models relies on data dependent on
bias and subjectivity [52]. The use of appropriate datasets
and metrics to evaluate on a task and the development of
exhaustive evaluation methods are decisive to diagnose and
analyze foundation models.

2.2. Vision-Language Foundation Models

In the case of multimodal models, it can be difficult to as-
sess a model’s understanding. Indeed, models rely on spuri-
ous correlations, and may rely on only one modality, with-
out using crucial information from the other. This has been
shown in vision-language models, where visual information
can be ignored in favor of textual bias [33]. Therefore, to
be able to trust a vision-language model’s performance in a
real-world application, it is important to be aware of what
concept this model is able to understand at a multimodal
level.

In recent years, several benchmarks have been devel-
oped [113, 11] to evaluate vision-language models. Some
have also built tasks based on a multimodal phenomenon
they want to assess, such as counting objects [68, 111]. On
the contrary, some works focus on the evaluation of mod-
els on tasks requiring complex reasoning abilities, such as
generalization or abstraction [19]. Those methods give us
an overview to compare the capabilities of vision-language
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models, and can point out their weaknesses.
However, as vision-language multimodality is less ma-

ture than those of language only or vision-only machine
learning, there is also a lack of hindsight on what issues
vision-language foundation models will be facing. There
are several aspects to consider in order to create a thor-
ough overview of such a model: the understanding of each
modality, and the combination of monomodal information
to understand multimodal concepts. To our knowledge,
there has been no attempt at evaluating a broad coverage
of vision-language capabilities.

3. Methodology

Through this work, we suggest an exhaustive evaluation
of vision-language foundation models, to help point out pre-
cise failures in the multimodal understanding of foundation
models. With access to such information, users would be
able to make an informed decision on the use of a model.
To get a precise overview of the general multimodal under-
standing of a vision-language foundation model, we want
to study its performances on a diverse set of multimodal
capabilities. Such methods have indeed proven beneficial,
in natural language processing and computer vision, to un-
derstand the inner workings of large black-box models. In-
deed, a more granular evaluation will help to point out lim-
iting factors of vision-language models. Contrary to cur-
rent works in natural language processing, we do not focus
on tasks (e.g., retrieval, inference, generation) but the ca-
pabilities required for multimodal understanding. Indeed,
our goal is to identify possible weaknesses in the under-
standing of multimodal concepts. To that end, we propose
a taxonomy of vision-language capabilities. The goal of
this taxonomy is to cover a broad range of vision-language
capabilities. Indeed, the capabilities used to evaluate foun-
dation models should be as complete as possible to avoid
blind spots. In this section, we explain the categorization of
vision-language capabilities into the taxonomy, and how to
determine granular vision-language capabilities relevant in
real-world applications.

3.1. Categorization

Indeed, multiple types of broad abilities are required
when a foundation model performs a vision-language task.
The categorization of granular vision-language capabilities
into those broad abilities can help identify potential blind
spots. To organize those abilities, we draw a parallel with
the human understanding. Indeed, we refer to visual liter-
acy, which studies the human understanding of images, to
help us establish different stages of visual literacy for ma-
chine learning systems. There is no clear definition of what
it means to be visually literate, due to the complex nature
of the concept [48]. Visual literacy is defined by aggregat-
ing sets of skills in two main categories: ‘denotation’ and

‘connotation’ [3]. Denotation refers to the perception of
visual elements in an image, while Connotation associates
the image with an ideological or affective meaning. How-
ever, those specific abilities are not sufficient to evaluate the
capabilities of a model. Indeed, it can struggle with skills
considered fundamental for a human. As a result, we pro-
pose four broad categories of vision-language capabilities,
with the following definitions. The first letters of those cat-
egories will be used to refer to them in the next section.

Definition 1 (GroundingG). Capabilities requiring the use
of information that is not directly accessible using the in-
puts (2D image and text); or the understanding of concepts
that cannot be described using those modalities (e.g., time,
space, knowledge, sound, mathematical documents).

Definition 2 (Reasoning R). Capabilities requiring the ap-
plication of abstract thinking or logic to the analysis of an
image-text instance.

Definition 3 (Connotation C). Capabilities related to the
subjective analysis of a text-image instance, from symbolic
interpretation to qualitative evaluation.

Definition 4 (Denotation D). Text explicitly depicts or
refers to image elements and does not require grounding,
reasoning or evoke connotation.

3.2. Determining vision-language capabilities

In order to build this taxonomy, we must consider the
context in which it operates, meaning the current state of
the vision-language field. Indeed, the evaluation of vision-
language foundation models should be to be appropriate,
considering the use cases and challenges of vision-language
models. By precisely analyzing the context, we can identify
relevant vision-language capabilities at a granular level. We
are inspired by HELM [55], which uses conference tracks to
assess the coverage of their evaluation methodology. How-
ever, vision-language machine learning is less mature than
Natural Language Processing, and not all challenges have
been identified.

Since foundation models are aimed at real-world appli-
cations, we select some that could be a use case for vision-
language models from current research. There are a grow-
ing number of complex applications, with common chal-
lenges that have not yet been resolved, as detailed in Ap-
pendix A. A foundation model would have to be evaluated
on challenges linked to those various applications. We ar-
gue that those challenges should be tackled as a common
goal, and that it should reflect in the evaluation of those
models. However, the complex nature of those applica-
tions may make it difficult to interpret the performance of a
model. To that end, we encourage the evaluation of foun-
dation models to go from a task-centric perspective to a
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capability-centric perspective, by creating a list of vision-
language capabilities needed for real-world applications.

In this section, we study more precisely several of the
identified real-world applications to get as complete a pic-
ture as possible of the capabilities involved in those tasks:
news captioning, medical visual question answering (VQA)
[1] and vision-language navigation [85]. As observed pre-
viously, those applications do not cover the whole range of
vision-language multimodality, but they offer insight into
different capabilities relevant to multimodality. For each
of those applications, we proceed with a method to iden-
tify related vision-language capabilities. These methods
could then be applied to other vision-language applications
to identify capabilities.

Manually studying relevant data Vision-language foun-
dation models can be used with news-related data for fake-
news detection algorithms. We study the capabilities nec-
essary for such applications from a data-centric perspec-
tive: we collect examples and manually identify relevant
capabilities. News-related data varies across cultures, pe-
riods, and topics of interest. We choose to study exam-
ples from selected newspapers to extract different types of
multimodal interaction, as well as capabilities needed for
a vision-language system to understand those examples.
More details are available in Appendix B. We notice that
news images and their captions follow two main different
types. Either the image is described by the caption, with
possibly a bit of context added by the text, or the image is
used as an illustration of the text, and the link between text
and image is less direct. Following the vocabulary intro-
duced by [66], we call the first text-image relationship an-
chorage and the second situation illustration. The instances
are evenly split along those two categories. From the ex-
amples, we extract several capabilities necessary for a good
understanding of the instances:

• Object Recognition D: Understand the content of an
instance. For instance, in the case of war reporting, it is
important to differentiate between systems belonging
to two armies.

• Text Understanding G-R: Understand written text in
an image, and its role with respect to the object it is
written on. For instance, texts written on a protest
board or a shop window have widely different intents.

• Named Entity Recognition G: Link famous people or
monuments in an image to the corresponding entity.

• Semantic Role Understanding G: Understand the role
of both objects and people. For instance, understand-
ing the job of someone using the context.

• Sentiment Understanding D-G: Understand the
stance, gaze, expressions and interaction of a person
(or animal) with their environment.

• Structural UnderstandingD: This can relate to the un-
derstanding of image structure (e.g., counting, under-
standing position). For instance, it can help understand
how each element relates to each other (e.g., interac-
tion between people).

• Context Grounding G: Identify when the picture was
taken, where it was taken, or the event it depicts.

• Image Interpretation C: Some instances show a dis-
crepancy between text and image, which can help un-
derstand the intent of the journalists. For instance, the
use of the words ‘is investigated’ in a caption gives a
new meaning to a picture.

• Style understanding C: This can relate to the un-
derstanding of art or style, and the understanding of
iconography.

Relying on existing datasets Vision-language foundation
models can be used as part of multiple real-world applica-
tions, as detailed in Appendix A. Those applications often
require specific technical knowledge to understand the un-
derlying challenges. To compensate for our lack of techni-
cal knowledge, we can rely on existing tasks and datasets
to identify relevant capabilities. In this section, we specif-
ically study Computer-Aided Diagnosis systems as an ex-
ample. These systems can provide doctors with another
tool to reach a medical diagnosis or help communication.
Some datasets have already identified relevant problems of
vision-language multimodality applied to medical data. To
that end, we refer to the question types identified in medical
VQA tasks [1].

• Data Collection Context D: In medical imaging, data
can vary following what is being observed, using
which machine, options.

• Object Recognition D: Recognize different organs or
body parts, and be able to segment them.

• Semantic Object Understanding G-R: Differentiate
between ‘normal’ or ‘abnormal’ organs.

• Focus Understanding D: Understand the main ‘abnor-
mality’ in an image, which requires the system to un-
derstand the focus of a medical instance.

• Knowledge Grounding G: Medical technical knowl-
edge is necessary to describe and differentiate techni-
cal terms.
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• Logical Reasoning R: The system may need to per-
form logical reasoning to aggregate multiple factors.

• Multi-source understanding D-R: Summarize and
compare several sources of data.

Relying on extensive research in a field Vision-language
foundation models can be used to build agents that can in-
teract with their environment using human language and vi-
sual information. This field is known as vision-language
navigation (VLN). To identify relevant vision-language ca-
pabilities, we rely on studies that have explored the chal-
lenges related to this field [35]. To be able to perform VLN,
a system must have a good understanding of:

• Spatial Understanding D-G: Understand the position
of an agent relative to other objects in the scene, as
well as the depth and size of other objects. This skill
depends on the point of view of the system.

• Space-based ReasoningR: The ability to design a path
based on available information.

• Object RecognitionD: Recognize objects in the scene.

• Object Role UnderstandingG: A model should be able
to recognize the role objects, as well as their associated
physics. In particular, some objects can be obstacles,
and others can be interacted with.

• Object State UnderstandingG: Recognize the state ob-
jects, and the semantic change in those states. For in-
stance, a cup can be empty or full and will not have the
same role depending on its state.

• Action Understanding G-R: Understand the sequence
of actions necessary for a task, and their effect on the
environment. For instance, washing something implies
changing the state of an object from ‘dirty’ to ‘clean’.

• Structure Understanding D: Recognize the structure
of a scene, as well as the dependency between objects.

• Intent Understanding C: Understand the intent, even
in the case of a misalignment between modalities. The
model must be able to understand the intent despite
this discrepancy.

Discussion In this section, we study a few diverse appli-
cations of vision language systems to determine a set of
skills necessary for vision-language systems. In addition
to downstream applications, we also rely on previous works
in the fields of computer vision and natural language pro-
cessing [60, 56, 10, 105, 13] to identify relevant capabil-
ities to add to the taxonomy. Due to the breadth of the
vision-language field, it is difficult to enumerate all possible

vision-language capabilities. To further this study, several
other applications (Appendix A) could help provide a more
complete understanding of vision-language skills. Before
using a vision-language foundation model on a real-world
application, we encourage studying the task to uncover rel-
evant vision-language capabilities.

4. Taxonomy

In this section, we propose a preliminary attempt at a
taxonomy of vision-language capabilities. We supplement
the previously determined capabilities (Section 3.2) using
previous work in natural language processing, computer vi-
sion and cognitive sciences to build a taxonomy of vision-
language capabilities. The taxonomy is presented in more
detail in Appendix C.

Denotation The capabilities of a vision-language model
to explicitly associate a text and an image are conditioned
on its ability to take into account information at different
levels. At a local level, denotation capabilities evaluate the
understanding of a single element of a text-image instance,
independently of the remaining part. Among the previously
determined capabilities, object identification is such an abil-
ity. A parallel can be made with the Communicative Devel-
opment Inventories (CDIs) [28], where recognizing objects
such as animals or vehicles is among the first skills eval-
uated for children. Several datasets have focused on the
evaluation of the presence of objects [82, 67]. A related
category that appears in CDIs is the understanding of de-
scriptive words (e.g. ‘dark’, ‘blue’). We infer from it the
capability to detect basic descriptive attributes, which is of-
ten included in complex tasks [43, 44].

At a structural level, denotation capabilities evaluate the
understanding of dependencies between an element and the
rest, or between several elements of an instance, i.e., the
compositionality of an instance. As a whole, those skills
also require local understanding, because the model needs
to understand each element individually. We have identi-
fied, in the previous section, the need for structural under-
standing of an instance, and we specify here more gran-
ular capabilities using as basis previous work in vision-
language multimodality. As the structure of text and that
of an image are radically different, we first consider the un-
derstanding of the two structures individually: scene under-
standing and syntactic understanding. Scene understanding,
which also groups positional understanding and counting, is
an active field of research in vision-language multimodal-
ity [43, 67, 80]. Similarly, the multimodal understanding
of syntax remains part of ongoing research, as works have
shown the difficulty of vision-language models to under-
stand word order at a multimodal level [94]. In addition, we
consider the understanding the multimodal alignment be-
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tween elements of an instance, such as the understanding of
multimodal dependencies [65] and coreferences [18].

At a global level, denotation capabilities evaluate the un-
derstanding of the whole instance. Two main capabilities
determined in the previous section correspond to this cate-
gory: the ability to understand document type (e.g., the con-
text behind the data collection) or the focus. However, to
our knowledge, besides domain-specific datasets, no mul-
timodal dataset evaluates these precise capabilities. Deno-
tation skills characterize factual understanding of a vision-
language instance and its components. We listed in this sec-
tion several skills that, to our knowledge, are necessary to
establish this understanding of a vision-language instance.
This list omits the ability to ground the instance in the world
or use knowledge specific to a domain.

Grounding First, temporal grounding capabilities eval-
uate a model’s ability to understand the situation of an in-
stance in time. The ability of action understanding, con-
text understanding and object state understanding described
in the previous section are related capabilities. Several
datasets already evaluate the grounding in time of a model,
through tasks such as event captioning or procedural under-
standing [51, 104], but not all capabilities are covered.

Then, spatial grounding capabilities evaluate a model’s
ability to understand a scene as part of a wider spatial con-
text. Among the applications studied in the previous sec-
tion, it is especially useful in Vision-Language Navigation,
but also in context understanding. Several datasets and tasks
focus on spatial grounding capabilities, mainly relating to
3D understanding [32, 22, 15, 50].

In addition, technical or cultural knowledge can be nec-
essary to understand a vision-language instance. This can
be relevant to context understanding in news data, or to
the understanding of medical data. In the case of technical
grounding, evaluations specific to the domain are necessary
[37, 98, 5, 75].

Finally, vision-language models can also be evaluated on
their understanding of other foreign modalities not present
in the instance. For instance, they can be used in applica-
tions which refer to time series, such as financial data under-
standing. In this case, evaluation tasks for those capabilities
are very specific and depend on the domain. The under-
standing of temporality, as well as other forms of ground-
ing, is complex, and requires precise data to be appropri-
ately evaluated. If a vision-language model is destined at
being used in this context, evaluating it on more granular
skills (described in Appendix C) can be necessary to under-
stand weaknesses.

Reasoning We identify a few reasoning tasks necessary
for vision-language models, using as inspiration existing

monomodal tasks [60, 56, 10, 105, 13]. First, some rea-
soning capabilities can require a good understanding of se-
mantic knowledge, which can be useful in applications re-
quiring some kind of technical knowledge such as medical
assisted diagnosis. We can for instance list the detection of
abnormality. However, there is to our knowledge no specific
dataset evaluating multimodal knowledge-based reasoning.

Then, reasoning skills can be based on logic, or the un-
derstanding of mathematical concepts. Several evaluation
tasks have focused on logical and mathematical reasoning
[19], as such tests are used as a metric to measure human
intelligence. Other skills linked to logical reasoning are
those based on comparison between instances. Those are
well known in natural language processing, being evaluated
through tasks such as natural language inference[27].

Finally, some reasoning capabilities are more complex,
due to the use of abstraction or several steps of reasoning.
For instance, this is the case of multi-hop reasoning that
can be encountered in vision-language navigation. As such
tasks are complex and specific, they are mostly evaluated
on the relevant application domain. We include in this sub-
category the ability to perform introspection, i.e., to explain
the reasoning of a prediction, which is an active field of re-
search [45, 109, 24]. These reasoning capabilities can be
complemented by other monomodal capabilities transferred
to multimodality.

Connotation The skills listed in this section may not be
useful to all applications of vision-language models, as they
rely on individual interpretation of multimodal instances. In
addition, their evaluation is subjective and can vary depend-
ing on the annotations. The connotation capabilities can
evaluate a model’s ability to interpret the meaning or intent
of an instance. Specifically, this relates to the previously
identified capability of intent understanding. Some related
evaluation tasks interpret the emotion [64] or the style tech-
niques [69].

In addition to interpretation, connotation capabilities can
also relate to the qualitative evaluation of an instance.
These are mostly evaluated using user judgment, and eval-
uate stylistic appreciation [71, 91]. In the connotation cat-
egory, we also list several capabilities for which we have
found no related evaluation tasks in Appendix C. Those are
inspired from human evaluation methods of visual literacy.
These skills can be used in real-world applications where
the interpretation of an instance is important, such as appli-
cations related to art.

5. Evaluating Foundation Models

The taxonomy presented in the previous section aims at
providing a guideline for an extensive evaluation of vision-
language foundation models, by taking into account their
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Category Subtype Datasets Task description

Denotation
D

Local GQA[40], Foil it![82], TDIUC[44], VQA[34], VALSE[67], Toolbox[111] Object and attribute recognition

Structural

GQA[40], Daquar[61], CLEVR[43], TDIUC[44], Probing[81],
VALSE[67], Toolbox[111]

Position understanding and
counting

Winoground [94] Understanding word order

Noun-Predicate Dep[65], Abstract Sem.[114], CREPE[59], ARO[108] Understanding compositionality

Cops-ref [18], RefCOCO [46], CLEVRRef [57], VALSE [67] Multimodal referring expressions

Grounding
G

Temporal Dense Event Captioning[51], RecipeQA [104] Event understanding

Spatial IQUAD [32], VQA360 [22], Matterport3D [15], AI2-THOR [50],
RemoteSensing [58]

Spatial understanding (3D & aerial)

Knowledge

OK-VQA [63], TDIUC Object role understanding

TextVQA [88], SceneText VQA [6], TextCaps [87] Optical character recognition

OK-VQA [63] VQA with cultural knowledge

GoodNews [5], BreakingNews [75] News-related tasks with NER

PathVQA [37], Chest Xrays [98] Medical tasks

Reasoning
R

Logical

E-SNLI-VE [27], NLVR2 [90] Multimodal inference and
comparison

SMART [19] Logical and mathematical
reasoning

Complex
E-vil [45], VCR [109], VQA-HAT [24] Explanations for VQA

Visual Dialog [25], FashionIQ [103], GuessWhat?! [26] Dialog with multimodal context

Connotation
C

Interpretation
AVA [69] Image style understanding

SentiCaps [64] Caption generation with sentiments

Quality
New Yorker Caption Contest [71], ICQD [91] Rating Caption quality

DPC [41], VizWizQuality [20], AVA [69], Aesthetic Cap[31], VILA [47] Image Quality Evaluation

Table 1. Projection of a range of existing vision-language evaluation tasks in the suggested taxonomy

real-world applications. To that end, we argue that foun-
dation models should be evaluated on granular capabilities,
more easily interpretable than complex tasks. These capa-
bilities should have the broadest possible coverage, and be
useful in real-world applications. Indeed, it is essential to
be aware of the main weaknesses of a foundation model,
as well as the scope of tasks and datasets it can be applied
to. In Table 1, we give a projection of vision-language eval-
uation tasks into our suggested taxonomy. Depending on
the application and domain of a vision-language foundation
model, it can be unnecessary to evaluate it on every possible
capability, and all capabilities may not have the same use-
fulness. For instance, a foundation model geared towards

medical assisted diagnosis would have no use for connota-
tion capabilities. However, it would be essential to evaluate
it on denotation capabilities, for instance to identify whether
it correctly understands the structure of an instance at a mul-
timodal level. The use of tasks evaluating such precise ca-
pabilities could highlight potential weaknesses in the multi-
modal understanding of a model. A task based on medical
data would have difficulty helping pinpoint granular weak-
nesses, due to the complexity of the task and the number of
capabilities involved.

The goal of this taxonomy is not to help compute a rank-
ing score from an aggregation of tasks, but to bring back the
focus on multimodal understanding capabilities relevant to
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real-world vision-language applications. The use of several
pre-defined tasks may encourage a focus on raising the per-
formance on those tasks, while they should be used as an
introspective evaluation to establish a diagnosis of a foun-
dation model. In addition, the datasets presented in Table
1 may always be appropriate for the multimodal evalua-
tion of models. Indeed, among the existing evaluation tasks
for vision-language models, some of them evaluate an ag-
gregate of complex skills more or less directly linked to a
capability. They may not be granular enough to identify
potential blind spots. Another aspect is that they may not
truly evaluate multimodal understanding. Indeed, some of
those tasks present considerable textual bias, which ham-
pers multimodal evaluation. For instance, a language model
significantly outperform chance level on ‘Foil it!’ [83] [67].
In other cases, the task itself may not be built with multi-
modality in mind. This is the case for datasets of the con-
notation category, where the evaluation of instance quality
can often be associated to a vision-only task. The differ-
ence between monomodal and multimodal capabilities can
be blurry, as shown by the use of vision-language models
to perform vision-only tasks [72]. This is why some ca-
pabilities we present in this taxonomy may belong to both
multimodal and monomodal understanding.

6. Limits of the current taxonomy

This taxonomy is aimed at guiding the evaluation of
foundation models for real-world applications. However,
the use of such a taxonomy also presents its limitations.
First, it may not reflect the possible applications of vision-
language foundation models, and may be more specifically
biased towards already existing tasks. Indeed, capabili-
ties were selected from a range of English language vision-
language applications. Those may hide challenges or needs
more present in other languages or cultures. In Table 1,
we give an overview of vision-language evaluation tasks re-
lated to the categories listed in the taxonomy. These evalua-
tion tasks are not evenly distributed through the categories,
and this taxonomy can help us identify potential gaps in the
evaluation of vision-language models. These gaps can be
due to the lack of interest, available data or known research
challenges, but still hide potential blind spots of those mod-
els. This taxonomy is not final, but the gaps can also be used
to guide the way towards other evaluation tasks relevant for
vision-language applications. The taxonomy we presented
in this section establishes a set of skills relating to vision-
language multimodal understanding. However, evaluation
tasks for foundation models may not necessarily fit into this
taxonomy. Indeed, there can be overlap in the skills that dif-
ferent tasks evaluated. In addition, more complex skills are
built on simpler skills. For instance, most reasoning skills
require first an understanding of denotation skills. As a re-
sult, this taxonomy is not intended to be complete, but a first

step towards building a more comprehensive evaluation of
multimodal foundation models.

Although we focus this paper on capabilities of vision-
language models, other factors should be considered to pro-
vide a comprehensive evaluation of a foundation model. In
particular, a foundation model should have a good ability
to generalize to unseen examples from different domains.
This diversity could be ensured by selecting instances from
a broad range of semantic categories. For instance, vocabu-
lary from Communicative Development Inventories for var-
ious cultures [29] can be used to ensure diversity, as well
as images from diversified sources. In addition, we do not
mention limiting bias and ensuring fairness and robustness,
which are major aspects of foundation models evaluation,
and should be taken into account when building evaluation
tasks and datasets. In this taxonomy, we do not consider
the type of task (e.g., generation, classification), which can
impact the performance of a foundation model. As this tax-
onomy is based on a sample of tasks that is not necessarily
representative of all possible vision-language applications,
it is incomplete. It is intended to evolve, and to be more
specified, for instance regarding the various uses of a foun-
dation model.

Evaluating the taxonomy An important question is how
to evaluate such a taxonomy, in particular in terms of its
coverage. Indeed, it is difficult to be both granular and ex-
haustive. One could study a range of tasks presented in
the Appendix A in the same way as Section 3.2 to ensure
a coverage of necessary capabilities. It is particularly dif-
ficult to assess how exhaustive the taxonomy is, as it de-
pends on how models are used in downstream applications.
This taxonomy is incomplete, and is aimed at evolving with
the improvement of vision-language foundation models and
the creation of new applications. In addition, evaluating
a model on the whole taxonomy is time- and resource-
consuming, this is why our goal in presenting this taxonomy
is above all to serve as a guideline.

7. Conclusion

Foundation models are notoriously difficult to evalu-
ate. To our knowledge, no exhaustive evaluation method
of vision-language foundation models has been developed
yet. In this work, we argue that such a method should aim
at evaluating a wide range of granular multimodal capa-
bilities. Indeed, complex tasks may hide potential weak-
nesses and be more difficult to diagnose. The goal of our
suggested methodology is to apprehend the possible weak-
nesses of foundation models. To that end, we propose to
build a taxonomy of vision-language capabilities. We estab-
lish vision-language capabilities useful for vision-language
applications. We also relate this taxonomy to existing eval-
uation tasks. The goal of such a taxonomy is to estab-
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lish a comprehensive evaluation method of vision-language
foundation models. Thus, it would help highlight poten-
tial weaknesses of those models that may impact their per-
formances in real-world applications. However, the use of
such a taxonomy also presents its limitations, due to poten-
tial bias in determining useful capabilities. In the future, it
would be interesting to strengthen this taxonomy with addi-
tional perspectives, and to complete its coverage of vision-
language real-world applications.
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