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Abstract

Video attributes, which leverage video contents to in-
stantiate class semantics, play a critical role in diversi-
fying semantics in zero-shot video classification, thereby
facilitating semantic transfer from seen to unseen classes.
However, few presences discuss video attributes, and most
methods consider class names as class semantics that tend
to be loosely defined. In this paper, we propose a Video
Attribute Prototype Network (VAPNet) to generate video
attributes that learns in-context semantics between video
captions and class semantics. Specifically, we introduce
a cross-attention module in the Transformer decoder by
considering video captions as queries to probe and pool
semantic-associated class-wise features. To alleviate noises
in pre-extracted captions, we learn caption features through
a stochastic representation derived from a Gaussian repre-
sentation where the variance encodes uncertainties. We uti-
lize a joint video-to-attribute and video-to-video contrastive
loss to calibrate visual and semantic features. Experi-
ments show that VAPNet significantly outperforms SoTA
by relative improvements of 14.3% on UCF101 and 8.8%
on HMDB51, and further surpasses the pre-trained vision-
language SoTA by 4.1% and 17.2%. Code is available1.

1. Introduction

The underlying principle of recent advancements in

zero-shot learning [54, 42, 5] is to acquire a latent space

bridging the gap between vision and language modalities.

This space is trained on diverse semantics from seen classes

and subsequently utilized for predicting unseen classes. In

zero-shot image classification [30, 58, 4], image attribute

describes discriminative visual concepts of objects shared

between seen and unseen classes, and has shown its po-

tential. However, video attributes are still undervalued in

zero-shot video classification (ZSVC). Tasks such as video

captioning [40], video question answering [6], and video

understanding [19] in computer vision emphasize the sig-

1https://github.com/bobo199830/VAPNet

nificance of objects and their relationships in time and space

when modeling video semantics. We conjecture that video

attributes in ZSVC should encompass concepts of objects

and their temporal/spatial contexts to effectively describe

video contents. Video attributes with video captions enrich

the class semantics, resulting in improved model generaliz-

ability compared to commonly-used class names.

Reviewing the literature [10, 33, 5, 3, 42], we observe

that few presences clearly discuss video attributes. Here, we

illustrate three typical semantics of ZSVC — class names,

manual class descriptions, and class/object expanded de-

scriptions, along with our video attributes in Fig. 1. Class

names are simple but widely-used semantics [44, 59, 3, 42]

and are encoded by language models (Word2Vec [38],

Glove [41], BERT [8]). Moreover, some classes are too

loosely defined (e.g., a simple word “Punch”) and some are

too close to discriminate, e.g., “Punch” vs. “Boxing speed

bag” or “Horse Race” vs. “Horse Riding”. The loosely-

defined and close classes will hurt semantic diversity, thus

existing methods make efforts to enrich semantics.

For instance, [11, 29, 33] explore class attributes to ex-

pand class-wise descriptions by manually defining a com-

plete set of atomic attributes, such as scenes and motions as

shown in Fig. 1(b). Class-based expansions still suffer from

similar semantics of close classes (“hitting” in both “Punch”

and “Boxing speed bag”). To further supplement seman-

tics, [15, 21, 36, 5] apply object-wise attributes appearing

in videos, e.g., adding “human” or “glove” in “Punch”. The

latest ER [5] expands class and object descriptions via web-

crawled re-explanations and extra human annotations as il-

lustrated in Fig. 1(c). However, two aspects of the above

methods can be improved. First, apart from the tedious an-

notation, manual attributes in Fig. 1(b)(c) will cause data

bias by different annotators. Second, all the above meth-

ods only focus on static class/object names or predefined

motions but neglect instance-wise objects and their spa-

tial/temporal info which are important for video semantics.

To diversify such video semantics naturally, we utilize

video captions that are compatible to comprehend instance-

wise semantics of objects and their spatial/temporal con-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Illustrations of visual and semantic embeddings with three typical semantics and our video attribute. ◦ and � (♦) represent

visual and semantic features individually. Existing semantics neglect spatial and temporal contexts – class names (a), class attributes with

motion/scene descriptions (b), static class/object descriptions (c). Instead, our video attributes (dotted circles in (d)) associate instance-wise

video captions and class-wise semantics to enrich semantics, enabling a better visual-semantic calibration and model generalization.

texts. Since existing video captioning model [27] captions

a video by understanding actions and events automatically,

freeing from manual annotation for ZSVC task. As shown

in Fig. 1(d), video captions of class “Boxing speed bag” —

“a girl is seen putting a bag on the wall” comprise of objects

and their spatial (girl, bag, wall) and temporal (putting) con-

texts, which will be easily separated from “a man grabs a

man, throws the man down” of the close class “Punch”.

In this paper, we present Video Attribute Prototype Net-

work (VAPNet), a vision-language model to generate video

attributes that instantiate class names by video captions. In

specific, to obtain learnable and discriminative video at-

tributes, we introduce a cross-attention module that consid-

ers pre-extracted video captions as queries to probe and pool

correlated semantics of each class. Besides, to mitigate in-

accurate captions, we apply a caption uncertainty module

with learning feature and uncertainty simultaneously. At

last, we exploit a dual contrastive loss that contrasts video-

video and video-attribute jointly so that close classes can

be further separated based on additional visual contrasts,

as blue/red arrows shown in Fig. 1(d). We conduct exten-

sive ablations and test VAPNet under complete ZSVC pro-

tocols. Experiments show that VAPNet significantly outper-

forms SoTA by relative improvements of 14.3% and 8.8%

on UCF101 and HMDB51, and surpasses large-scale pre-

training SoTA by 4.1% and 17.2% separately.

2. Related Work
Zero-shot video classification: Existing methods in

ZSVC improve model generalization by adding additional

semantics to diversify the semantics of seen classes. Addi-

tional semantics include class-wise attributes, concepts of

objects, and expanded descriptions of class/object names.

First, [33, 61, 14] rely on manually annotated category at-

tributes in particular datasets (e.g., UCF101 [47]), which is

high-cost and hard to migrate to arbitrary categories in real-

world scenarios. Then, methods [21, 37, 36, 12, 25] uti-

lizing object concepts borrow the idea of image attributes

adopted in zero-shot image classification, where objects

in videos are detected, and similarities between names of

objects and categories are computed during the test. To

learn discriminant objects concepts, diverse regularization

are constrained on objects such as relations in spatial [36],

object/scenes [55], intra-class [13], and action-object [15].

The SoTA methods, ER [5], JigsawNet [43], and CLASTER

[17] manually expand descriptions of object or class names

and optimize a joint visual-semantic embedding used in

E2E [3], AURL [42], and ResT [31]. Compared to static

objects detected in single frames or pre-defined class de-

scriptions, our video attributes make use of easily attainable

video captions that contain both spatial and temporal info,

explicitly diversifying semantics at minimal cost.

Vision-language models: Large-scale vision-language

pre-trained models (e.g., CLIP [45], ALIGN [22], ME-

TER [9], BeiT-3 [53], CoCa [60]) have achieved inspiring

progress in recent years. Closest to our VAPNet, contrastive

model — CLIP [45] shows strong general transfer ability in

down-stream video classification (78.9% vs. 58.7% of SoTA

method [31] in ZSVC). In this paper, we leverage the pre-

trained CLIP as our extra backbone to show that our VAP-
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Figure 2: Architecture of video attribute prototype network (VAPNet). VAPNet optimizes a joint visual-semantic embedding on features

of video sequences and the proposed video attributes. The semantic inputs are pre-extracted video captions and class name/descriptions.

Video attributes are end-to-end learnable through text encoder, caption uncertainty module, transformer decoder, and semantic projector.

Net also can help improve the performance of well-trained

large-scale vision-langugage model.

3. Video Attribute Prototype Network
3.1. Architecture

Fig. 2 illustrates the architecture of VAPNet, a vision-

language model that optimizes a joint visual and se-

mantic space during training. The inputs include video

sequences, the corresponding video captions, and class

names/descriptions. With the inputs, we exploit R(2+1)D

[48] and SBERT[46] as the visual and text encoders sep-

arately. At the end of VAPNet, we apply a 3-layer MLP

in our visual and semantic projector to map features of

visual and video attributes to the joint embedding space.

In specific, we design two critical components to generate

video attributes: cross-attention module to instantiate class

semantics and caption uncertainty module to alleviate in-

accurate captions. At last, we propose a dual contrastive

loss by contrasting video-video and video-attribute so that

visual-semantic features within the same class tend to be

calibrated. Below, we will elaborate on each component in

turn, followed by training and inference of VAPNet.

3.2. Video Attribute Generation

The ultimate goal of ZSVC is to assign the most-related

category semantics to each video feature. However, we ob-

serve that loosely-defined category names bring challenges

to perform discrimination. For example, class mixing can

be understood in multiple ways, since mixing can be “spend

time together” or “blend music”. However, the class mixing
denotes “combine food” in the UCF101 dataset [47]. Thus,

we explicitly enrich the category names using both video

captions (instance-wise spatial/temporal contexts) and more

structured category-related descriptions (class-wise).

Instance-wise video caption: Video captions are eas-

ily attainable, such as live captioning services or pre-

trained video captioning models in video captioning re-

search field. In this paper, we choose a pre-trained SoTA

video caption extractor (e.g., PDVC [52]) to obtain video

captions that capture detailed visual contents and coher-

ent descriptions. Given a video clip xn, we leverage the

caption extractor to generate caption CAPn with L sen-

tences CAPn = {CAPn1
, ...,CAPnL

}. We show exam-

ples of caption results in Table 1, e.g., captions of punch
involve instance/video wise spatial (man, ring, room, bag)

contexts, and temporal (grab, throw...down, fight, put) con-

texts. These captions elaborate semantics, thus facilitating

to distinguish similar actions. To exploit the prior knowl-

edge in language models, we introduce a text encoder (e.g.,

BERT [46]) to encode captions. Here, we average encoding

features of all caption sentences given n-th video, summa-

rizing an instance-wise caption feature capn ∈ R
d.

capn =
1

L

L∑

i=1

BERT(CAPni) (1)

Class-wise semantics: To expand class-wise descrip-

tions, we consider class names as queries to crawl al-

ternative descriptions DESm = {DESm1
, ...,DESmK

}
from Wikipedia and dictionaries, where K is the num-

ber of descriptions for m-th class. Different from man-

ually choosing class descriptions in ER [5], we automat-

ically filter out irrelevant descriptions by calculating the

similarity simk between embedding of the class name

catm = BERT(class name) and its corresponding alter-
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Table 1: Examples of instance-wise video captions.

Category Video Video Captions

punch
video1

The man then grabs a man and the man

throws the man down.

The man continue fighting another man.

video2
Two men are seen standing in a ring.

Two men then begin fighting each other.

boxing
speed bag

video1
A girl is seen putting a bag on the wall.

The girl begins playing a bag.

video2
A boy is seen standing in a room.

The boy then kicks the bag.

playing
daf video1

A woman is sitting on chair with a towel.

She then puts her hands on her face.

A woman is playing a drum.

native descriptions desmk
=BERT(DESmk

) with simk =
desmk

·catm
‖desmk

‖·‖catm‖ . Thus, the desmk
will be ranked and we

empirically select top-K ′ (K ′ = 20) descriptions to get our

final fused class descriptions desm.

desm =
1

K ′

K′∑

k=1

desmk
(2)

Cross-attention between video captions and class se-
mantics: Existing methods enrich semantics by learn-

ing fixed class-wise and additional class/object-wise de-

scriptions in parallel branches [5], sequential optimization

[21, 37, 36], or in a concatenation way [20]. Instead, we

generate learnable semantics by learning attentive seman-

tics of instance-wise video captions from class-wise de-

scriptions. Utilizing the Transformer decoder with built-in

cross-attention proves to be a perfect fit for in-context learn-

ing [50, 34], allowing us to focus on relevant parts of the

captions and align them with the class name features. This

enables us to effectively handle the variability and complex-

ity inherent in video data. Here, we consider features of

video captions capn as query to probe and pool both fea-

tures of category names catm and expanded descriptions

desm. We follow operations in the standard transformer

[50] to obtain video attribute attmn ∈ R
d that instantiates

m-th class semantics by involving n-th video captions.

Q=Wqcapn,K
cat=W cat

k catm, V cat=W cat
v catm (3)

Kdes=W des
k desm, V des=W des

v desm

attmn =softmax(
QKcatT

√
d

)V cat+softmax(
QKdesT

√
d

)V des

Where capn, catm, desm are all d-dimensional semantic

features; Wq,W
cat
k ,W des

k ,W cat
v ,W des

v are d× d learnable

parameters. Here Q,K, V are the d-dimensional trans-

formed features. Similar to a transformer operation, we

learn a d × d correlation matrix between Q and K with

softmax and update the final class-wise semantic features

with V . With the cross-attention mechanism on features of
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Figure 3: Comparisons of concatenation op and our cross-attention

op in video attributes, which facilitates more discrimination.

video captions and class-wise semantics, salient features are

amplified and will contribute to discrimination.

To illustrate the effectiveness of cross-attention, in

Fig. 3, we compare the representations using t-SNE [49] vi-

sualization, which are learned by the architecture of Fig. 2

with our video attributes and the concatenation [20] of cat-

egory names and their expanded descriptions on UCF101

dataset [47]. We show three representative classes Horse
Race, Horse Riding, and Pommel Horse with color trian-

gles and other semantics with grey triangles for better visu-

alization. We generate video attributes of the three classes

using video captions of one video from Horse Race. We

conclude that our video attributes help push apart confusing

classes (Horse Race vs. Horse Riding) and enlarge distances

between different categories but be assigned with similar

semantics in class names. Besides, the overall semantics

with our video attributes distribute more uniformly on the

embedding compared to class-wise semantics, leading to

the effectiveness of the model’s generalizability [42]. More

quantitative results will be illustrated in Sec. 4.2.

3.3. Caption Uncertainty Module

Besides advantageous clues, video captions also involve

less relevant contents since the caption extractor is pre-

trained on limited videos. As illustrated in Table 1, the cap-

tions of playing daf include meaningful descriptions “play-

ing drum” but also bring some imprecise contents (e.g., put

hand on face, sit with towel) at the same time. We propose

caption uncertainty module to address the challenge of in-

herent noise by encoding uncertainty in the variance of a

Gaussian distribution while utilizing its mean for represen-

tation. Unlike existing work that omit uncertainty [25] or

rely on human annotators to clean uncertain data [5], our

method presents a novel solution for handling uncertainty

in video captions. Specifically, we define a stochastic rep-

resentation zn sampled from a Gaussian distribution with

learnable mean μn and variance σ2
n:

p(zn|capn) = N (zn;μn, σ
2
nI) (4)
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Here, the mean μn = U(capn) represents the intrinsic se-

mantics while the variance σ2
n = Λ(capn) describes the

uncertainty of predicted mean, where U and Λ ∈ R
d×d are

learnable parameters. Since sampling operation is not dif-

ferentiable, we apply the classic re-parameterization trick

[26] to enable back-propagation:

cap′n = μn + σnε, ε ∼ N (0, I) (5)

The cap′n is considered as the equivalent sampling represen-

tation zn and will replace capn in Eq. 3 to generate more re-

liable video attributes. During caption uncertainty learning,

small variance may be predicted for all samples and no un-

certainty could be learnt. To alleviate such model collapse,

we encourage the learnt distribution close to the normal dis-

tribution by introducing a Kullback-Leibler divergence [1]:

Lkl = KL[N (zn|μn, σ
2
n)||N (ε|0, I)] (6)

3.4. Training & Inference

Loss function: During training, most existing vision-

language models [42, 5] exploit a standard contrastive loss

to calibrate visual and semantic features:

Lvs = − log
e(vn·attn/τ)

∑N
k=1 1k �=ne(vn·attk/τ)

(7)

τ is the temperature parameter and 1 is an indicator func-

tion; attn is class semantics (e.g., class names or our video

attributes) and vn is visual features. While Eq. 7 exploits

across-modal (i.e., video-to-semantic) information, it ne-

glects rich within-modal information (i.e., video-to-video),

which contains instantiated video features to further assist

alignment within classes and separation between classes.

We maintain videos in the same class as positive pairs while

others in batch as negative pairs and perform a joint video-

to-attribute and video-to-video contrastive loss as follows:

Lvs−vv=− log
e(vn·attn/τ)+

∑N
k=1 1yk=yne

(vn·vk/τ)

∑N
k=1 1k �=n[e(vn·attk/τ)+e(vn·vk/τ)]

(8)

During training VAPNet, our overall loss function is:

LVAPNet = Lvs−vv + Lkl (9)

Training: We train our VAPNet only on source dataset

Ds with seen classes S and test on target dataset Du with

unseen classes T . We follow the strict setting in E2E [3],

which requires S has no overlap with T . Specifically, the

requirement is as follows, here θ is the distance threshold:

∀i ∈ S, min
j∈T

cos(i, j) > θ (10)

Inference: For a video clip xn ∈ Du, we extract its

visual feature vn and generate T candidate video attributes

attmn in Eq. 3, where m = 1, ..., T . We perform the Nearest

Neighbor Search (NNS) to obtain the prediction result:

argmax
m∈T

cos(vn, att
m
n ) (11)

4. Experiments

4.1. Settings

Datasets: We train our VAPNet on Kinetics700 [24] and

test on UCF101 [47] and HMDB51 [28]. Kinetics700 [24]

is one of the large-scale video benchmarks for action recog-

nition where 536489 videos with 700 various human ac-

tions are collected. UCF101 [47] contains 13320 YouTube

videos with 101 action names of sports. HMDB51 [28] has

51 action classes of sports and daily activities and 6767

YouTube videos and commercial videos. For captioning

model, we use Activity Captions [27] that contains 20k long

untrimmed videos of various human activities.

Training protocol: VAPNet follows the rigorous setting

outlined in E2E [3] and adheres to the conditions speci-

fied in Eq.10 to generate Kinetics662, which comprises of

501614 videos. To ensure that our pre-trained video cap-

tioning model is not exposed to any test classes, we adopt

the same setting and use θ = 0.05 to select 177 classes from

the ActivityNet Captions dataset, then retrain our video cap-

tioning model. Furthermore, it has been noted in previ-

ous studies [3, 42, 31] that learning visual features from

scratch is crucial in achieving rigorous results in ZSVC.

This is because pre-trained backbones (e.g., R(2+1)D on

SUN [57]) learned from overlapping classes result in info

leakage. Here, we conduct all ablations and comparisons in

the setting of learning visual encoders from scratch.

Evaluation protocol: For fair comparisons with previ-

ous works, we present two evaluation protocols. (1) Proto-
col 1: Following E2E [3, 42, 31], we train our VAPNet on

Kinetics662 and test on full UCF101 and HMDB51 (i.e.,
100% Split), which avoids the random selection of cate-

gories and returns more convincing results. (2) Protocol 2:

Following previous works [2, 3, 5, 18, 35], they randomly

choose half of the target dataset’s classes (i.e., 50% Split),

50 for UCF101 and 25 for HMDB51 to evaluate the perfor-

mance. Here we follow E2E [3] to repeat 10 independent

runs, reporting the average results for each run.

Implementation details: We include 16 frames of each

video to create one video clip following the standard pro-

tocol in [51]. For video attribute generation, we retrain the

SoTA video caption model PDVC [52] on the filtered Ac-

tivityNet Caption to obtain caption results. During training,

we adopt the number of video clip C as 1 and set it as 1

or 25 during inference. We utilize R(2+1)D (512D) and

SBERT (384D) to extract visual feature and semantic fea-

tures separately. The frames of a video clip are resized into
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Table 2: Ablations of our VAPNet under Protocol 1 with 1 clip. CAT: category name, CAP: instance-wise video caption, DES: category

descriptions obtained by web search engine based on similarity filtering, CA: cross-attention module, UM: caption uncertainty module,

Pre: pre-trained backbone. Top-1 accuracy for UCF and HMDB is reported. The higher, the better. Red numbers indicate the best result.

(a) Ablations for different semantics

Method CAT CAP DES UM UCF
top-1

HMDB
top-1

Base � 42.8 25.9

Base w/ DES � � 43.9 26.3

Base w/ CAP � � 44.2 26.7

VAPNet � � � � 48.9 29.3

VAPNet w/o UM � � � 48.4 28.4

(b) Ablations for cross-attention module

Method CAT CAP DES CA UCF
top-1

Base

w/o CA

� 42.8

� � 38.2

� � 31.9

� � � 24.1

Base

w/ CA

� � � 43.9

� � � 44.2

� � � � 48.4

(c) Ablations for different loss

Method CATCAPDESUM UCF
top-1

VAPNet w/ Eq. 7 � � � 46.9

VAPNet w/ Eq. 8 � � � 48.4

(d) Ablations for training protocol

Method CAT CAP DES Pre UCF
top-1

VAPNet � � � 48.9

VAPNet w/ Pre � � � � 51.1

16 × 112 × 112. For visual projector and attribute projec-

tor, we build a 3-layer MLP (2 linear+bn+ReLU and lin-

ear+bn). The dimension of the visual-semantic joint space

is 2048. The τ in Eq. 8 is 0.1, and the batch size is 256. We

use Adam with weight decay for optimization. The initial

learning rate is 1e-5 for cross-attention module and 1e-3 for

other modules. All experiments are done on 8 RTX 3090.

4.2. Ablation Study

To demonstrate the effectiveness of each component in

VAPNet, we conduct extensive ablations, accompanied by

Q&A analyses. All ablations were evaluated using UCF or

HMDB top-1 accuracy under Protocol 1 with 1 clip.

Is it more rigorous with learning visual features from
scratch? Recent studies, E2E [3] and ResT [31], sug-

gest that pretrained visual backbones used in prior research

[5, 17, 43] may lead to info leakage from training to test

classes. To rigorously test VAPNet, we compare the perfor-

mance of its visual encoder when trained from scratch on

Kinetics662 without overlap classes vs. using a pretrained

backbone on Kinetics400. As shown in Table 2d, there is

a large improvement of 4.5% on the UCF dataset with the

pre-trained backbone. We infer that Kinetics400 may con-

tain similar semantic information to UCF, which could com-

promise fair comparison of model generalization in ZSVC.

Therefore, learning visual features from scratch is a more

rigorous setting, and we will conduct all ablation studies

and comparisons under this setting.

Is our video attribute prototype beneficial? To sub-

stantiate that our video attribute surpasses commonly-used

class-wise semantics, we create one variant of Base model,

Base w/ DES which considers both category names (CAT)

and dedicated class descriptions (DES). Here, Base is built

only with CAT as text, then trained with the visual encoder

+ projector and text encoder + semantic projector in Fig. 2

tailored with Eq. 8 loss. For fair comparisons with VAP-

Net, we also apply the proposed cross-attention module to

fuse CAT and DES in Base w/ DES. Table 2a clearly shows

that video attribute (VAPNet) largely outperforms Base and

Base w/ DES with top-1 accuracy of (48.9, 29.3) on (UCF,

HMDB). Moreover, to show that video caption is a better

choice as auxiliary semantics compared to extended class

descriptions DES, we bring video captions to CAT alone

and get Base w/ CAP, which increases the top-1 accuracy

from (43.9, 26.3) to (44.2, 26.7) compared to Base w/ DES.

Below, we will qualitatively show that our video at-

tributes enhance performance by diversifying class seman-

tics and improving class discrimination. First, we intention-

ally select the unseen class Nunchucks which is distant from

seen class names, then compare the closest seen classes cap-

tured by different representations learned from VAPNet w/

video attributes and Base w/ class names. Our VAPNet is

able to retrieve tai chi which is semantically closer than

making snowman by Base. This is because video attributes

can bridge the semantic gaps between tai chi and Nunchucks
by providing common video contexts such as “standing

in the yard” and “holding/throwing a stick”. Then, we

elaborate ablations in view of discrimination of confusing

classes. From Fig. 4, we observe our VAPNet with video

attributes consistently outperforms Base with conventional

class names. For instance, our VAPNet significantly im-

proves the indistinguishable performance between punch
and boxing speed bag from (2.5, 40.2) to (59.4, 68.2). To

sum up, video attribute prototype benefits ZSVC in model

generalization and discrimination.

Is the cross-attention module necessary? It is non-

trivial to fuse semantics from different sources especially

when category names and their web-crawled descriptions

tend to be loosely defined and video captions may con-

tain inaccurate semantics. To justify the non-triviality, we

simply average features of class-wise semantics and video

captions, obtaining a subset of models shown in Base w/o
CA of Table 2b. As can be seen, there are dramatically

decreases while comparing Base and models of Base w/o
CA with 42.8 vs 38.2/31.9/24.1. In contrast, our cross-

attention (CA) module identifies adaptive semantic features

by learning attentions between instance-wise captions and

class-wise semantics. As shown in Table 2b, our CA ev-

idently improves the performance under any combinations

of semantics, e.g., top-1 acc of CAT+CAP+DES with Base
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Figure 4: Improvements on close or loose-defined categories for

VAPNet using video attributes vs. Base with commonly-used cat-

egory names. ↔ represents similar class pairs.

w/o CA vs. Base w CA is increased from 24.1 to 48.4.

Is the caption uncertainty module helpful? Since

video captions are extracted from a pretrained captioning

model, inaccurate semantics are inevitably introduced. To

reduce adverse effects of noisy semantics, we introduce the

caption uncertainty module (UM) in Sec. 3.3 to learn adap-

tive semantic representations sampled from a Gaussian dis-

tribution. Here, we remove UM from VAPNet to show that

UM plays an important role to consistently help improve the

performance on both UCF and HMDB datasets. As shown

in Table 2a, VAPNet increases (0.5, 0.9) points compared

with VAPNet w/o UM. Apart from learning effective fea-

tures, UM generates learnable variances that can be consid-

ered as an “uncertainty” indicator of caption quality, offer-

ing additional interpretability in future optimization efforts.

Is the joint contrastive loss more advantageous? Ex-

isting work [3, 42] only exploit video-to-attribute con-

trastive loss as in Eq. 7 that enables calibration and separa-

tion of vision and semantic features. Furthermore, in Eq. 8,

VAPNet introduces an additional video-to-video contrast

that fully utilizes visual contexts to further improve the dis-

crimination. By contrast, as shown in Table 2c, VAPNet w/
Eq. 8 gains a relative 3.2% improvement (46.9→48.4). To

deeply understand the improvement of VAPNet w/ Eq. 8,

we study the distribution of visual features on the space,

and compute the degree of feature separation by averaging

cosine distance among different class centers (i.e., the mean

visual features). Our new loss Eq. 8 increases the separa-

tion degree from 0.873 to 0.881, the larger number indicates

more uniformity and a better generalization [42].

4.3. Comparisons with SoTA under Protocol 1

E2E [3] proposed rigorous evaluation protocol (Protocol
1) as well as training protocol which requires non-

overlapping classes between source and target datasets and

adheres to learn visual features from scratch. Recent meth-

Table 3: Comparisons on 100% classes of UCF and HMDB

datasets (Protocol 1). E2E (aug) used the R(2+1)D pre-trained

on SUN [57] dataset. Red/blue numbers are the best/second best.

Method Video
clips SI UCF

top-1
UCF
top-5

HMDB
top-1

HMDB
top-5

E2E [3]

1

W 35.1 56.4 21.3 42.2

E2E (aug) [3] W 36.8 61.7 23.0 41.3

AURL [42] W 44.4 70.0 27.4 53.2

E2E [3] VA 42.6 66.7 24.7 45.4

VAPNet VA 48.9 76.4 29.3 57.2

E2E [3]

25

W 37.6 62.5 26.9 49.8

E2E (aug) [3] W 39.8 65.6 27.2 47.4

AURL [42] W 46.8 73.1 31.7 58.9

ResT [31] W 46.7 - 34.4 -

E2E [3] VA 46.3 70.8 27.9 51.0

VAPNet VA 53.5 79.3 34.8 64.1

ods, AURL [42] and ResT [31] and our VAPNet, all follow

the setting. Here, for fair comparisons, we set the same

θ = 0.05 in Eq. 10 as used in E2E [3]. In addition, we re-

port numbers of alternative methods by replicating author’s

released codes or published results. In Table 3, we compare

top-1 and top-5 accuracy on UCF [47] and HMDB [28] with

1 and 25 video clips. From the comparisons, we observe our

VAPNet consistently surpasses existing SoTA alternatives.

Specifically, the largest improvements happen at 25 clips by

(14.3%, 8.8%) on UCF top-1 and HMDB top-5, while the

smallest comes at 25 clips by (8.5%, 1.2%) on UCF top-5

and HMDB top-1. In conclusion, our VAPNet performs the

best under the rigours training/evaluation setting.

4.4. Comparisons with SoTA under Protocol 2

There are other recent SoTA works (e.g., ER, JigsawNet,

CLASTER) do not follow the rigours training protocol

whose visual encoders are pre-trained on large-scale image

datasets (e.g., ImageNet [7], SUN [57], MS-COCO [32])

or related action datasets (e.g., Kinetics400 [24], Sports-

1M [23]). For comprehensive comparisons, we show re-

sults using Protocol 2 in Table 4 where models of our VAP-

Net, E2E, AURL, and ResT are still trained with the rigours

training protocol. First, we find that our VAPNet surpasses

all the alternatives on both UCF and HMDB datasets, even

may enduring unfair training protocols. Specifically, VAP-

Net improves the SoTA results by 7.0% (58.7→62.8) on

UCF top-1 while 0.4% (43.2→43.4) on HMDB top-1. Sec-

ond, our VAPNet with the proposed video attributes outper-

forms alternatives with various types of semantics. For in-

stance, OD [35], E2E [3], AURL [42] and ResT [31] exploit

conventional class names while DASZL [25] uses manual

attributes and ER [5], JigsawNet [43] leverage extended ob-

ject or class descriptions. To summarize, by explicitly in-

troducing video attributes to enrich semantics, our VAPNet

achieves the SoTA performance in ZSVC. Last but not least,

our video attributes also can be considered as an advanced

module which helps boost the performance of SoTA alter-
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Table 4: Comparisons on 50% classes of UCF and HMDB datasets

(Protocol 2). Semantic information (SI): manual attribute (MA),

word embedding of category names (W), elaborative description

(ED), our learnable and discriminative video attribute (VA), and

visual embedding from pretrained model (Pre VE).

Method SI Pre VE UCF
top-1

HMDB
top-1

WGAN [56] MA II 37.5 -

OD [35] MA II 38.3 -

DASZL [25] MA I, II 48.9 -

Act2Vec [18] W II 22.1 23.5

TARN [2] W II 23.2 19.5

WGAN [56] W II 25.8 29.1

OD [35] W II 26.9 30.2

Obj2act [21] W I 30.3 15.6

TS-GCN [15] W I 34.2 23.2

SAOE [36] W I 40.4 -

PSGNN [16] W I 43.0 32.6

E2E [3] W N/A 48.0 31.2

E2E (aug) [3] W I 49.2 32.6

AURL [42] W N/A 58.0 39.0

ResT [31] W N/A 58.7 41.1

ER [5] ED I, II 51.8 35.3

JigsawNet [43] ED I, II 56.0 38.7

CLASTER [17] ED II 53.9 43.2

E2E [3] VA N/A 55.1 36.1

VAPNet VA N/A 62.8 43.4

I: visual embedding/object scores from model pretrained on

image dataset (e.g., ImageNet [7], SUN [57], MS-COCO [32])

II: visual features from model pretrained on action dataset

(e.g., Kinetics400 [24], Sports-1M [23])

natives. For instance, we modify E2E [3] using our video at-

tributes (VA) shown in Tables 3, 4 and obtain ∼15% gains.

4.5. Comparisons with large-scale pretrained SoTA

Closest to our VAPNet, contrastive model — CLIP [45]

shows strong zero-shot transfer and generalization abilities

thanks to pretraining on large-scale vision-language pairs.

Despite potential overlaps between the CLIP datasets and

our test data, we explore a modified version of VAPNet

based on the CLIP benchmark and justify that our video at-

tribute could further improve the performance of CLIP pre-

trained on vast corpus. Here we replace the visual and se-

mantic encoders with pretrained couterparts from CLIP and

obtain the modified VAPNet. For visual features, we resize

frames to 224 × 224 following standard CLIP’s augmenta-

tion, and average all frames’ features in a video clip.

As illustrated in Table 5, we report the performance of

origin CLIP, XCLIP which adjusts CLIP for videos and

our VAPNet with various pretrained backbones. The CLIP

and our VAPNet with � mean adopting prompt engineer-

ing on the abstract category names. From the comparisons,

we observe our VAPNet consistently surpasses others un-

der the same setting. Specifically, the largest improvements

happen with (no prompts, ViT-L/14) by (4.1%, 17.2%) on

Table 5: Comparisons with large-scale pre-training methods. Re-

sults under Protocol 1/Protocol 2 of UCF and HMDB datasets are

reported. � means using prompt engineering in the class name.

Method Backbone UCF
top-1

HMDB
top-1

CLIP [45] ViT-B/16 68.7/78.9 41.1/51.9

X-CLIP [39] ViT-B/16 - /72.0 - /44.6

VAPNet ViT-B/16 71.8/81.0 45.3/56.5

CLIP� [45] ViT-B/16 73.7/81.3 46.4/57.8

VAPNet� ViT-B/16 74.2/83.5 48.3/58.8

CLIP [45] ViT-L/14 76.1/84.8 43.1/53.9

VAPNet ViT-L/14 79.2/87.2 50.5/61.6

CLIP� [45] ViT-L/14 80.5/88.1 54.3/64.5

VAPNet� ViT-L/14 82.0/88.7 55.0/65.0

UCF and HMDB under Protocol 1. We also notice that

prompts, which requires careful design and exploration, are

vital to the generalization of CLIP, e.g., with ViT-L/14,

CLIP vs. CLIP� corresponds to 76.1 vs. 80.5 on UCF while

43.1 vs. 54.3 on HMDB. We find our video attribute with

no prompts could achieve comparable results to prompts-

applied method, e.g., (71.8, 45.3) for VAPNet vs. (73.7,

46.4) for CLIP� on (UCF, HMDB) with ViT-B/16. To sum

up, our elaborate video attribute can enhance the transfer

capability of large-scale pre-trained models on ZSVC.

Limitations and possible solutions. Even though our

VAPNet achieves remarkable results, our method relies on

video caption quality. Uncorrelated captions may harm the

video attribute, where pre-processing or introducing text

summarization tasks could help generate more reliable se-

mantics. Besides, the general caption model may fail to

describe fine-grained categories (e.g., playing tabla). A

stronger caption model with more knowledge may be help-

ful. It is also interesting to study how caption models affect

the performance (e.g., using different datasets or models).

5. Conclusion

We present a Video Attribute Prototype Network (VAP-

Net) to generate video attributes that enrich semantics by

associating video captions with class-wise semantics. Be-

sides, we propose two critical components: cross-attention

module to learn shared attentions between instance-wise

and class-wise semantics; caption uncertainty module to al-

leviate inaccurate captions from final video attributes. We

conduct extensive ablations to justify the effectiveness of

each module qualitatively and quantitatively. For compar-

isons with SoTA alternatives, we make comprehensive com-

parisons under complete training/evaluation protocols ap-

plied in ZSVC. What’s more, we modify our VAPNet with

the large-scale pre-trained CLIP backbone, showing the su-

periority of our proposed module on different benchmarks.
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