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Abstract

Image cropping has progressed tremendously under the
data-driven paradigm. However, current approaches do not
account for the intentions of the user, which is an issue es-
pecially when the composition of the input image is com-
plex. Moreover, labeling of cropping data is costly and
hence the amount of data is limited, leading to poor gen-
eralization performance of current algorithms in the wild.
In this work, we take advantage of vision-language mod-
els as a foundation for creating robust and user-intentional
cropping algorithms. By adapting a transformer decoder
with a pre-trained CLIP-based detection model, OWL-ViT,
we develop a method to perform cropping with a text or
image query that reflects the user’s intention as guidance.
In addition, our pipeline design allows the model to learn
text-conditioned aesthetic cropping with a small cropping
dataset, while inheriting the open-vocabulary ability ac-
quired from millions of text-image pairs. We validate our
model through extensive experiments on existing datasets
as well as a new cropping test set we compiled that is char-
acterized by content ambiguity.

1. Introduction
Images often need to be cropped when circulating among

different devices and social media apps. The key require-

ment is to maintain the aesthetics of the image, while not

ruining the intended content. Many datasets [4,8,54,59,65]

with aesthetics-aware annotations have been constructed for

benchmarking automatic cropping algorithms. Neverthe-

less, how to accurately reflect users’ intentions of image

cropping has not been well studied.

In recent years, data-driven learning has dramatically

boosted the performance of image cropping methods. Ex-

isting methods can be broadly divided into anchor (sliding

window) evaluation methods [5, 28, 42, 43, 54, 65] and co-

ordinate regression methods [11, 16, 27, 37]. There are two

problems with the practical application of these methods.

First, desirable crop of a given image highly depends on a

user’s intention, such as how the user want to use the re-

sulting image or from what perspective the user sees the

image. If the composition of the input image is complex,

such as the presence of many objects, there is no way for

general cropping methods to accurately predict the user’s

intention, but only to make random guesses. Second, due

to the tedious process of labeling a cropping dataset, the

size of existing datasets is rather small. This results in cur-

rent approaches being poorly generalized and often failing

when faced with unseen scenarios.

The success of vision-language modeling (VLM) [40,

46] gives us inspiration to address the above two challenges.

Today, we have access to considerable amounts of multi-

modal data, e.g., images with labels or titles. To tackle the

first challenge, text can be introduced as additional input to

reflect the user’s intention, which naturally eliminates con-

tent ambiguity during learning. As for the second challenge,

transferring VLM’s open-vocabulary knowledge from mil-

lions of image-text pairs to cropping algorithms is a promis-

ing but unexplored direction for more effective cropping in

the wild.

In this work, we propose ClipCrop: a vision-language

model for generating aesthetic image crops based on

text or image queries. The proposed model is built on

OWL-ViT [40], which is one of the state-of-the-art open-

vocabulary object detection models. We adopt a trans-

former decoder like DETR [2] to learn aesthetic-aware off-

sets given the initially predicted bounding box from OWL-

ViT. Since no text description is available for cropping

training datasets, we provide annotations by complement-

ing GAIC [65] with text descriptions for each image. When

fine-tuning our model, we adopt a mosaics composition

training strategy, which encourages the model to localize

from text queries. The improved model can comprehen-

sively understand input text while retaining the ability of

one-shot image-conditioned querying. Taking the source

image in Fig. 1 as an example, there are multiple contents

of interest in the image, e.g., a woman, three dogs, or a

woman and three dogs on the boat. The proposed ClipCrop

takes the user text/image query as input to understand the

user’s intent and generates several crop solutions.

Horanyi-PR [13] is the only cropping evaluation bench-
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Figure 1. The concept of conditioned smart cropping. Given an image with complex composition, the proposed ClipCrop can accept

different text queries, such as “a middle-aged woman”, “three cute and white dogs” and “a woman and three dogs on the boat”, as conditions

to return corresponding aesthetic-aware crops. In addition, ClipCrop can also accept an image as a query condition for cropping.

mark that provides text descriptions, with a single sen-

tence per image. To emphasize the content ambiguity prob-

lem for cropping, we further provide an evaluation bench-

mark, TextCrop for short, with two distinct text annotations

and corresponding aesthetics-aware bounding box annota-

tions for each image. This new evaluation benchmark con-

sists of about 200 crowded photos containing multiple con-

tents. Experimental results demonstrate that the proposed

ClipCrop achieves significant improvement in terms of av-

erage and maximum IoUs in comparison to the prior arts on

the Horanyi-PR and the proposed TextCrop test sets. Even

in the general cropping setting of GAIC [65], we show that

our baseline model performs at a SoTA level and reveal the

mismatch between evaluation on this dataset and practical

applications.

Our contributions can be summarized as follows.

• We are the first to adapt VLMs for conditioned image

cropping. The proposed method makes it possible to

let the user provide a text or image query to crop, better

reflecting the user’s intention.

• We present a pipeline to generalize smart cropping

models that are trained with expensive yet limited

human-annotated data to unseen photos in the wild.

• We verify the performance of our ClipCrop via ex-

tensive experiments, and provide a novel evaluation

dataset focusing on the challenge of content ambigu-

ity.

2. Related Works

In this section, we review the related literature on image

cropping, visual grounding, and vision-language modeling.

2.1. Image Cropping

Image cropping algorithms aim to improve the aesthetic

quality of images by removing redundant content and can

serve many image editing tasks, e.g., thumbnail genera-

tion [14]. The algorithms for cropping can be roughly

divided into anchor evaluation methods and coordinate

(bounding box) regression methods.

Anchor evaluation is a two-step process of generating

and scoring a crop proposal. The first step can be real-

ized through sliding windows [5, 18, 21, 38], predefined an-

chor boxes [54] similar to detection models [34], or grid

anchors [65]. For the second step, distinct quality scor-

ers [42] are created to rank the crop proposals. Many works

like Ni et al. [41] propose algorithms to mine the implicit

composition rules behind photos with high aesthetic qual-

ity, such as the “rule of thirds”, “rule of space”, and “rule

of symmetry” popular in the field of photography. Fang et
al. [8] build a system consisting of three models that learn

a visual composition rule, boundary simplicity rule, and

content preservation rule for comprehensive scoring. Also,

saliency maps [8] and foreground identity [14] are often

considered as critical factors for scoring. Yan et al. [59]

highlight the importance of removed or changed content

from the original image for crop quality assessment, while

Zeng et al. [65] adopt an RoD operation to consider the

region of discard. Chen et al. [5] presume that a profes-
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sional photograph on a website is generally better than its

corresponding crop in terms of aesthetics. Therefore, in-

stead of direct scoring, they propose VFN to learn how to

compare the quality between two input images by harvest-

ing many examples of unambiguous paired aesthetic rank-

ings from a website. Li et al. [28] exploit mutual relations

between good crops and bad crops with a graph convolu-

tion operation. More recently, TransView [43] provides

a transformer-based solution that achieves strong perfor-

mance and presents interesting visualizations about the at-

traction and repulsion between visual elements to explain

the reasons behind the scores.

For coordinate regression methods, the goal is to directly

predict the cropping boxes. Guo et al. [10] propose a cas-

caded pipeline to iteratively regress the final box, while

Li et al. [26] introduce a reinforcement learning frame-

work to mimic human adjustment decisions for dynamic

adjustment of the predicted box. In addition, Li et al. pro-

pose Mars [27] to realize arbitrary aspect ratio cropping

box prediction by meta learning. Instead of fully super-

vised learning, Lu et al. [37] propose a weakly supervised

cropping framework guided by the distribution dissimilarity

between the predicted cropped images and high-quality im-

ages, which eliminates the need for ground-truth boxes an-

notated by humans. Then, Hong et al. propose CACNet [11]

that combines an anchor-point-based cropping branch and

an interpretable composition branch to learn the offsets of

each anchor point to the ground-truth boxes. Inspired by re-

cent advances in object detection [2], Jia et al. [16] explic-

itly address the diversity problem in coordinate regression-

based cropping methods by learning in a set prediction fash-

ion.

The closest work to ours is CAGIC [13], which to the

best of our knowledge is the first text-conditioned image

cropping model. Horanyi et al. [13] propose to directly

re-purpose pre-trained networks to realize text-conditioned

cropping without any fine-tuning. We begin with a VLM

perspective and implement more general conditioned crop-

ping, including text querying and image querying. More

importantly, our model inherits an open vocabulary capabil-

ity, which is more stable and accurate for both the dataset

presented with GAIC and in practical applications.

2.2. Visual Grounding

The basic goal of visual grounding [19] is to predict and

identify a set of bounding boxes surrounding the target ob-

jects that are referred to by the given text query. Accord-

ing to the task formulations, we can categorize the exist-

ing efforts into two paths, namely phrase grounding [45]

which maps a sentence consisting of multiple entities into

a set of bounding boxes, and referring expression com-

prehension [39, 63] which only maps a referring expres-

sion to a single bounding box. Most of the previous

works [3, 6, 29, 35, 36, 51, 52, 61, 62] address the visual

grounding tasks by exploiting a well-trained existing ob-

ject detector (e.g., DarkNet [48] and DETR [2]) to generate

the candidate bounding boxes and then search for the target

based on semantic similarities between region features and

textual features. Recently, MDETR [17], GLIP [31, 67],

and OWL-ViT [40] choose to embrace a scheme that per-

forms end-to-end training and alignment between texts and

objects in the image directly. The key difference between

visual grounding and conditioned image cropping is that the

latter requires consideration of aesthetic elements, and of-

ten the box may include multiple objects combined with a

background. In this work, we construct our approach based

on the very recent OWL-ViT [40] that already exploits

rich datasets for visual grounding including OpenImages-

V4 [24] and Visual Genome [22].

2.3. Vision-Language Modeling

Vision-language modeling (VLM) attempts to exploit

one data modality as the supervision for the other modal-

ity. The research on VLM follows the success of BERT [7],

where image-conditioned BERT models [35, 52] are devel-

oped to facilitate the downstream task of visual question an-

swering and image captioning. Later works [3,20,29,30,32,

53] further incorporate image masked modeling, image text

matching, and multimodal fusion for visual grounding and

image and text retrieval. BERT-like models require fine-

tuning in order to reach satisfactory results.

CLIP [46] revolutionized the field by enabling zero-shot

capabilities through large-scale image-caption contrastive

learning. The pre-trained CLIP model shows a strong gen-

eralization ability to open-set problems with prompt tun-

ing [25] and prompt engineering [33]. The work fol-

lowing CLIP extends the zero-shot capability for detec-

tion [40,68], segmentation [9,47,57], and many other appli-

cations [49,55,56]. Models that improve upon CLIP include

LiT [66], Align [15], UniCL [60], and BASIC [44]. Our

work leverages the language interface of CLIP for smart

cropping, enabling the user to express intention with regard

to image regions.

3. Methodology

In this section, we first review the working mechanism of

OWL-ViT [40], which serves as an encoder for our model.

Then, we present the structure of our ClipCrop model. Fi-

nally, we further elaborate on the training strategy with con-

ditioned cropping.

3.1. Review of OWL-ViT

OWL-ViT uses a standard Vision Transformer as the

image encoder Fimg and the text encoder Ftxt. Training

is conducted in two stages. In the first stage, Fimg and
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Figure 2. The architecture of ClipCrop. In addition to the full input text, ClipCrop uses spaCy [12] to extract keywords and then

generates a series of text embeddings via the text encoder of OWL-ViT [40]. These text embeddings are used to match image tokens

and corresponding initial bounding boxes from the image encoder of OWL-ViT. To achieve conditioned cropping, a transformer decoder

similar to DETR [2] is introduced to regress a series of offsets for the union of the selected initial boxes and predict the corresponding

quality scores.

Ftxt are contrastively pre-trained with large-scale image-

text pairs following the standard CLIP [46] process. In the

second stage, the pooling operation and the final projection

layer are removed from Fimg . Then, the output image to-

kens {tnimg} are projected to per-object classification em-

beddings {encls} by a linear layer as well as to the corre-

sponding bounding boxes {bn} by a MLP. In the case of

using ViT-B/32 backbone, n ∈ {1, · · · , 576}. This stage is

trained using publicly available detection datasets including

OpenImages-V4 [24], Objects 365 (O365) [50], and Visual

Genome [22]. In inference, a text embedding etxt from Ftxt

is used as guidance to match the most similar classification

embedding. Then, the corresponding box of the matched

classification embedding becomes the predicted box.

3.2. Structure of ClipCrop

ClipCrop processes the image tokens {tnimg} and the

predicted boxes {bnini} (renaming of {bn}) from the im-

age encoder of OWL-ViT as the initial ingredients, as illus-

trated in Fig. 2. The target of OWL-ViT is visual ground-

ing. This means that the predicted boxes are for single

objects without any consideration of aesthetics. To adapt

OWL-ViT to conditioned cropping, in addition to the orig-

inal text input, ClipCrop further uses spaCy [12] to ex-

tract keywords from it and generate several text embed-

dings {ewtxt |w ∈ {1, · · · ,W}} via the text encoder. Then

ClipCrop follows the matching mechanism of OWL-ViT by

using {ewtxt} to select a series of image tokens {twimg} and

the corresponding bounding boxes {bwini}. ClipCrop intro-

duces a new DETR-like transformer decoder Fdec to regress

a set of offsets {bmofs} for the union box bu of {bwini} and the

corresponding quality scores {sm}, as follows:

{bmofs}, {sm} = Fdec (Q,K, V ) , (1)

where m ∈ {1, · · · ,M} and M = 90 by default, as in

Jia et al. [16]. Key K and value V are from complete image

tokens {tnimg}, and the query Q is the sum of the average of

selected image tokens {twimg} and M learnable query tokens

{tmqry}:

Q =

{
tmqry +

1

W

∑W

w=1
twimg

}
. (2)

The final predicted boxes are the sum of the union box and

the regressed offsets:

{bmpred} = bu +
{
bmofs

}
. (3)

3.3. Training Strategy

Our training strategy basically follows that of Jia [16] to

supervise the predicted boxes and scores. The Hungarian

algorithm [23] is used to find a bipartite matching between

predicted bounding boxes and high-quality ground-truth

boxes. The high-quality boxes in the GAIC [65] dataset

represent boxes with a score of no less than 4. The scores

in this dataset range from 1 to 5, with higher scores indi-

cating better. Regarding quality guidance, we also leverage

local redundancy [64], i.e., human perception is insensitive

to small changes of the crop, to achieve label smoothing.

Specifically, if there exists a ground-truth box that has high

IoU (IoU ≥ 0.9) with a predicted box, the quality score of

the predicted box can be supervised using the quality score

of that ground-truth box.

To train a conditioned cropping algorithm, there are still

several problems. First, there are no paired texts for train-

ing. Therefore, we manually annotated a text for each image

of GAIC [65] using a crowdsourcing platform. With this

enhanced GAIC dataset, there is sufficient data for the com-

munity to train conditioned cropping algorithms. Second,

because the ground-truth boxes of the GAIC [65] dataset are

generated with a fixed grid pattern, the boxes generated by
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direct training using a single image will have bias. Hence,

we deploy mosaics augmentation [1] to overcome this is-

sue. We randomly sample single images, 2 × 2 grids, and

3 × 3 grids with equal probability, while the input text and

ground-truth only belong to a single image. However, mo-

saic augmentation can introduce ambiguity for the input text

when different images in the composed mosaic image have

similar content. To deal with this, we filter out the initial

boxes {bwini} that are far from the box with the highest qual-

ity score in the target image or contain less than half the

area of that box.

4. Experiments
4.1. Dataset

Many benchmark datasets [4, 8, 54, 59, 65] have been

constructed for image cropping. Among these datasets,

CPC [54] and GAIC [65] are densely annotated datasets,

while only GAIC is dense enough to directly train a trans-

former decoder for predicting a set of boxes, as indicated by

Jia et al. [16]. We train ClipCrop on GAIC [65] and evalu-

ate it on GAIC’s test set, Horanyi-PR [13], and the proposed

TextCrop.

GAIC [65] This dataset contains 2636, 200, and 500 im-

ages for training, validation, and testing, respectively. Each

image has about 90 crop proposals generated along a pre-

defined grid pattern, which is intended to reflect the non-

uniqueness of image cropping in practice. For each crop

proposal, there is also a quality score ranging from 1 to 5.

To train the text-conditioned cropping algorithm, we com-

plemented GAIC by labeling each image with a text de-

scription.

Horanyi-PR [13] This dataset is designed to evaluate the

ability to automatically crop images for a given caption.

There are 100 images in total for testing, without training

and evaluation sets. Each image has a text description and

eight aesthetics-aware bounding boxes annotated by differ-

ent human annotators.

TextCrop We propose a new cropping test set that is char-

acterized by content ambiguity, named TextCrop for short.

TextCrop has 208 crowded photos with various scenarios

and styles. We labeled each image with two different text

descriptions and four aesthetics-aware bounding boxes from

different human annotators for each text.

4.2. Results on Horanyi-PR

First, we compare ClipCrop to the prior arts for visual

grounding, general cropping, and text-conditioned crop-

ping on the Horanyi-PR dataset [13]. The visual ground-

ing algorithms that are included, such as ReSC-Large [61]

Table 1. Comparison on the Horanyi-PR [13] dataset.

Method IoU-Mean IoU-Max

Visual Grounding
ReSC-Large [61] 0.4531 0.6079

TransVG [6] 0.4398 0.6078

OWL-ViT [40] 0.4131 0.5789

Cropping
A2-RL [26] 0.3017 0.4506

VPN [54] 0.3231 0.4830

VEN [54] 0.3394 0.4882

Li et al. [28] 0.3357 0.4805

GAIC [65] 0.3407 0.4863

CACNet [11] 0.3385 0.4899

Jia et al. [16] 0.3333 0.4818

Conditioned Cropping
CAGIC [13] 0.4160 -

GAIC [65]+TransVG [6] 0.4914 0.6290

ClipCrop 0.5551 0.7284

and TransVG [6], mainly deal with expression compre-

hension and return a single bounding box. Regarding

the original OWL-ViT [40], we take the bounding box

with the highest matching score as the output. The com-

pared general cropping algorithms cover both anchor eval-

uation methods [28,54,65] and coordinate regression meth-

ods [11, 16, 26]. All these algorithms are trained in their

respective official settings and then tested on the unseen

Horanyi-PR dataset. To the best of our knowledge, the

only text-conditioned cropping algorithm that exists is the

baseline algorithm CAGIC [13] provided with this dataset.

Since the implementation code of CAGIC is not published,

we directly report the performance given in their paper. In

addition, we implemented a cascaded scheme by connecting

GAIC [65] and TransVG [6]. The returned crop is the one

with the highest GAIC score and can cover the crop gen-

erated by TransVG. In this experiment, ClipCrop, CAGIC,

the cascaded scheme (GAIC+TransVG), and visual ground-

ing algorithms can utilize the text input of this test set, while

the general cropping algorithms cannot.

The quantitative results are shown in Table 1. In addi-

tion to the average IoU (IoU-Mean) in [13], we calculate the

maximum IoU (IoU-Max) between the bounding boxes la-

beled by human annotators and the predicted bounding box

to reflect the performance. We can see that ClipCrop out-

performs CAGIC, general cropping algorithms and visual

grounding algorithms by a large margin. We find that the

visual grounding algorithms are superior to general crop-

ping algorithms and even CAGIC. The reason why visual

grounding algorithms are better than the general cropping

algorithms is that the text descriptions of this dataset are

biased towards small objects in the image, while general
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Figure 3. Visual results on Horanyi-PR [13]. The first column presents the image and text description of the input. The

green bounding boxes in the image represent the ground-truth (GT) crops. We show the results of our ClipCrop, cascaded scheme

(GAIC [65]+TransVG [6]), general cropping algorithms (Jia et al. [16], CACNet [11]), and visual grounding algorithms (TransVG [6]

and ReSC-Large [61]) sequentially in the subsequent columns. ClipCrop outperforms other methods by accurately reflecting the intent of

the text and ensuring the aesthetic quality of the crop.

cropping algorithms tend to return a large crop that con-

siders the global image. The reason that even CAGIC is

inferior to visual grounding algorithms is due to its algo-

rithm design. CAGIC combines a pre-trained aesthetic eval-

uation network [5] and a pre-trained image captioning net-

work [58] to optimize a bilinear sampler to find a suitable

crop, which leads to a low sum of aesthetic loss and cap-

tion loss. The match between the input text and the caption

generated by [58] is not accurate, resulting in the generated

bounding box having a rather poor performance compared

to the tight bounding box generated by the visual ground-

ing algorithms, which have a more accurate understanding

of the input text. The cascaded scheme can combine the

advantages of visual grounding algorithms and anchor eval-

uation cropping algorithms, but the improvement is limited.

We show qualitative results in Fig. 3. The case in the first

row demonstrates that ClipCrop can effectively reflect the

user’s intention by removing extraneous background. The

examples in the second and third rows demonstrate the pow-

erful generalization capabilities of ClipCrop. ClipCrop can

understand complicated descriptions such as “a pink and

white wedge of cake on a yellow plate” and “a black camel

on a white and red sign”, while TransVG and ReSC-Large

are unable to localize the expected area. In the case that

the main content of the image and input text are more con-

sistent, such as the fourth row, the results of ClipCrop and

clipping algorithms are closer.

4.3. Results on TextCrop

We followed the test setup of the Horanyi-PR dataset to

test on the TextCrop dataset.

The quantitative results are shown in Table 2. Unlike

Horanyi-PR, each image of TextCrop has two different de-

scriptions. Besides local descriptions, global descriptions
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Figure 4. Visual results on TextCrop. The left side and the right side show the results of the same image with different text input

as query. The green bounding boxes in the input represent the ground-truth. We show the results of our ClipCrop, cascaded scheme

(GAIC [65]+TransVG [6]), and general cropping algorithm (Jia et al. [16]) for reference. ClipCrop can robustly discern intentions from

different texts and crop accordingly.

Table 2. Comparison on our TextCrop dataset.

Method IoU-Mean IoU-Max

Visual Grounding
ReSC-Large [61] 0.3116 0.3784

TransVG [6] 0.3363 0.4056

OWL-ViT [40] 0.3923 0.4758

Cropping
A2-RL [26] 0.3919 0.4800

VPN [54] 0.4052 0.4934

VEN [54] 0.3758 0.4531

Li et al. [28] 0.4185 0.5034

GAIC [65] 0.4141 0.4978

CACNet [11] 0.4271 0.5162

Jia et al. [16] 0.4317 0.5219

Conditioned Cropping
GAIC [65]+TransVG [6] 0.4230 0.5031

ClipCrop 0.4992 0.5956

exist for most images. Because of this change, the per-

formance of general cropping algorithms becomes better

than visual grounding algorithms. ClipCrop still achieves

the best performance, demonstrating its ability to provide a

crop that accurately reflects the user’s intention and has an

aesthetic appeal.

We further present the qualitative results on TextCrop

in the Fig. 4. Only ClipCrop and the cascaded scheme

Table 3. Comparison on the GAIC [65] dataset.

Method ACC1/5 ACC1/10

VFN [5] 26.6 40.6

A2-RL [26] 23.2 39.5

VPN [54] 36.0 48.5

VEN [54] 37.5 50.5

GAIC [65] 68.2 85.8

TransView [43] 69.0 85.4

Jia et al. [16] 85.0 92.6

ClipCrop-base 87.2 94.4
ClipCrop 79.8 89.6

(GAIC+TransVG) can understand different text queries,

such as “person modeling handbag and dress” and “red

handbag” in the first row, to crop images that highlight the

corresponding subject. However, ClipCrop is more robust

than the cascaded scheme in other cases. With “groom get-

ting ready” in the third row and “math equations” in the

fourth row, ClipCrop again demonstrates its outstanding

open vocabulary capability for text-conditioned cropping in

the wild.

4.4. Results on GAIC

In addition to the text-conditioned test sets, we also

present a comparison with the GAIC [65], as shown in

Table 3. Besides ClipCrop, we show a variant called

ClipCrop-base, which does not involve the matching of text

300



Figure 5. Pattern of predicted bounding boxes.

Table 4. Ablation study on Horanyi-PR [13].

Method IoU-Mean IoU-Max

ClipCrop-base 0.3233 0.4742

ClipCrop-main 0.4550 0.6007

ClipCrop-key 0.5170 0.6848

ClipCrop w/o mosaic 0.5231 0.6901

ClipCrop 0.5551 0.7284

query but rather regresses directly with query tokens and

image tokens. With the boost brought by the introduction

of the image embedding from the OWL-ViT encoder, this

baseline model achieves state-of-the-art performance with-

out considering text. The reasons why ClipCrop has lower

performance under this dataset are twofold. First, the anno-

tated description of GAIC images is subjective, which may

introduce some noise to the model. Second, the proposed

training strategy results in the generated bounding boxes not

overfitting to the grid pattern. As shown in Fig. 5, the pre-

dicted bounding box pattern of Jia et al. [16] is similar to

the ground-truth grid pattern of the GAIC [65], while the

prediction of ClipCrop is more flexible. Overfitting to the

ground-truth pattern is beneficial for the metrics evaluation

of this dataset, but harmful for practical applications.

4.5. One-shot Image-conditioned Querying

The design of ClipCrop ensures that it inherits the abil-

ity from OWL-ViT to perform one-shot image-conditioned

querying. We follow the pipeline of OWL-ViT to extract

image embeddings from the query image instead of text

embeddings to match the initial bounding boxes and image

embeddings from the source image. There are some ex-

amples for reference in Fig. 6. The first, second, and third

columns represent input image, query image, and crop, re-

spectively. The image-conditioned cropping is a powerful

extension to text-conditioned cropping, as it enables crop-

ping the desired areas that are difficult to describe by text

but easy to convey by an image.

Figure 6. Results of one-shot image-conditioned querying. The

size of the crop was adjusted for better viewing.

4.6. Ablation Study

To verify the validity of our model design, we conducted

an ablation study on Horanyi-PR, as shown in Table 4.

ClipCrop w/o mosaic denotes training without mosaic aug-

mentation. ClipCrop-key denotes only using keywords ex-

tracted by SpaCy [12] for matching. Clip-main denotes only

using the original text description for matching. ClipCrop-

base does not use additional text description as input. The

results show that additional text input, combination of orig-

inal text and keywords, as well as mosaic augmentation all

facilitate the text-conditioned cropping.

4.7. Limitations

ClipCrop inherits the advantages of VLM while also be-

coming highly dependent on the pre-trained VLM model.

Thus, ClipCrop may include biases introduced by text-

image pairs in the contrastive learning stage. Then, because

OWL-ViT highly relies on the nouns in the description, the

current ClipCrop may not work for descriptions that are too

abstract or indirect.

5. Conclusion

In this work, we focus on the challenging problem of

how to better reflect the user’s intention in the cropping

task. Drawing inspiration from vision-language model-

ing, we presented a novel model, ClipCrop, for text/image-

conditioned image cropping. We provided training strate-

gies and designed a network structure that enables ClipCrop

to realize conditioned cropping in the wild, with strong

open-vocabulary ability. ClipCrop yields superior and ro-

bust performance on both the public datasets and the dataset

we provide. We believe that introducing pre-trained VLM

models into the cropping domain, where data annotation is

exceptionally expensive, is a promising direction.
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