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Abstract

In this paper we give a narrative review of multi-modal
video-language (VidL) models. We introduce the current
landscape of VidL models and benchmarks, and draw in-
spiration from neuroscience and cognitive science to pro-
pose avenues for future research in VidL models in partic-
ular and artificial intelligence (AI) in general. We argue
that iterative feedback loops between AI, neuroscience, and
cognitive science are essential to spur progress across these
disciplines. We motivate why we focus specifically on VidL
models and their benchmarks as a promising type of model
to bring improvements in AI and categorise current VidL ef-
forts across multiple ‘cognitive relevance axioms’. Finally,
we provide suggestions on how to effectively incorporate
this interdisciplinary viewpoint into research on VidL mod-
els in particular and AI in general. In doing so, we hope to
create awareness of the potential of VidL models to narrow
the gap between neuroscience, cognitive science, and AI.

1. Introduction
Human intelligence seamlessly combines sub-symbolic

perceptual signals—which are multi-modal and span
across, for instance, vision and audition—with symbolic hu-
man language. The quest for artificial intelligence (AI) can
be said to begin with a focus on mimicking human intel-
ligence or behaviour, e.g., with Turing stating that human
behaviour is a must-use guide for developing AI [119].This
cognitive (or behavioural) approach is central to AI and has
informed the field since its beginning. However, neuro-
science also had an important influence on early develop-
ments in AI, especially as inspiration in the creation of ar-
tificial neural networks (ANNs), which were originally in-
formed by the architecture of the brain and by the proper-
ties of real neurons [79, 94]. More recently, we have seen a
resurgence of interest in the intersection between AI models
and neuroscience [144] and also by research explicitly com-
paring ANNs to predicting brain activity, for example in the
context of object recognition [138, 99] and language pro-

cessing [98]. Another pillar of AI research that is becom-
ing increasingly more relevant has to do with AI systems
and their applicability and performance; or, in other words,
concerns with engineering efforts and progress in solving
concrete problems in vision [69, 95] and language [96, 96].

AI models that jointly reason upon visual and linguis-
tic inputs have attracted particular attention in recent years.
Reasons include the availability of data to train these mod-
els and the reduced costs of high-performance comput-
ing infrastructure to train and deploy such models [109].
Models include image-language (IL) models, which learn
representations that combine static images and text (e.g.,
CLIP [88]), and video-language (VidL) models, which re-
ceive videos and text as inputs (e.g., VideoBERT [1]). Al-
though research on IL models has boomed over the last
years and great progress has been made,1 many of the most
interesting capabilities in an AI model we would associate
with human intelligence require an explicit time dimension,
which is missing in IL models. Models that learn from
videos are an interesting alternative since time is built-in in
VidL models. We thus argue that VidL models offer an ideal
test-bed for training and evaluating AI models that mimick
some of the most interesting facets of human intelligence.

Our main contributions are: (i) We provide a narrative
review and discuss the current landscape of existing VidL
models and benchmarks. (ii) We take inspiration from neu-
roscience and cognitive science to review existing VidL
benchmarks in terms of their cognitive relevance. (iii) Fi-
nally, we propose avenues for future research and provide
suggestions on how to effectively incorporate this interdis-
ciplinary viewpoint into research in VidL models and in AI.

In Sections 1.1 and 1.2 we further elaborate on why we
think this is a fruitful and necessary approach. In Section 2
we introduce the current landscape of VidL models and
benchmarks, and categorise both according to our proposed
‘cognitive relevance axioms’. Finally, in Section 3 we dis-
cuss shortcomings in current VidL models and benchmarks
and recommend promising research avenues for VidL and
AI research.

1See [146] for a recent overview on IL models.
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1.1. The importance of interdisciplinary AI re-
search

The fields of neuroscience, cognitive science and AI
have a rich and intertwined history [49, 83]. The synergy
between these three different fields (often referred to as cog-
nitive computational neuroscience) has yielded a large body
of work comparing the behaviour and activity of biologi-
cal and artificial systems (as referred to in [97]). Although
this procedure of comparison between biological and artifi-
cial systems could effectively lead to progress, it should be
done with care, as these different disciplines and their de-
signed models can have very different goals [83]. The field
of AI is mainly occupied with benchmarking and engineer-
ing goals, and adapting models for real-world applications.
Neuroscience, on the other hand, focuses on models with
neurally plausible algorithms and representations, viewing
such models as hypotheses to be tested against neural data.
Finally, models in cognitive science are as good as they can
predict and explain human cognitive behaviour [58].

[83] proposes a three-dimensional rubric—including en-
gineering, neural plausibility and human-like behaviour—
to evaluate models in cognitive computational neuroscience
research. Iterative feedback loops between these dimen-
sions can lead to generative, corroborative or corrective
contributions to model development, which are needed for
the advancement of AI [83, 144]. For example, one could
use successful behavioural models to predict brain activity,
corroborating these models’ neural plausibility. This could
lead to the generation of new behavioural tasks to enable
differentiation between similar neurally plausible models.
A mismatch between human behaviour and that of such
neurally plausible model could then lead to the correction
of the original model.

1.2. Focusing on multimodal video-language models

There has been some work relating image-language
(IL) models to human behaviour and neuroscience (e.g.,
[78, 123]) and video models (without language) to human
behaviour and neuroscience (e.g., [61, 128]). However, to
the best of our knowledge there is a gap in research relating
VidL models to human behaviour and neuroscience (with
the notable exception of [113]). However, we argue that
VidL models are highly cognitively relevant, since they are
multimodal and include an explicit temporal dimension. We
elaborate further on these two points below.

VidL models are multimodal In line with embodied the-
ories [8] which state that our human understanding of the
conceptual world around us is formed by language and
internal bodily states from multiple modalities (e.g., vi-
sion, somato-sensory system, olfaction), multi-modal mod-
els leverage multi-modal information, combining symbolic

and sensorily grounded representations [90]. An impor-
tant discussion regarding the limitation of AI systems has
to do with the symbol grounding problem [48], whereby an
AI system that has access only to symbolic representations
(e.g., text) is said to be unable to learn word meanings; in
order to do that, such AI system would need access to exter-
nal knowledge, e.g., knowledge about how to ground these
symbols in the real world [9]. Multi-modal models address
this problem to some extent, as they are trained on differ-
ent types of data and integrate information from different
channels (e.g., text, images, videos, audio). These models
could be grounded—at least according to [48]’s definition
of ‘grounding’—, implying that their representations could
in principle encode “real word meanings” and be suitable
for applications that need a joint understanding of inputs to
solve complex problems.

Moreover, behavioural and eye movement research also
show that there are interactions between linguistic and non-
linguistic information, i.e., showing that language affects
speakers’ colour perception and discrimination [129] and
that linguistic and visual input are jointly used in disam-
biguation and reference resolution [112]. Even for abstract
words without any visual referents, including additional
multi-modal information (e.g., sensorimotor or social infor-
mation) can ground meaning [14, 126, 29].

VidL models include a temporal dimension VidL mod-
els are theoretically able to answer more cognitively rel-
evant questions than IL models, since videos include the
temporal dimension and allow for understanding of spatial-
temporal dynamics and the grounding of language in ac-
tions. This enables the comprehension of events and their
compositional structure and further supports the under-
standing of notions of agency, cause and effect, and ob-
ject permanence, which are essential for human intelligence
[87, 105]. The use of video is arguably a better approxima-
tion to the perceptual flow humans are exposed to during de-
velopment: dynamically changing environments perceived
from different viewpoints, under varying lighting condi-
tions and occlusions, and subject to self- or externally in-
duced motion and saccadic eye movement [77].

2. Landscape

Video-language models seek a nonlinear mapping be-
tween the video and language modalities, i.e effective align-
ment of vision and language. Textual data is represented
as a sequence of words (thus including a temporal dimen-
sion due to its sequential nature) and video data is repre-
sented as a sequence of static frames (thus including tempo-
ral and spatial dimensions). Within the VidL model, word
embeddings and video representations are fused using an
early or late fusion strategy to obtain semantically rich and
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Figure 1. Schematic overview of selected VidL models organized
along different dimensions (best viewed in colour).

grounded multimodal representations. Based on the suc-
cess story of the pre-trained BERT model [32], VidL models
often apply the pretrain-then-finetune paradigm, i.e., mod-
els are first pre-trained on basic fundamental tasks to learn
general-purpose representations that can then subsequently
be fine-tuned for specific downstream tasks. By using this
paradigm, models do not have to be retrained from scratch
every time for different tasks [93].

2.1. Model architecture and pretraining procedure

In Table 1, we categorise the growing body of VidL mod-
els along a few different dimensions. Many of the archi-
tectural insights are carried over from IL to VidL models,
which is why we also discuss relevant aspects of IL models.

Single- vs. dual-stream architectures There are many
different methods for fusing video representations and word
embeddings, but overall one can make a distinction between
single-stream and dual-stream architectures. In the case of
single-stream architectures, video and language representa-
tions are jointly processed by one single cross-modal en-
coder, while in the case of dual-stream architectures video
and language representations are encoded separately and
then fused. In this way, dual-stream architectures can ap-
ply different processing regimes on different streams or
modalities [124], which yields different multimodal rep-
resentations compared to single-stream architectures [19].
In the context of IL models, some argue for superiority of
one framework over the other [74, 22], while others state
both perform equivalently when controlled for differences
in training data and hyper parameters [18]. However, in the
context of VidL models, not much research has been done
yet on this topic.

Model family VidL models can be divided into con-
volutional neural network (CNN) based architectures and
Transformer-based architectures. Early work on IL mod-
els focused mainly on CNN-based architectures, aggregat-
ing visual features extracted from object-trained 3D CNNs
with static word embeddings [56, 17, 116] based on lan-
guage models like Word2Vec [82] or GloVe [86]. A later

wave of IL models relied on region proposal networks
(e.g. LXMERT [111]), especially faster recurrent convo-
lutional networks (RCNNs) [89]. More recent work fo-
cuses on Transformer-based architectures, as they do not
have a locality bias like CNNs and can learn interactions
between non-local contexts [118]. IL models like [57] use
Transformers for the visual backbone and concatenate im-
age patches and language tokens before processing them
through a single Transformer stack [57]. In the context
of VidL models, Transformer-based architectures can be
used for temporal and/or spatial attention mechanisms for
both video and language. In the case of single-stream VidL
Transformer architectures, videos are first converted to ‘vi-
sual tokens’ which can be used as direct input for a sin-
gle cross-modal transformer module that processes both
language and video. This conversion is however based
on video features extracted with CNN architectures, e.g.
ResNet [50], ResNet3D [117] or S3D [133].

Visual backbone objective The visual backbone of VidL
models can be based on either purely object-trained archi-
tectures or purely action-trained architectures or on a com-
bination of both. For object-trained architectures, the most
used datasets are ImageNet [31] and VisualGenome [59].
For action-trained architectures, the most used datasets are
Kinetics [55] and Howto100M [80]. The idea behind using
a combination of both object and action-trained architec-
tures, is that doing so produces global-local multi-modal
representations. The object-trained architecture provides
local regional object features, while the action-trained ar-
chitecture yields a clip-level action representation [150].

Pretraining tasks Different models are trained using dif-
ferent pre-training tasks, depending on their architecture
and objectives. Overall, we note that some models focus
on reconstructing objectives while others focus on matching
objectives. Commonly used pre-training tasks focusing on
reconstructing objectives include Masked Language Mod-
elling (MLM)[32], Masked Frame Modelling (MFM)[67],
Masked Visual-token Modelling (MVM)[1, 42], Masked
Object Classification (MOC)[150], Masked Action Clas-
sification (MAC)[150], Frame Order Modelling (FOM)
[67], Sentence Order Modelling (SOM)[62], Masked Modal
Matching (MMM)[75, 135] and Language Reconstruction
(LR)[75]. Pre-training tasks focusing on matching objec-
tives include Cross-Modal Matching (CMM)[1, 150] and
Video Subtitle Matching (VSM)[67]. We provide a detailed
description of each pre-training task in Appendix ??.

2.2. Downstream tasks and Benchmarks

After pre-training, VL models can be fine-tuned on one
or more specific downstream benchmark tasks. In the this

327



Model Stream Visual backbone (object) Visual backbone (action) Pre-training tasks

VideoBERT[1] single N.A. S3D[133]; Kinetics[55] MLM, MVM, CMM
ActBERT[150] single Faster R-CNN[89]; Visual Genome[59] ResNet-3D[117]; Kinetics[55] MLM, MAC, MOC, CMM
HERO[67] single 2D Resnet-50 [50]; ImageNet[31] SlowFast[40]; Kinetics[55] MLM, MFM, VSM, FOM
UniVL[75] dual N.A. S3D[133]; Howto100M[81] MLM, MFM, MMM, CMM, LR
VLM[135] single N.A. S3D[133]; Howto100M[81] MLM, MFM, MMM
VICTOR[62] single Inception-V4[110]; ImageNet[31] N.A. MLM, FOM, SOM, LR
ClipBERT[63] single 2D Resnet-50 [50]; ImageNet[31] N.A. MLM, MOC, CMM
VIOLET [42] dual N.A. Video Swin Transformer[73]; Kinetics[55] MLM, MVM
FiT[7] dual N.A. Space Time Transformer[10]; WebVid2M[7] CMM
VideoCLIP[136] dual N.A. S3D[133]; Howto100M[81] CMM
CLIP4CLIP[76] dual N.A. CLIP-ViT [88]; Howto100M[81] CMM

Table 1. Overview of state-of-the-art Transformer-based VidL models. In the visual backbone object and action objectives, we first show
the architecture used followed by the training dataset separated by a semi-colon ‘;’.

section we will give a general overview of the different
types of benchmark tasks that are currently in use.

Text-based video retrieval tasks can generally be divided
into two types: video retrieval (VR) [127] and video cor-
pus moment retrieval (VCMR)[37]. VR requires the model
to find the most relevant video clip from the available data
set based on a natural language query and rank all candi-
date videos. This tests global alignment of video and lan-
guage information. VCMR goes one step further, requir-
ing the model to find the most relevant video clip and the
most relevant moment within this video clip based on the
query, testing for both global and local alignment. The goal
of explicitly testing on moment retrieval is to force models
to actively leverage temporal information to solve the task.
Video-subtitle corpus moment retrieval (VSCMR) [65] ex-
tends this task to a multi-channel setup where both video
and textual information need to be considered.

Video captioning requires the model to generate descrip-
tions that portray the essence of the most interesting con-
tent of the visual scene. To do so, the model has to cap-
ture specific image regions [54] and understand temporal
relationships [141]. In different variations of the task the
model has to produce either a single sentence describing
the whole video or a short paragraph [141]. This is moti-
vated by the idea that most videos, especially longer videos,
contain more than one event and are semantically rich. A
single sentence yields a highly compressed summary. The
risk here is that the sentence is uninformative. On the other
hand, allowing multiple sentences may yield irrelevant and
redundant descriptions [51]. Thus, ideally the model is able
to comprehend what content is most relevant to perform the
right amount of abstraction.

Video question answering (VidQA) tests the model’s
ability to answer open-ended or multiple choice questions
about video content. VidQA provides fine-grained visual
understanding [142] and in a typical automatic evalua-
tion scenario one compares the model’s generated output

against one or more ground truth answers [4]. Answers are
grounded in both space and time and thus require models to
localize relevant moments and detect referred entities, i.e.
spatio-temporal reasoning [64]. We distinguish three sub-
types of VidQA: factoid, compositional, and social VidQA.
Factoid VidQA. This is the most basic version of VidQA and
involves questions that target the existence of objects, object
relationships or action recognition, i.e. ‘what’, ‘who’, and
‘where’ questions. Models perform relatively well for these
types of questions, as they do not require exhaustive reason-
ing or inference about physical events [47]. More focus on
’why’ and ’how’ questions could shift research towards the
core of human intelligence [147], as this type of reasoning
goes beyond purely recognising the available content.
Compositional VidQA. This tests the compositional spatio-
temporal reasoning abilities of a model. Compositional-
ity is a core semantic property of natural language, usually
characterised as “the meaning of the whole is a function of
the meaning of its parts” [25]. A visual event can be de-
composed into separate elements, e.g. objects, actions and
their relationships, that together give meaning to the scene
[11, 121]. Human infants implement decomposition from a
young age and use ideas of object permanence, solidity and
continuity [87] to perform inference about past and future,
i.e. compositional reasoning allows for for generalisation to
new domains and logical rules [60]. This type of reasoning
is at the core of human development [105]. Compositional
VidQA tasks can include questions about relationships be-
tween actions and objects and about the order in which ac-
tions take place [47].
Social VidQA. This task targets social intelligence. Social
interaction is a fundamental ‘arena of language use’ [24]
and has been argued, in the context of AI models, to be
the highest possible level of grounding for language models
[12]. This type of tasks address this goal by posing ques-
tions about social situations and mental states, e.g., Q: “Are
they getting along?” A: “No, nobody seems to be smiling”.

Audiovisual scene-aware dialogue (AVSAD) focuses on
dialogue instead of one-shot question answering as done
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with VidQA, since human communications entails sequen-
tial dialogue, often using referents [2]. AVSAD tasks take
inspiration from the visual dialogue task [27]—which re-
quires a model to hold a dialogue about a single static im-
age and its description—but instead focuses on video and
audio, and answers need to be grounded in video and in the
preceding dialogue containing co-references.

Video language inference (VLI) is introduced by [71]
and can be seen as a extension of VidQA, inspired by natu-
ral language inference benchmarks [15]. VLI takes a video
clip with aligned subtitles as premise and a textual descrip-
tion as hypothesis. The model is then required to judge the
relationship between the premise and hypothesis as an en-
tailment, contradiction or neutral. Performing these infer-
ences requires various reasoning skills, from more surface-
level grounding (i.e. identifying objects), to more in-depth
commonsense reasoning (e.g. about human intentions or
causal relationships).

Future event prediction (FEP) is introduced by [66] and
is an alternative inference benchmark that tests a model’s
ability to describe logical events in the future (hypothesis)
based on a video clip with aligned subtitles (premise). This
requires thorough understanding of video and language dy-
namics, but also implies multimodal commonsense knowl-
edge. FEP focuses on predicting high-level future events,
contrary to other existing video prediction tasks that mostly
focus on low-level vision or semantics, i.e. predicting future
frames [122, 68] or action labels [36, 101].

Action segmentation (AS) requires a model to parse a
video into different actions at the frame level, i.e. the model
has to assign each frame to a specified action label [114].
For example, the activity of ‘cooking an egg’ could consist
of the following action steps: ’take out a pan’, ’fill the pan
with water’, ‘boil water’, ‘put the egg in the water’ etc. The
model is required to leverage sequential information to be
able to determine such action boundaries. Action segmen-
tation helps understanding of what actions are being per-
formed, how far they have progressed and how actions will
evolve in the future [34].

Action localisation (AL) requires the model to predict a
predefined action label for a video, and localise the start and
end point of the action [114]. Recognition of human actions
shows understanding of dynamics and complex human in-
tention reasoning [151].

Multimodal sentiment analysis (MSA) requires the
model to integrate verbal and non-verbal information for

the detection of sentiment. Including non-verbal informa-
tion is essential, as this can change the perception of ex-
pressed sentiment. An example is how the statement “This
movie is sick” can either be perceived positively when com-
bined with a smile or negatively when combined with a
frown [143]. Thus, an important element to identify the true
meaning of the communicated language is the recognition
of human emotion and intentions [104], i.e., theory of mind.

2.3. Cognitive relevance axioms

Multiple datasets are available for finetuning VidL mod-
els on different tasks. As many of these tasks are designed
with very practical engineering applications in mind, we ask
to what extent they are also cognitively relevant. In Table 2
we highlight these cognitive relevance dimensions for each
VidL task and fine-tuning dataset.

Level of grounding This is the most important axiom to
assess cognitive relevance. [12] defines levels of grounding
or ‘World Scopes’ (WSs) that encompass a spectrum rang-
ing from least to most grounded. Ideally, models should go
beyond just text to consider the contextual and social foun-
dations of language to learn word meanings. Usage-based
theories of language additionally state that functionality is
the source of meaning [130], i.e. that language acquires
its meaning through its relation to the physical world and
the social interactions it enables. Thus, although models
must be able to recognise objects, people and activities to
comprehend the language describing them, to better mimic
humans models must go further and understand notions of
causality, commonsense physics and social interactions.

[12] proposes the following hierarchy: Corpus (WS1):
Models learn only from text, typically consisting of
small(er) curated datasets. Internet (WS2): Models still
learn only from text but now at Internet-scale, which can
lead to unforeseen emerging capabilities [16]. Perception
(WS3): Models learn from multiple modalities, e.g., vi-
sual, auditory and somatosensory data. Multi-modality
yields physical heuristics that we use in methaphors and ab-
stract concepts. For example, we are able to understand
the meaning of the word ’soft’ as we ourselves have phys-
ically experienced this tactile sensation. Embodiment and
action (WS4): Multimodal sensory experiences are fun-
damental for comprehension of action-oriented categories
[115]. Language is additionally grounded in these action-
oriented categories to facilitate communication [103]. Un-
derstanding of actions and their relationships to our environ-
ment, again, translates to understanding of metaphors like ’a
distant concern’ (grounded in the idea that far-away things
have little effect on local space). Social interactions (WS5):
These are the foundational use case of language [12, 24].
If the physical world grounds language, human intentions
give language a purpose. Thus, to properly comprehend
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Task Sub-task Dataset MC? Video Content Text types Query source ML? Grounding

Retrieval

VR

YC2R[148] ✓ Instructional cooking Subs + Description Crowd WS4
VATEX-EN-R[125] Human activities Description Crowd ✓ WS3
MSRVTT-R[137] Various Description Crowd WS3
ActivityNet Captions[59] Human activities Description Crowd WS4
MPII-MD[92] Movies Description Professional WS3

VCMR DiDeMo[3] Flickr Description Crowd WS4
Charades-STA[44] Scripted Description Semi-automatic WS4

VSCMR TVR[65] ✓ TV shows Subs+ Description Crowd WS4
How2R[67] ✓ Instructional Subs+ Description Crowd ✓ WS4

Captioning
Sentence

TVC[65] ✓ TV shows Subs + description Crowd WS4
YC2C[148] ✓ Instructional cooking Subs + Description Crowd WS4
VATEX-EN-C[125] Human activities Description Crowd ✓ WS3

Paragraph Youtube-Clips[20] Various Description Crowd WS3
TACoS-MultiLevel[91] Instructional cooking Description Crowd WS3

Q&A

Factoid

Video-QA[145] Various QA Semi-automatic WS3
How2-QA[67] ✓ Instructional Subs + QA Crowd ✓ WS3
MSRVTT-QA[134] Various QA Crowd WS3
ActivityNet-QA[142] Various QA Crowd WS4

Compositional
TVQA[64] ✓ TV shows Subs + QA Crowd WS4
AGQA[47] Charades (scripted) QA Automatic WS4
CLEVRER[139] Synthetic QA Automatic WS4

Social Social-IQ[143] ✓ Youtube Subs + QA Crowd WS5

Dialogue — AVSAD[2] ✓ Charades (scripted) Dialogue Crowd WS5

Inference VLI VIOLIN[71] ✓ TV shows + Youtube Subs+ Description Crowd WS5

FEP VLEP[66] ✓ TV shows + Youtube Subs Crowd WS4

Table 2. Different types and subtypes of VidL benchmarks and their datasets. We categorise each entry according to a number of dimensions
indicating their cognitive relevance. MC: Multi-channel. ML: Multilingual. Subs: Subtitles. QA: Question and Answer.

language, one must have some form of social intelligence
or rather theory of mind, i.e., the ability to consider mental
states of others, including emotions, beliefs, and intentions
[5]. According to usage-based theories of language, under-
standing of others’ mental states is necessary to infer the
communicative content others try to convey [107].

Video content Different datasets contain different types
of video, which may affect temporal dependencies and
generalisability. We can define four axes with regards to
video content: (i) diversity, (ii) instructions, (iii) natural-
ness, and (iv) socialness. (i) Some datasets contain large
amounts of clips and many different topics (e.g., entertain-
ment, sports, people, science), while other datasets are more
restricted and focus on specific types of video content (e.g.,
only cooking videos). The more diverse a dataset is, the
more different viewpoints, activities and people it includes
and thus the more general it is. (ii) Narrated instructional
videos have a very strong temporal dependency between vi-
sual content and subtitles, i.e., the natural language actually
refers to the visual elements of the scene at each moment.
This is not necessarily true in non-instructional videos, e.g.,
dialogue subtitles may refer to non-physical events or con-
cepts that are not depicted in the current scene. (iii) Some
datasets contain natural videos, while a few contain synthet-
ically composed videos. The latter allow for a fully con-
trolled environment, though it is questionable whether their

results generalise to real world situations. (iv) The extent
to which datasets include socialness varies. For example,
instructional videos do not typically include social cues in
interactive settings. Films or television series, which con-
tain many characters, provide richer social interactions.

Multi- or single-channel data Most often, VidL datasets
have videos and dialogues in natural language (subtitles).
Some datasets only include the visual information of videos,
i.e. single-channel data, while others also include audio,
subtitles, or both. We consider multichannel data as more
cognitively relevant, as humans also process many different
forms of sensory input (e.g., vision, somatosensation, audi-
tion) during perception.

Text type Generally, three different text types can be
distinguished: subtitles, descriptions and question-answer
(Q&A) pairs. Multichannel data is accompanied with sub-
titles (and optionally other text types), while single-channel
data is accompanied by either descriptions or Q&A pairs.
Q&A pairs are not used as input data, but mostly as queries.

Query source The vast majority of available datasets use
queries collected via crowd-sourcing and often include hu-
man validation. However, as human annotation is costly
and labour-intensive, some datasets have automatically or
semi-automatically generated queries, e.g., leveraging logic
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templates in combination with video descriptions [139, 21]
or scene-graphs [47]. This allows for more granular control
of the composition of the questions and the distribution of
included concepts. However, overall human annotations are
more natural and ensure higher quality.

Multilingual textual data In cognitive science there is an
overreliance on English, which has yielded biased results
about human cognition and language [13]. Similarly, in ma-
chine learning there has also been an overreliance on ’West-
ern’ visual and linguistic input data, yielding geographical
biases in, e.g., object recognition [30, 100] and language
models [38, 39]. These biases also translate to VidL mod-
els: performance decreases for ‘non-Western’ images [140]
and multilingual data sets [70]. Thus, to ensure VidL model
generalisation, we need multicultural and multilingual data.

3. Discussion
3.1. Current shortcomings

When evaluating the results of Table 2 using the pro-
posed cognitive relevance axioms, it is clear that most
downstream benchmarks are grounded in WS3 or WS4, i.e.
perceptions or actions. Thus, benchmarks regarding WS5,
sociality, are missing and not widely available. As stressed
before, understanding of social situations is fundamental
for understanding natural language. Therefore, we encour-
age the development of more datasets that are grounded
in sociality, i.e., datasets that contain visual content and
queries regarding social situations. Furthermore, datasets
that consist of instructional videos have high temporal de-
pendencies but their topics are often restricted (e.g., only
cooking videos), which limits their generalisability. Lastly,
most datasets are leveraged for single-utterance scenarios,
while human communication entails sequential dialogues
[2]. Thus, we believe future benchmarks should include
multiple question-answering or turn-taking scenarios, e.g.,
similarly to the Visual Dialogue task [27] but using videos
instead of static images.

3.2. Cognitively relevant vs. cognitively inspired

Overall, Table 2 shows that some benchmarks are more
cognitively relevant than others. However, instead of using
benchmarks which are retrospectively argued to be cogni-
tively relevant, one should design benchmarks that explic-
itly target specific cognitive properties, i.e., cognitively in-
spired benchmarks. For example, the AGENT benchmark
[102] was designed to test core intuitive psychological rea-
soning based on developmental psychology. Intuitive psy-
chology is the ability to reason about other agents’ mental
states, solely based on their observed actions. This abil-
ity is already available to infants from a young age. Based
on cognitive tests to probe the understanding of intuitive

psychology in infants, the AGENT benchmark focuses on
four categories: attribution of goal preferences [132], ac-
tion efficiency [46], cost-reward trade-off [72], and unob-
served constraints [26], and it leverages the Violation of Ex-
pectation (VoE) paradigm from developmental psychology.
Additionally, ADEPT [103] and OFPR-Net [28] are bench-
marks that use the same paradigm to test the principles of
understanding of intuitive physics, i.e. object permanence,
solidity and continuity, as highlighted by classic develop-
mental studies on physical understanding [106].

Currently, these cognitively inspired benchmarks do not
include any form of textual information, but this could po-
tentially be added in the form of textual frame descrip-
tions or textual queries. For example, one could prompt the
model to answer a multiple-choice question on the expected
trajectory of an occluded object. These cognitively inspired
tasks are fundamentally very different from the cognitively
relevant VidL benchmarks reviewed above, as they explic-
itly test for specific cognitive properties of interest, instead
of testing on a more general application level. This is a nec-
essary step to bridge the gap between cognitive science, AI
and neuroscience, as has already been suggested, for exam-
ple, in the context of linguistic phenomena [85].

3.3. Fair human-machine comparisons

Using cognitively relevant or inspired benchmarks, one
also needs proper evaluation methods not only to assess
model performance but also whether a model is able to
reach ‘human-level’ performance. Historically, most ma-
chine learning research has been focused on measuring suc-
cesses, i.e., what makes systems perform equally well as
humans. However, it might be more informative to focus
on a system’s failures, or how differently it behaves com-
pared to humans—e.g., what kinds of errors systems and
humans make, and what kinds of corner cases they fail in—
as accuracy scores alone cannot distinguish between differ-
ent behavioural strategies [45]. One suggestion is to use the
method of error consistency [45], i.e., a quantitative mea-
surement of whether two black-box systems (e.g., DNNs
and the brain) systematically make similar errors on the
same input.

It is also possible that two systems may use similar be-
haviour strategies but show different behavioural output
[41]. Not all behavioural output differences reflect sys-
tematic differences (consider, for example, two persons
who respond differently to the same stimulus). How, then,
should one properly evaluate human-machine differences?
To clarify this problem, one should make the distinction be-
tween competence and performance, a distinction originally
drawn by Chomsky [23] to characterise the difference be-
tween a native speaker’s knowledge of language and their
actual use of language in specific situations. In terms of the
current argument, competence is a characterisation of a sys-
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tem’s internal states. Performance characterises how a sys-
tem behaves under specific conditions. Intelligent systems
might often actually know more than their behaviour shows
due to performance constraints. For example, biological
and artificial systems retrieve sensory input differently, use
different hardware and have different modes of behavioural
response. Thus, we should evaluate human-machine differ-
ences in light of these performance constraints, using the
following principles [41] (as explained with examples from
the field of computer vision):

(i) Placing human-like constraints on machines To
investigate whether human constraints can account for
human-machine differences, one could actively implement
these constraints in an artificial system and see whether dif-
ferences in behaviour decrease or disappear. An example
comes from the study of adversarial images, i.e., images
with very small perturbations that are invisible to the human
eye but that are misclassified by artificial systems, which
are often used as an argument for different information pro-
cessing between humans and machines [84, 6]. When im-
plementing human-like constraints, such as a human-like
fovea, general robustness against perturbations improves
[33] and adversarial examples generated based on this con-
strained architecture actually also seem to mislead humans
[35].

(ii) Placing machine-like constraints on humans Ma-
chines also have constraints that humans do not have, e.g.,
they have a very limited and specific vocabulary often based
on labelled datasets. This may have as result that even
if machines hypothetically could ‘see’ images similarly to
humans (competence), they would not be able to produce
human-like classifications (performance). This constraint is
clear in, e.g., a study on noisy images, for which humans
find no objects, but which DNNs classify as an object [84]
since DNNs must always predict a label. However, when
humans are also forced to choose a label from the same set
of predefined labels, the likelihood that the human agrees
with the DNN is above chance [149]. On a similar note,
algorithms often produce a rank-order list of their predic-
tions2 yielding richer responses and performance measure-
ments than a single label, e.g., top-5 vs. top-1 accuracy.
Thus, an alternative could be to ask humans to provide a
top-k ranking over possible labels to see how this matches
with the machine predicted top-k labels.

(iii) Species-specific task alignment It is not always pos-
sible or desirable to equalise constraints among humans and
machines; sometimes, it may be desirable to accommodate

2This includes any neural network trained to minimise categorical
cross-entropy and that uses softmax as the activation function.

unique constraints, even when this yields different tasks for
different systems. For example, in comparative reward-
learning studies where different agents perform the same
task the type of reward is adjusted to the agent, e.g., hu-
man adults could receive money while rodents could receive
sugar water. This principle of ‘species-specific task align-
ment’ can also be applied between humans and machines.
For instance, in a study on ‘atomic vision’ [108, 43] both
humans and machines had to classify an image based on
a minimally cropped patch that was selected using human
psychological experiments, yielding different results for hu-
mans and machines [120]. The original conclusion was that
humans use ‘atomic vision’ to classify images while ma-
chines do not. However, when using minimally cropped
patches based on ‘machine psychophysics’, machine perfor-
mance showed a similar discrete flooring as human perfor-
mance on minimally cropped patches selected using human
psychophysics. Thus, in this task-aligned setting, both hu-
mans and machines actually showed ‘atomic recognition’.

Although it is not necessary or even possible to apply all
three principles at the same time, these principles do pro-
vide a useful framework to help researchers think in terms
of testing constraints. Consideration of these principles fa-
cilitates making fair human-machine comparisons, which is
essential to enable iterative feedback loops between neuro-
science, cognitive science and AI.

As formulated above, these three principles have a be-
havioural emphasis, in that they focus on the design of tasks
and analysis of performance. A more ambitious principle
also suggests itself:

(iv) Neurologically-inspired design Can models which
ground linguistic meaning in temporal and visual data ben-
efit from studies of the neural substrates of these abilities
in humans? This would place VidL models on a similar
footing as, say, models of visual attention [53, 52, 131],
but would also come closer to addressing recent calls to
extend the classic Turing test in AI to fully embodied sys-
tems [144]. Part of this enterprise would involve revisit-
ing current VidL architectures (see Figure 1) in terms of
their anatomical plausibility, and leveraging ablation meth-
ods to study the role of different model components in
a new, neurologically-inspired light. While neurological
plausibility may not be a goal of all VidL models, such
neuro-inspired design would also provide the cognitive neu-
rosciences with mathematically solid tools to test hypothe-
sis about the neural substrates of grounded cognition.

Using these frameworks for fair human-machine com-
parisons in combination with cognitively relevant VidL
benchmark tasks, we hope to narrow the gap between AI
and cognitive science research—and potentially also with
neuroscience—and to make meaningful progress across
these interdisciplinary fields.
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Deshraj Yadav, José MF Moura, Devi Parikh, and Dhruv

333



Batra. Visual dialog. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
326–335, 2017. 5, 7

[28] Arijit Dasgupta, Jiafei Duan, Marcelo H Ang Jr, Yi Lin,
Su-hua Wang, Renée Baillargeon, and Cheston Tan. A
benchmark for modeling violation-of-expectation in phys-
ical reasoning across event categories. arXiv preprint
arXiv:2111.08826, 2021. 7

[29] Simon De Deyne, Danielle J Navarro, Guillem Collell, and
Andrew Perfors. Visual and affective multimodal models
of word meaning in language and mind. Cognitive Science,
45(1):e12922, 2021. 2

[30] Terrance De Vries, Ishan Misra, Changhan Wang, and Lau-
rens Van der Maaten. Does object recognition work for
everyone? In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pages
52–59, 2019. 7

[31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009. 3, 4

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 3

[33] Arturo Deza and Talia Konkle. Emergent proper-
ties of foveated perceptual systems. arXiv preprint
arXiv:2006.07991, 2020. 8

[34] Guodong Ding, Fadime Sener, and Angela Yao. Tempo-
ral action segmentation: An analysis of modern technique.
arXiv preprint arXiv:2210.10352, 2022. 5

[35] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nico-
las Papernot, Alexey Kurakin, Ian Goodfellow, and Jascha
Sohl-Dickstein. Adversarial examples that fool both com-
puter vision and time-limited humans. Advances in neural
information processing systems, 31, 2018. 8

[36] Dave Epstein, Boyuan Chen, and Carl Vondrick. Oops!
predicting unintentional action in video. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 919–929, 2020. 5

[37] Victor Escorcia, Mattia Soldan, Josef Sivic, Bernard
Ghanem, and Bryan Russell. Finding moments in
video collections using natural language. arXiv preprint
arXiv:1907.12763, 2019. 4

[38] Fahim Faisal and Antonios Anastasopoulos. Geographic
and geopolitical biases of language models. arXiv preprint
arXiv:2212.10408, 2022. 7

[39] Fahim Faisal, Yinkai Wang, and Antonios Anastasopoulos.
Dataset geography: Mapping language data to language
users. arXiv preprint arXiv:2112.03497, 2021. 7

[40] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202–6211, 2019. 4

[41] Chaz Firestone. Performance vs. competence in human–
machine comparisons. Proceedings of the National
Academy of Sciences, 117(43):26562–26571, 2020. 7, 8

[42] Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang
Wang, Lijuan Wang, and Zicheng Liu. Violet: End-to-
end video-language transformers with masked visual-token
modeling. arXiv preprint arXiv:2111.12681, 2021. 3, 4

[43] Christina M Funke, Judy Borowski, Karolina Stosio,
Wieland Brendel, Thomas SA Wallis, and Matthias Bethge.
Five points to check when comparing visual perception in
humans and machines. Journal of Vision, 21(3):16–16,
2021. 8

[44] Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia.
Tall: Temporal activity localization via language query. In
Proceedings of the IEEE international conference on com-
puter vision, pages 5267–5275, 2017. 6

[45] Robert Geirhos, Kristof Meding, and Felix A Wichmann.
Beyond accuracy: quantifying trial-by-trial behaviour of
cnns and humans by measuring error consistency. Advances
in Neural Information Processing Systems, 33:13890–
13902, 2020. 7

[46] György Gergely and Gergely Csibra. Teleological reason-
ing in infancy: The naıve theory of rational action. Trends
in cognitive sciences, 7(7):287–292, 2003. 7

[47] Madeleine Grunde-McLaughlin, Ranjay Krishna, and Ma-
neesh Agrawala. Agqa: A benchmark for composi-
tional spatio-temporal reasoning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11287–11297, 2021. 4, 6, 7

[48] Stevan Harnad. The symbol grounding problem. Physica
D: Nonlinear Phenomena, 42(1):335–346, 1990. 2

[49] Demis Hassabis, Dharshan Kumaran, Christopher Summer-
field, and Matthew Botvinick. Neuroscience-inspired arti-
ficial intelligence. Neuron, 95(2):245–258, 2017. 2

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3, 4

[51] Saiful Islam, Aurpan Dash, Ashek Seum, Amir Hossain
Raj, Tonmoy Hossain, and Faisal Muhammad Shah. Ex-
ploring video captioning techniques: A comprehensive sur-
vey on deep learning methods. SN Computer Science,
2(2):1–28, 2021. 4

[52] L Itti. Models of bottom-up attention and saliency. In L
Itti, G Rees, and J K Tsotsos, editors, Neurobiology of At-
tention, pages 576–582. Elsevier, San Diego, Ca., 2005. 8

[53] L Itti and C Koch. Computational modelling of visual at-
tention. Nature reviews neuroscience, 2(3):194–203, Mar.
2001. 8

[54] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Dense-
cap: Fully convolutional localization networks for dense
captioning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4565–4574,
2016. 4

[55] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Vi-
ola, Tim Green, Trevor Back, Paul Natsev, et al. The
kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017. 3, 4
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