
Video-and-Language (VidL) models and their cognitive relevance
(Supplementary Material)

Anne Zonneveld1 Albert Gatt2 Iacer Calixto3

1Amsterdam Brain and Cognition Center, University of Amsterdam
2Department of Information and Computing Sciences, Utrecht University

3Department of Medical Informatics, Amsterdam UMC, University of Amsterdam

A. Pretraining tasks

Below a short list of common pretraining tasks.

Masked Language Modelling (MLM)[2] requires the
model to predict masked words based on their surrounding
words and their visually aligned video frames.

Masked Frame Modelling (MFM)[5] requires the model
to predict masked out video frame features (as extracted
with CNNs), given the text and remaining video frames.

Masked Visual-token Modelling (MVM) is similar to
MFM, except that it uses ‘tokenized’ video frames instead
of video frame features. Video frames are translated into
discrete visual tokens, which can be used to reconstruct
masked (regions of) video frames. The method is first used
by [1] over the temporal dimension and later by [3] in both
the temporal and spatial dimension.

Masked Object Classification (MOC) [9] is also similar to
MFM but requires the model to predict masked out regional
object features, instead of frame video features.

Masked Action Classification (MAC) [9] requires the
model to predict masked out action features based on the
remaining linguistic features and object features.

Video Subtitle Matching (VSM) [5] requires the model to
predict whether a subtitle matches the input video, as well
as to retrieve the relevant moment of localization, ensuring
global and local temporal alignment.

Masked Modal Modelling (MMM) [6, 8] requires the
model to predict all tokens from a completely masked out
modality, based on the tokens from a other modality.

Frame Order Modelling (FOM)[5] requires the model to
reconstruct the original timestamps of a set of randomly
shuffled video frames, explicitly ensuring temporal align-
ment.

Sentence Order Modelling (SOM) [4] requires the model
to reconstruct the original sentence order in a set of ran-
domly selected and shuffled sentences.

Cross-Modal Matching (CMM) was introduced as ‘the
linguistic-visual alignment classification objective’ [1],
while [9] later called it cross-modal matching. By adding
a linear layer followed by a sigmoid activation function on
top of the output of the first token ([CLS]), a cross-modality
score is achieved that indicates the relevance of the linguis-
tic information and visual features. Alternatively, a similar-
ity calculation module can be added to the network which
calculates and optimzes the representational similarity be-
tween visual and textual information [7].

Language Reconstruction (LR) [6] requires the model to
reconstruct words based on masked ground-truth text and
video. LR is different from MLM in that LR focuses on
next word prediction, i.e. the model only attends to previous
word and video tokens when predicting the next word.
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