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Abstract

The aim of intrinsic image decomposition (IID) is to re-
cover reflectance and the shading from a given image. As
different combinations are possible, IID is an under con-
strained problem. Previous approaches try to constrain the
search space using hand crafted priors. However, these
priors are based on strong imaging assumptions and fall
short when these do not hold. Deep learning based meth-
ods learn the problem end-to-end from the data. But these
networks lack any explicit information about the image for-
mation model.

In this paper, an IID transformer approach (IDTrans-
former) is proposed by learning photometric invariant at-
tention, derived from the image formation model, integrated
in the transformer framework. The combination of invari-
ant features in both a global and local setting allows the
network to not only learn reflectance transitions, but also to
group similar reflectance regions, irrespective of the spatial
arrangement. Illumination and geometry invariant atten-
tion is exploited to generate the reflectance map, while il-
lumination invariant and geometry variant attention is used
to compute the shading map.

Enabling physics-based explicit attention allows the net-
work to be trained on a relatively small dataset. Ab-
lation studies show that adding invariant attention im-
proves the performance. Experiments on the Intrinsic In
the Wild dataset shows competitive results with competing
methods. The project page with the code is available at
https://morpheus3000.github.io/IDTransformer.web/.

1. Introduction

The apparent colour of an object can be defined

as the combination of the object’s material colour (re-

flectance/albedo) and the geometry and scene illumination

Contact: p.das@uva.nl/partha.das.pdt@gmail.com

(shading). The inversion of this process, where the re-

flectance and the shading are recovered from a given im-

age, is defined as Intrinsic Image Decomposition (IID). The

use of the separated components are beneficial to down-

stream tasks like object recognition [21], semantic seg-

mentation [5], geometry estimation [22] or object recolour-

ing [34] and relighting [46]. However, as only the image is

given, the IID problem is under-constrained. Previous ap-

proaches try to solve the IID problem with explicit priors

like associating gradient change patterns to reflectance and

shading [26], piece-wise consistency, or reflectance parsi-

mony [3, 43]. Different modalities of explicit priors are

also explored to integrate implicit physical information in

the decomposition process, like depth [2] and textures [20].

These methods enforce assumptions about the real world

and hence may fall short when the assumptions are vio-

lated. On the other hand, various image formation based

invariants [19, 21] are explored for tasks like colour invari-

ant pose estimation [37] and object recognition [19].

Also CNN-based methods are proposed in combination

with large datasets. This approach mitigates the need for ex-

plicit priors and enables end-to-end learning directly from

the image data. However, CNN receptive fields are local

and they are unable to learn global relationships, which

are useful cues for the problem of IID (like reflectance

changes). Transformers [48] address the problem of local

receptive fields and are successfully applied to various vi-

sion tasks like object detection [11, 16], semantic segmen-

tation [31] and dense depth prediction [39]. With this new

attention paradigm, global relationships between input to-

kens (e.g. image patches) are learned. This is beneficial

for the problem of IID where global cues may provide im-

portant cues to the network allowing to enforce fundamen-

tal IID constraints like reflectance consistency and shading

smoothness.

Priors allow for the use of explicit physics-based image

formation models, while deep learning based methods en-

able the use of flexible models to learn from image datasets

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Overview of the proposed IDTransformer. The network takes an image as input. Then, the image is segmented into regions, or

segments, of homogeneous reflectance. These segments are then fed into the global and local attention layers. The attention layers exploit

physics based invariants, CCR & CR. The (homogeneous reflectance) pixels within the segments are compared. In addition, similarity

is computed among the segments. This results in a latent space where similarly coloured segments are closer. The encoded features are

then fed into component specific joint decoders. The predicted segments are collected by a learnable merger module that predicts the

final reflectance and shading. The segment predictor is trained using the MSE loss (LR and LS) between the predicted and ground truth

segments. The final prediction is trained using the MSE loss on the full reconstructed reflectance and shading, and the perceptual loss (PR)

and dissimilarity metric on the reflectance and the shading maps (DR and DS).

(i.e. recovering the image formation process by learning

from the data). Attempts are made to combine the frame-

works [14, 15]. The authors propose to combine invariance

with the flexibility of a deep learning model. However, the

approach uses invariants as a pre-processed input to the net-

work. This limits the expressibility of invariant priors, since

the cues provided by neighbourhoods are selected during

the preprocessing step. This also makes the network un-

able to exploit any useful global cues that these invariant

features should have. So far, transformers have ignored the

use of explicit physics-based image formation models as a

guidance in their architecture. Further, the dot-product em-

ployed by transformers are instance specific, i.e., the atten-

tion output depends on the incoming instance.

Therefore, in this paper, we propose an IID transformer

approach (IDTransformer) by learning photometric invari-

ant attention, derived from an image formation model, in-

tegrated in the transformer framework. Image patches are

given as input by segmenting the image into regions (i.e.

superpixels) containing homogeneous reflectance using a

non-learnable segmentation method [47, 1]. Hence, the

superpixel segments are composed of approximately homo-

geneous reflectance (albedo) regions but these regions may

vary in illumination conditions (shading). In this way, the

segments have approximately uniform albedo which is ben-

eficial as a starting point to process them by the IDTrans-

former to yield intrinsic image decomposition. In fact, the

segments are combined based on a physics-based invariant

attention model. Pixel comparisons within the segments

allow learning a local comparison and allow for refining

the reflectance boundaries that may not necessarily coin-

cide with the segment boundaries due to photometric ef-

fects. Then, comparing each of these segments with other

segments allows the IDTransformer network to learn simi-

lar segments. Fig 1 visualises the proposed architecture. In

summary, the contributions of this paper are as follows:

• Segmentation is used to divide the image into re-

gions (i.e. superpixels) containing homogeneous re-

flectances. Segments are used as tokens in the Trans-

former.

• An IID transformer approach (IDTransformer) is pro-

posed based on physics based invariant attention mech-

anism for global and local attention.

• Our approach enables a new avenue of research to in-

tegrate the image formation process (priors) into (flex-

ible) Transformer models.

2. Related works
The seminal work of [26] pioneered the use of intrinsic

specific priors, using image gradients as a guide to the IID

problem. For example, larger gradients are associated with

reflectance changes and smaller ones correspond to shading

changes. Other priors are also explored such as texture [50],

reflectance sparsity [20] and depth [27]. [3] combines sev-

eral constraints such as a piece-wise constant reflectance

and a smooth shading assumption to guide the IID prob-

lem. Additional modalities such as infrared images [12]

and surface normals [23] are explored to further constrain

the search space. More implicit constraints such as user an-

notated priors [7, 36, 9] and multi-frame inputs [49, 33] are

also proposed. However, these priors are based on strong

imaging assumptions and fall short if these do not hold.

817



Deep learning approaches are proposed [35, 44] where

the IID problem is modelled as an end-to-end process pa-

rameterised by deep neural networks. This is made pos-

sible by large datasets [7, 29, 10, 53, 40] which model

the IID problem as a data distribution. Edge maps [18],

depth [17, 25] and surface normals [32] are studied as ad-

ditional inputs to the network to constrain the search space

and guide the decomposition problem. [4] extends the im-

age formation model to include illumination effects such as

shadows and ambient lighting. However, these methods are

based on CNNs, focusing on local receptive fields. There-

fore, global cues are not taken into account unless explicitly

supported by the training data.

Transformers [48], on the other hand, focus on learning

global relations. They are successfully applied to various

computer vision tasks such as object detection [11], depth

prediction [39], and semantic segmentation [31]. Further-

more, the global attention property of a transformer is suit-

able for the IID problem. [52] applies transformers to the

IID problem. However, they rely on very large datasets [30]

for the transformer to learn the relationship, without any ex-

plicit physics-based guidance or formulation. The network

also eschews local relations in favour of only global ones.

On the other hand, several physics-based invariants are

proposed, such as Colour Ratios [19] (CR) and Cross

Colour Ratios [21] (CCR). These are illumination and ge-

ometry invariant neighbourhood descriptors that are useful

cues for reflectance recovery. Recent work [6, 14, 13, 15]

explores the use of such invariants for IID. However, they

use them as an input prior, which only takes local neigh-

bourhoods into account. This limits the expressibility of the

descriptors.

Superpixels are also explored for IID [24, 45]. [24]

uses superpixels on aerial hyperspectral imagery outdoors,

which has more globally consistent illumination, compared

to an indoor scene where there might be strong illumination

effects (shadows, etc.). [45] uses superpixels with spherical

harmonics (SH) to model reflectance and shading, respec-

tively, applying only to single objects. The meanshift based

superpixels is also unstable for overlapping colours or shad-

ows. It also enforces uniformity per super pixel, resulting in

reflectance leakage in shading for finely textured surfaces.

In contrast, this proposed work uses local and global atten-

tion to work around such a deficiency.

In contrast to existing work, in this paper, an integrated

approach is proposed combining (1) physics-based invari-

ance, (2) local learning of CNNs, and (3) global learning

of transformers. These components are unified in a new

framework using a novel attention mechanism. Specifically,

the transformer framework is used to propose a new illumi-

nation and/or geometry invariant attention mechanism in-

tegrating both local and global cues together with physics-

based cues. This allows the IID problem to be formulated

Invariances

Algorithm Illumination Geometry

Colour Ratio [19]

(CR)
� ×

Cross Colour Ratio [21]

(CCR)
� �

Table 1. Photometric invariant properties for CR and CCR. Due to

a flat geometry assumption, CR is geometry variant when objects

are curved. CCR is robust to this and hence fully invariant to both

illumination and geometry. CCR is useful as a reflectance descrip-

tor, while CR can provide geometric cues. Comparing CR with

CCR provides useful cues to recover the shading.

as an end-to-end paradigm.

3. Methodology

3.1. Invariant Descriptors

Consider the Lambertian image formation model [42]:

I = m(�n,�l)

∫
ω

e(λ) ρb(λ) f(λ) dλ , (1)

where, I is the image; �n represents the surface normal and�l
the illuminant direction, forming the parameters of m which

is a function of the object geometry and illuminant interac-

tion. λ is the incoming wavelength of the illuminant ω; e is

the spectral power distribution of the illuminant, ρb the ob-

ject reflectance (albedo), and f is the spectral camera sensi-

tivity function.

In discrete RGB pixel domain, we obtain:

Cp1
= m( �np1

, �lp1
) eCp1 (λ) ρCp1 (λ) , (2)

where p1 denotes the pixel and C is the RGB channel.

Based on the image formation modelled by (2), invari-

ant descriptions such as Colour Ratios (CR) are proposed

by [19]. However, the method assumes flat surfaces, which

makes CR illumination invariant, but geometry variant. In-

stead, [21] proposes the Cross Colour Ratio (CCR) which is

both illumination and geometry invariant. CCR provides re-

flectance descriptors that is useful for recovering the albedo.

Table 1 provides an overview of the invariants.

These invariants are computed over neighbouring pix-

els. Applying these invariants to local neighbours will re-

sult in edges (i.e. transitions). However, using longer range

(global) neighbours provides comparison across descrip-

tors. Previous methods, exploiting invariants for IID [6, 13,

14, 15] used these as pre-processed priors but only focusing

on local neighbourhoods. In contrast, in this paper, invari-

ants are modelled as a part of the learning process, whereby

the invariance is exploited both locally and globally as an

attention mechanism.
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3.2. Self attention

Consider segments (
∑1

i=N Si) obtained by a superpixel

segmentation algorithm [47, 1]. Each S consists of pix-

els with approximately homogeneous reflectances. Hence,

each segment contains homogeneous reflectance (albedo)

but may vary in illumination conditions (shading). How-

ever, due to various photometric effects, the segments may

not always correspond to uniform reflectances. Learning

a relationship between the pixels within the segments may

ensure that they have the same reflectance. At the same

time, by learning relationships between the segments them-

selves in a one-to-many comparison, global cues are also

exploited. This overcomes the locality limitation of previ-

ous approaches.

3.3. Invariant Attention

Standard transformers divide an image into arbitrary

patches with w, h as the width and height of the patch.

In this paper, patches correspond to segments i.e. super-

pixels with approximately uniform albedo (reflectance) but

with possibly varying shading (illumination). Hence, seg-

ments form the basis of the intrinsic decomposition pro-

cess. Specifically, segments are separated by using a tightly

fitting bounding box (Sw,h) and used as input to the trans-

former. Then, these segments are unrolled and converted

into queries (Q), keys (K) and values (V ). An attention

score is obtained as follows:

A(Q,K) = Softmax(
QKT

√
dk

), (3)

where dk is the embedding dimension and A is the align-

ment score. The final attention is obtained using a dot prod-

uct with the alignment score and V , defined by:

attn(A, V ) = A · V. (4)

where Q and K are the transformed image pixels. For IID,

the network must learn to distinguish between reflectance

and shading properties completely from the data itself. The

dot product with V (4) then aligns the values from (3) to the

most related single input. However, the dot product only

depends on the instance of the input values. To remedy this,

two methods are proposed: (1) The interaction between Q
and K is replaced by an invariance function. This allows the

network to use individual invariant features across n neigh-

bours to obtain an initial attention. In this way, the image

formation model is integrated in the attention. (2) The final

dot product is replaced by a learnable layer that takes into

account the invariant features of n neighbours, while also

being instance-independent.

Sw,h is unrolled into a vector �V ∈ R
n, where n = w×h,

denoting all the pixels within the segments. A n×n matrix

is created from the vector, where each element of the matrix

denotes an one-to-many relationship for a given pixel:

N = �V × �V T , (5)

where N ∈ R
n×n and the diagonal of the matrix repre-

sent pixels paired with themselves. This matrix models both

short-range and long-range relationships. Various invariants

(such as CCR and CR) are applied across all pixel pairs as

follows:

C = Iinv(Nij), (6)

where C ∈ R
n×n, i = 1, n & j = 1, n and Iinv is a two

neighbourhood invariance function. This results in a diag-

onal matrix with invariances on the upper right. The bot-

tom right are the same invariances with their signs reversed.

Each element in the row of the matrix provides the invari-

ance with all other pixels.

Given a pair of pixels, not all neighbourhoods may be

equally important. In fact, for cases such as the same re-

flectance region, some of the immediate scales of the local

neighbourhood can be merged together as they would have

the same descriptor. Conversely, a local neighbourhood

should have the same invariances for the same reflectance

region. This information is incorporated into the model in

the form of a dynamic weighting of the different neighbour-

hoods. This allows the network to give higher weights to

those invariances that contribute more to the recovery of

IID. This is modelled as follows:

W = F(x, y), (7)

where F is a function parameterised by a linear layer that

compares the neighbourhood of a pixel to output a weight

indicating how important it is compared to the other pixels.

Here, x and y are the two candidate pixels in a neighbour-

hood whose weight is to be calculated. And W ∈ R
n×n.

The invariances and weights are combined to obtain the

final attention for the pixels as follows:

As = W� C, (8)

where As ∈ R
n×n is the attention for the n-th pixel of

segments Sw,h, depending on n−1 neighbours for each row.

The final attention for each pixel is obtained by summing

along each row:

�A =

n∑
j=1

C�F(x, y) (9)

where �A ∈ R
n and j is the column index. One such atten-

tion is obtained for each segment, the final local attention

yields �Al ∈ R
b×s×n×c, where b is the image batch, s the

number of segments, c the feature channels and n the un-

rolled pixels.
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Attention within a segment results in a local attention

map. To enable global attention between segments, each

of the segments is tokenised. This results in a vector of

Bg ∈ R
b×s×1×1×c, where each segment is reduced to a sin-

gle token. This allows one-to-many attention within the seg-

ments on a global scale. Sg then similarly runs through (9)

to obtain the global attention �Ag ∈ R
b×s×1×c. The final

global and local attention is obtained by summing up �Ag

and �Al.

3.4. Segment-based Learning

The attention-enhanced segments contain information

about the similarity not only between the pixels they con-

tain, but also between the other segments. This allows the

network to bring the segments that are perceptually simi-

lar closer together, while also doing the same within the

segments in the feature space. This segment-based learn-

ing allows the network to tessellate a given image into non-

overlapping regions. For example, in an indoor scene, two

opposite walls might belong to the same reflectance val-

ues. But they might not always be next to each other in

an image. There could be furniture or objects of different

colours between them. In traditional learning, where the

whole image is captured, the features of non-wall objects

may “leak” into the features associated with the wall colour.

Similarly, simply dividing the image into blocks could re-

sult in a significant overlap of non-wall objects. Dividing

the image into superpixel segments avoids this. Similarly

colored segments are therefore placed closer together in the

feature space than dissimilar ones. To enforce this decou-

pling, it is proposed to learn only at the patch level, rather

than recombining the patches before passing them to the de-

coder.

More concretely, the input image is first segmented using

a superpixel segmentation method (in the experiments we

use SLIC [1]) to obtain segments with approximately uni-

form reflectances. These segments are non-overlapping and

are more likely to be separate object boundaries, compared

to other pixel-wise grouping or a standard division into rect-

angular patches. Since the input and output to the network

are segments, the output segments can be merged to obtain

the full image. However, the predicted intrinsic component

images, due to non-overlapping segments, will not have a

smooth transition between regions. This is remedied using

a merger network, which takes the segmented images and

computes a complete image.

3.5. Network architecture

The network consists of a transformer encoder and a

component-specific convolutional decoder. The input to

the network are the segments (superpixels) of the input im-

age. These segments are concatenated, resulting in a vol-

ume S ∈ R
b×s×w×h×c, where b is the batch size of the in-

put image, s is the number of segments, w, h and c are the

width, height and channels of the segments respectively. An

image encoder based on the standard transformer attention

also provides global and local colour cues for the invariant

paths. The components are described below.

Invariant Attention Layer: The proposed attention (9)

is implemented following the architecture of a transformer.

However, it uses the invariant functions for neighbourhood

relations. The similarity function is changed to a learned

function parameterised by a neural network. This allows

the network to dynamically weight the different ranges of

invariants. Computing the neighbourhood for every pixel in

an image is intractable. Therefore, the input image is first

divided into patches of size n × n and the neighbours are

computed across the patches. The patches are first tokenised

and passed through a layer norm, followed by the attention

described by (9).

Encoder: The input image is passed through different

paths to obtain component-specific features. The illumina-

tion and geometry invariance of the CCRs are exploited for

reflectance. Similarly, the illumination invariance but ge-

ometry variance of the CRs is exploited for shading. Sep-

arate pathways are provided for both types of attention,

allowing the network to learn specialised feature spaces.

For each encoder, the invariant attention layer is repeated

3 times sequentially. Separate pathways are created for lo-

cal and global attention. The local and global attentions

are then summed to obtain the final attention. The image

encoder pathway uses a standard transformer layer with the

same 3 block configuration as the invariant encoder to main-

tain spatial parity. The image encoder provides a colour and

illumination function to support the invariant features to re-

cover the intrinsic components. Three separate encoders are

used in the network: (1) CCR encoder (FCCR), (2) CR en-

coder (FCR), and (3) image encoder (Fimg). All three en-

coders take the input image and build an independent fea-

ture space based on attention type.

Decoder: The bottlenecks FCCR and FCR provide in-

variant specific features, while Fimg provides colour and

illumination features independently. However, FCCR is

closely related to reflectance change features, while FCR

encodes some geometric information. Thus, Fimg and

FCCR are concatenated for the reflectance decoder path-

way, while Fimg and FCR are concatenated for the shad-

ing decoder pathway. Furthermore, according to the Lam-

bertian image formation model, reflectance and shading are

mutually exclusive, so there are useful contrast cues that

could be used by the component to better enforce the image

formation model. As a result, an interconnected decoder
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module is added on top of the bottlenecks. Each of the de-

coder blocks consists of a convolution, followed by a batch

norm and a Relu nonlinearity layer. The interconnection be-

tween the decoder paths, one each for reflectance and shad-

ing, allows the network to learn the intrinsic components

jointly. In total, 5 decoder blocks are stacked for each of the

decoder paths, resulting in reflectance and shading. The in-

puts to the decoders are the segments S ∈ R
b×s×w×h×c.

The decoders output the appropriate segments for each

component. This allows the network to output segments

with similar component properties, while also fine-tuning

the predictions within the segments, even if the segments

do not correspond to the true reflectance boundary.

3.6. Losses

The network is trained in a supervised manner. The

predicted reflectance and shading are compared with the

ground truth IID components using an MSE loss. The gt

reflectance and shading are decomposed into segments us-

ing the same masks that are used to process the input image.

A reconstruction loss is also included to regularise the pre-

dicted components. This provides the dense segment-wise

monitoring for the IID components, which is collected as

the IID loss (Liid). The network is trained using the Adam

optimiser with a learning rate of 1e− 5 and beta of 0.5 and

0.999. The network is trained for 300 epochs until conver-

gence.

For the learnable merger module, the same component

wise losses are trained, namely, the MSE loss for the re-

constructed reflectance and shading. Additionally, to en-

courage perceptually consistent and sharper textures, a per-

ceptual and dssim loss are included as PR, DR and DS ,

respectively. The final loss term to minimise for the merger

module thus becomes:

L = Liid + λp ∗ PR + λd ∗ (DR +DS) (10)

where λp and λd are weighting terms for the perceptual and

dissimilarity losses. They are empirically set to 0.05 and

0.4, respectively. The network is trained for 400 epochs,

with a learning rate of 2e− 4 and the Adam optimiser.

4. Experiments & results
4.1. Datasets

The proposed network needs dense supervision. Hence,

a dataset with dense reflectance and shading ground truth is

required. While large scale datasets [29, 30, 40] do exist,

they are often not realistic. The dataset proposed by [15],

although smaller, consists of realistic and physically based

ray traced scenes. The dataset provides 5791 samples with

the corresponding dense reflectance and shading ground

truth. The train and test sets consist of 4632 and 1159
samples respectively. For a real-world case, our method is

Reflectance Shading

MSE LMSE DSSIM MSE LMSE DSSIM

Img only 0.0271 0.0216 0.1657 0.0268 0.0228 0.1781

Img + CCR 0.0044 0.0063 0.0463 0.0027 0.0044 0.0484

Img + CCR + CR 0.0034 0.0054 0.0444 0.0017 0.0033 0.0437
Table 2. Ablation study on the different types of invariant atten-

tion. Default transformer attention performs the worse. Adding

the component specific invariant attentions and pathways improves

the performance. This validates the proposed invariant attention’s

usefulness.

also finetuned on the IIW [7] dataset. This dataset consists

of sparse human judgement for the reflectance and is only

used as a finetuning experiment to show the potential of the

proposed attention mechanism in real-world, unconstrained

settings.

4.1.1 Ablation Study

In this experiment, the influence of the proposed attention

is studied. The CCR and CR invariant attention are first

disabled, resulting in a baseline transformer network that

only has a single encoder with the reflectance and shading

as the output. Following this, the CCR invariant encoder is

enabled to see the influence of only the reflectance descrip-

tors. Finally, the CR invariant encoder is also added, ar-

riving at the proposed IDTransformer architecture. All the

experiments are performed on the same dataset and evalu-

ated with the same test split. The results are presented in

table 2. A visual comparison with the proposed architecture

and image only configuration is shown in fig 2.

From the results, it is shown that without the invariant

attention, the performance is decreased. Adding the invari-

ant attention allows the network to improve performance on

both the intrinsic components. Further, adding the CR in-

variant further improves the performance over only using

the CCR invariance. This is because while the CCR pro-

vides useful reflectance cues, the shading is dependent on

the reflectance being correct. However, adding the CR in-

variance on top of the CCR invariance strengthens the shad-

ing decomposition. This, through the joint decoder, pro-

vides useful cues to the reflectance and vice versa.

4.1.2 Intrinsics In the Wild

In this experiment, the performance of the network on a

real-world dataset is given. The network is first pretrained

on the synthetic dataset and then finetuned on the IIW

dataset for 6 epochs. The IIW dataset comes with sparse

annotations. Hence, the original losses used to train the net-

work cannot be used. Instead the ordinal loss is used to

finetune on the dataset. Table 3 shows the results. Fig 3

and 4 shows visual comparisons.

The results show that using a segment-based approach

already improves over using square patches. While the net-
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Figure 2. Visual comparison of the proposed method (IDTransformer) against the network consisting of an image-only-transformer. It is

shown that the addition of the invariants helps the network to improve the decomposition. For example, in the middle example, adding

the invariant results in a flatter reflectance, compared to the image-only-configuration where shwoing illumination pattern leakages in the

reflectance.

Methods WHDR (mean)

Nestmeyer et al. [38] 19.5

Bi et al. [8] 17.7

Sengupta et al. [41] 16.7

Li et al. [28] 15.9

CGIntrinsics [29] 14.8

GLoSH [51] 14.6

Fan et al. [18] 14.5

SIGNet [15] 13.9

IRISFormer [52] 13.1

Baseline 19.1

Intrinsics Transformer 18.7

Table 3. Baseline comparison for the IIW dataset.

work doesn’t achieve SotA performance, the current per-

formance is obtained by using a comparably simpler net-

work without any specialised layers, apart from a modified

transformer attention. No purpose built losses are needed

either, as compared to other baselines. Moreover, visually,

the network is able to distinguish photometric effects better

than the other baselines. For example, in the textures in the

teacup are better preserved by the proposed network, while

artefacts on the corners of the walls in the bedroom is free

from discolouration as compared to the baselines.

5. Conclusion

In this paper, a physics-based invariant attention mech-

anism has been proposed for the task of intrinsic image

decomposition. The illumination and geometry invariant

property of CCR and illumination invariant and geometry

variant property of CR is exploited by the attention to guide

the network towards improved intrinsic component recov-

ery. The invariants are also exploited in a global and local

stages using a transformer framework to recover the intrin-

sic components. Finally, a new learnable similarity function

has been used to solve the instance specific learning of the

dot product used in standard transformer formulations.

An ablation study was performed to show that the ad-

dition of the invariants improves the performance of the

network. Visually, the network has shown to be able to

better disentangle photometric effects, compared to other

baselines, while being trained on a smaller dataset. Our ap-

proach shows the possibility to integrate the image forma-

tion process (priors) into (flexible) Transformer models.
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Figure 3. Visual comparison on the IIW dataset. The proposed method is able to predict more consistent reflectance and shading that are

closer to the original image colour. Existing methods exhibit strong color biases.

Figure 4. The proposed method is shown to be able to handle illumination transfers properly and preserve the underlying reflectance.

Existing methods show textural deficiencies.
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[34] A. Meka, M. Zollhöfer, C. Richardt, and C. Theobalt. Live

intrinsic video. ACM TOG, 2016. 1

[35] T. Narihira, M. Maire, and S. X. Yu. Direct intrinsics: Learn-

ing albedo-shading decomposition by convolutional regres-

sion. In ICCV, 2015. 3

[36] T. Narihira, M. Maire, and S. X. Yu. Learning lightness from

human judgement on relative reflectance. In CVPR, pages

2965–2973, June 2015. 2

[37] S. K. Nayar and R. M. Bolle. Reflectance based object recog-

nition. IJCV, pages 219–240, 1996. 1

[38] Thomas Nestmeyer and Peter V. Gehler. Reflectance adap-

tive filtering improves intrinsic image estimation. CoRR,

abs/1612.05062, 2016. 7
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