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Abstract

Human Activity Recognition (HAR) has gained signifi-
cant attention in recent years due to its wide-ranging appli-
cations. This paper introduces a novel hybrid visual trans-
former methodology designed to enhance the robust anal-
ysis and comprehension of activities. CVTN (Convolution
Visual Transformer Network) leverages sensor data repre-
sented jointly in spatial and temporal dimensions to en-
hance the resilience of the HAR process. The proposed tech-
nique employs a hybrid model that integrates Convolutional
Neural Networks (CNNs) and Visual Transformers (VTs).
Initially, the CNN component learns spatial visual features
from diverse sensor data. Subsequently, these acquired vi-
sual features are inputted into the transformer segment of
the model. VT captures temporal insights by observing sen-
sor statuses across different time points. The efficacy of the
CVTN methodology is assessed using the Kinetics dataset,
which emulates real-world human activity recognition sce-
narios. The experimental results reveal clear superiority
compared to the recent baseline HAR solutions, reaffirming
its potential for advancing activity analysis.

1. Introduction
The recognition of human activities has emerged as a

crucial research area driven by the increasing ubiquity of

wearable sensors, smartphones, and IoT devices [33, 32].

HAR involves detecting and classifying various activities,

such as walking, running, sitting, and complex actions,

based on sensor data collected from accelerometers, gyro-

scopes, and other sources [36, 38, 47]. The ability to auto-

matically identify these activities has applications in health

monitoring [12], personalized fitness tracking [3], context-

aware computing [25], and more. This paper delves into the

challenges and opportunities of HAR, emphasizing the inte-

gration of data from multiple sensors to enhance recognition

accuracy. Sensor fusion is the process of combining data

from multiple sensors in order to obtain a more accurate and

complete picture of a system or environment [5, 21]. This

technique is commonly used in HAR to gather data from

different types of sensors and devices in order to provide

a more comprehensive view of a person’s health and well-

being [35, 26]. As an illustration, sensor fusion might in-

volve mixture information from a wearable heart rate mon-

itor, a blood pressure monitor, and a pedometer. This com-

bination offers a more comprehensive overview of an indi-

vidual’s cardiovascular well-being. Through the integration

of data derived from these diverse sensors, it becomes feasi-

ble to identify patterns and deviations that might perturb the

recognition process when relying solely on a solitary sensor.

Most HAR-based solutions from sensor fusion are recently

developed, including:

1. Computer vision-based solutions: Computer vi-

sion based solutions can be used for HAR to analyze data

from visual sensors, such as cameras or motion sensors

[28, 22, 16]. This phenomenon can yield significant in-

sights into an individual’s kinematic patterns, bodily align-

ment, and actions, thereby facilitating an evaluation of their

physiological condition and overall welfare. To illustrate,

computational visual processes can be harnessed to scruti-

nize visual information procured through cameras, enabling

the identification of deviations in an individual’s manner

of walking or bodily orientation, which could potentially

signify impediments in locomotion or equilibrium. Such

applications hold considerable promise in the surveillance

of aged or differently-abled persons who are susceptible

to instances of stumbling or other bodily harm. More-

over, solutions grounded in computational vision method-

ologies can be employed to oversee an individual’s rou-

tine activities encompassing fundamental tasks like culinary

pursuits, domestic tidying, and self-maintenance undertak-

ings. By leveraging sophisticated deep learning algorithms

for the examination of visual data, it becomes feasible to

unearth underlying patterns within an individual’s behav-

ioral repertoire that might serve as indicators of alterations

in their medical state or general well-being. Solutions based

on convolution neural networks [34], generative adversarial

networks [30], and autoencoders [31] are few examples of

these solutions.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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2. Sequence-based solutions: Sequence-based repre-

sentation for HAR involves analyzing time series data, such

as sensor data or physiological data, to extract meaningful

information about a person’s movements, activities, and be-

haviors over time. This can be used to assess their health

and well-being, and to detect changes that might indicate a

health problem or other issue. For instance, extracting rel-

evant features from the time series data, such as the mean,

standard deviation, or frequency components of the signal.

These features can then be used as inputs to a machine

learning model to detect patterns or changes in the data.

The most popular deep learning algorithms for sequential

data are RNNs. Traditional RNNs can only detect short-

term dependencies because of gradient vanishing or explo-

sion problems. Because they fixed this issue, variations

like LSTM’s (Long Short-Term Memory) [17] and GRU’s

(Gated Recurrent Units) [8] were considered the most pop-

ular. Although LSTM and GRU perform equally well on

a variety of tasks, GRU’s structure becomes less complex

and can be trained more quickly. The main drawback of

LSTM, and GRU is the computationally expensive which

are considered more complex than traditional RNNs and re-

quire more memory resources to train. Another important

factor is the limited context of LSTMs and GRUs where

they have a fixed memory size and are only able to capture a

limited amount of context from the input sequence. To over-

come the contextual issue, transformer [15] has been devel-

oped. Its main strength lies in its ability to efficiently cap-

ture long-range dependencies using the self-attention mech-

anism. Transformer is also able to process multiple po-

sitions in a sequence simultaneously during both training

and inference, which allows to learn and process massive

amount of data in real time. Solutions suggested by Li‘s,

and Xiao‘s teams [24, 41] are few examples of these solu-

tions.

Motivations All the above solutions are effectively used

in real-world applications of HAR and achieved promising

results in identifying human activities in real time. How-

ever, these solutions suffer from accuracy performance for

several reasons:

1. Variability: Human behavior is highly variable and

can differ from person to person and even from instance to

instance for the same person. For example, walking can

vary based on the individual’s stride length, walking speed,

and walking style.

2. Sensor precision: Sensor data can be noisy and

contain artifacts that make activity recognition challenging.

Different sensors can also vary in their accuracy and preci-

sion, which can affect the quality of the data and the accu-

racy of the recognition.

3. Ambiguity: Certain activities can be ambiguous and

difficult to distinguish from one to another. For example,

walking and jogging can have similar sensor data patterns,

making it challenging to differentiate between them.

Figure 1 presents an illustrative example of the difficulty

of HAR problem. The images are retrieved from the EPIC

Kitchen dataset [11, 9, 10]. This figure reveals the neces-

sity of handling both spatial and temporal information of

the detected frame. Indeed, if we consider one image in

the ”cleaning” activity, and another image in the ”preparing

coffee” activity, it will be hard to distinguish between both

activities. However, if we consider the entire sequence of

both activities, it will be more evident to separate the two

activities.

We assume that the integration of both spatial and tem-
poral information features holds the potential to induce
a profound enhancement in the HAR performance. By
incorporating the inherent spatial features, which per-
tain to the physical arrangement and distribution of
sensors or data sources, along with the temporal dy-
namics that capture the sequential evolution of activi-
ties.

Our hypothesis is grounded in the belief that a more

comprehensive representation of human actions can be

achieved. Motivated by the success of CNN in learning

the spatial visual features, and VT in learning the tempo-

ral features, we propose a hybrid CNN and transformer

based model to learn spatiotemporal interconnections be-

tween sensor readings for addressing the HAR challenges.

Contributions This research work introduces a novel ap-

proach for addressing the challenges in HAR systems. The

primary contributions of this research are outlined as fol-

lows:

1. We introduce an innovative idea aimed at addressing

the challenges of the HAR system. This idea is referred to as

CVTN (Convolution Visual Transformer Network), which

leverages insights from both spatial and temporal data cap-

tured by sensors to enhance the process of HAR.

2. We design a hybrid model that combines CNNs, and

VTs. Initially, the CNN component focuses on acquiring

spatial features from various sensor data sources. These

acquired features are subsequently integrated into the vi-

sual transformer component. Within the transformer, the

model captures temporal information by analyzing the sen-

sor states at different timestamps.

3. We conduct an evaluation and analysis of the per-

formance of CVTN within a real-world human activity

recognition scenario. A comparative assessment is carried

out against established baseline HAR-solutions. The find-

ings highlight the superior capabilities of the CVTN model,

showcasing an recognition rate performance of 95%.
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Cleaning

Preparing Coffee

Figure 1: Illustration of the difficulty of HAR problem: The first sequence of images are related to the cleaning activity, and

the second sequence of images are related to the preparing coffee activity.

2. Background
Human Activity Recognition (HAR) is a field of research

and application within the broader domain of artificial intel-

ligence and machine learning. Its primary objective is to de-

velop algorithms and models that can automatically detect

and classify human activities based on data collected from

various sensors and sources. In the context of home-based

monitoring, HAR involves using sensors and devices to col-

lect data about the movements and behaviors of individuals

within their own homes. This data can include information

from sources like: accelerometers and gyroscopes, cameras,

environmental sensors, and smart home devices. For in-

stance, HAR in the home-based monitoring setting aims to

classify and identify the specific activities that an individual

is engaging in within its home. These activities can vary

widely and might include: cooking, Watching TV, exercis-

ing, sleeping, working, socializing, personal hygiene, and

moving between rooms. HAR in a home-based monitor-

ing setting has various benefits, including assisting elderly

or disabled individuals to live independently, providing in-

sights for healthcare professionals, and even enabling more

efficient energy usage in smart homes. This study focuses

on solving HAR problem in home-based monitoring setting.

Definition 1 Given a dataset D consisting of n instances,
each represented as a sequence of l consecutive time steps,
where Xi = {xi,1, xi,2, ..., xi,l}, where i ∈ [1, n] and l is
the sequence length. Each xi,t represents the feature vector
of the sensor readings at time step t for instance i. We define
the HAR by the process of learning a mapping function f
that can accurately classify the activity label yi for each
sequence Xi. Mathematically, the problem can be defined
as finding the function f that maps the sensor readings to

activity labels:

f : Xi → yi, ∀i
where, yi belongs to a predefined set of activity classes,

denoted as Y .

Definition 2 To train the model f , we define a loss func-
tion to quantify the difference between the predicted activity
probabilities and the true activity labels.

L(yi, ŷi) = −
∑
y∈Y

yi · log(ŷi), (1)

where, yi is the one-hot encoded true activity label,
and ŷi is the predicted probability distribution over activ-
ity classes obtained from the model f .

The task involves training the model f using a labeled

training dataset Dtrain = {(Xi, yi)}, where each instance

Xi is associated with its true activity label yi. The goal is

to minimize the average cross-entropy loss over the training

instances:

min
f

1

Ntrain

∑
(Xi,yi)∈Dtrain

L(yi, f(Xi)). (2)

3. Related Work
CTVN is a hybrid model which consider the benefits of the

best models for solving HM task. Existing works can be

roughly grouped into two families, convolution neural net-

works, and visual transformers. In the following, we will

give insights of using CTVN compared to studies belong to

both families.
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3.1. Convolutional Neural Networks

Several works have been trying to design effective CNN ar-

chitectures for solving HAR [45, 4, 20, 18, 6, 43]. Yang

et al. [45] introduced a method for systematically learn-

ing features to address the HAR problem. This approach

utilized CNN to automatically extract features from raw in-

puts in a structured manner. The deep architecture enables

the acquired features to serve as elevated abstract represen-

tations of the initial low-level time series signals. By incor-

porating labeled information through supervised learning,

these acquired features gain enhanced discriminative capa-

bility. Bevilla et al. [4] suggested the utilization of CNN

by employing raw data gathered from a collection of iner-

tial sensors. They investigated various permutations of both

activities and sensors, illustrating the process of adapting

motion signals for input into CNN through the utilization

of diverse network architectures. Instead of manually an-

alyzing predetermined features in time-series sensor data,

Jiang et al. [20] organized sequences of accelerometer and

gyroscope signals into a novel representation called an ”ac-

tivity image”. This innovative approach allows CNN to au-

tonomously derive the most suitable features directly from

the activity image, enhancing their capability for accurately

recognizing different activities. Huang et al. [18] intro-

duced a channel equalization for HAR to reignite inactive

channels. Through strategic whitening or decorrelation op-

erations, this approach reengages each channel, rebalancing

their contributions to enhance feature representation. It also

fosters a harmonious environment, amplifying the signif-

icance of every channel and uncovering nuanced patterns

within data.

3.2. Visual Transformers

VT-based solutions for HAR has been heavily investigated

in the recent literature [2, 37, 44, 7, 42]. Ahn et al. [2]

proposed a deep learning transformer capable of repre-

senting two pass functionalities as a distinguishable vec-

tor. First, frames are output as global grid tokens and

skeletons are output as joint location tokens from the in-

put video and skeleton sequences, respectively. These to-

kens are then combined to form multi-class tokens, which

are then fed into the designed transformer. The encoder in-

cludes a full spatiotemporal attention module as well as a

suggested zigzag spatiotemporal attention module. Truong

et al. [37] presented a DirecFormer, an innovative end-to-

end Transformer-based framework for robust action recog-

nition. It introduced ordered temporal learning, a Directed

Attention mechanism, and conditional dependency for ac-

curate sequence modeling. Yang et al. [44] designed the Re-

current Vision Transformer (RViT) for video action recog-

nition. It combined the power of VTs with recurrent pro-

cessing to capture both spatial and temporal features. RViT

utilized a self-attention mechanism from VT and introduced

an attention gate. This gate connects the current frame to the

previous hidden state, allowing the model to gather global

features across frames. This creates a temporal context for

capturing patterns and relationships between frames. Xing

et al. [42] introduced SVFormer, which employs the steady

pseudo-labeling framework (EMATeacher) for handling un-

labeled video samples. They also presented Tube Token-

Mix, a novel augmentation strategy for video data. This

involves blending video clips using a temporally consistent

mask of tokens. A temporal warping augmentation is in-

vestigated to accommodate complex temporal variations in

videos by stretching selected frames to varying temporal du-

rations within the clip.

3.3. Discussion

Existing studies lack comprehensive incorporation of

both spatial and temporal features within the realm of HAR.

In response to this gap, we introduce an innovative hybrid

model that amalgamates the strengths of CNN and VT. This

strategic approach harnesses the spatial feature extraction

capabilities of CNNs and the adeptness of VT in recogniz-

ing temporal patterns. By leveraging the successful fusion

of these techniques, which has proven effective in handling

spatiotemporal data, our proposed methodology takes a step

forward in refining HAR. Its primary objective is to con-

currently capture the complex relationships of spatial and

temporal features, thereby contributing significantly to the

evolution of recognition methodologies.

4. CVTN: Convolution Visual Transformer
Network

4.1. Principle

CVTN (Convolutional Vision Transformer Network) com-

mences by utilizing raw sensor data, which is subsequently

transformed into a series of frames. Each individual frame

encapsulates a collection of images captured at distinct

timestamps. A combined approach involving CNN and VT

models is employed for training. The initial phase employs

CNN to extract and comprehend visual attributes from each

specific image within a frame. Subsequently, a VT-based

analysis is carried out, concentrating on the acquisition of

temporal characteristics and patterns from a sequence of

these image frames. This dual-process approach contributes

to the comprehensive understanding of both spatial and tem-

poral information inherent in the sensor data. Figure 2 illus-

trates the overall design of CVTN.

4.2. Data Collection and Preprocessing

HAR encompasses the acquisition of data from individuals

within their personal environments. The nature of the gath-

ered data is contingent upon the distinct objectives of the
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Figure 2: CVTN: Initially, the data from sensors undergoes a transformation into a collection of images. A training process ensures
employing a blend of CNN and VT models. This involves an initial application of CNN to grasp spatial attributes from each individual
images. Subsequently, a VT process takes over, focusing on comprehending temporal attributes gleaned from a sequence of these images.

recognition endeavor. We shall combine diverse method-

ologies for data collection, including: 1) Wearable sensors:

We intend to utilize fitness trackers or smartwatches for the

purpose of gathering information pertaining to physical ac-

tivity. These sensors have the capability to be worn consis-

tently, thereby offering an uninterrupted flow of data. 2) Re-

mote monitoring devices: We employ blood pressure mon-

itors, glucose monitors, and pulse oximeters to offer up-to-

the-minute information concerning vital signs and various

health markers. 3) Smart home devices: We leverage smart

home devices, such as intelligent scales, to amass informa-

tion about weight, body composition, and additional indi-

cators of user behavior. These devices can seamlessly in-

tegrate with other recognition systems, facilitating a more

holistic understanding of an individual’s actions. Upon

completion of this stage, we will possess a heterogeneous

dataset comprising time series and images acquired at dis-

tinct timestamps (t1, t2, . . . , tn). At each of these times-

tamps, we will possess the corresponding representative

data d̂(t), which has been captured by various sensors. In

this transformation, each time series is converted into a ma-

trix where the values are derived from the pairwise angles

between the data points. These matrices can be interpreted

as images, enabling CVTN to analyze temporal patterns.

The last step of this stage is to normalize the raw data using

Min-Max normalization [19]. It is a widely used technique

in data preprocessing to transform numerical data into a spe-

cific range, typically [0, 1]. This normalization ensures that

all features have the same scale, which can be crucial for

the CTVN that rely on distance or magnitude comparisons

between features. Given a dataset D = [x1, x2, . . . , xn],
where xi represents a data point, the Min-Max normaliza-

tion process involves the following operations:

1. We identify the minimum and maximum values in D:

Let xmin = min(D) and xmax = max(D).

2. We normalize each data point using the Min-Max for-

mula:

xnormalized =
x− xmin

xmax − xmin

(3)

where x is an original data point, and xnormalized is its

normalized counterpart.

3. We repeat the normalization process for all data points

in the dataset.

The Min-Max normalization scales each data point lin-

early between 0 and 1. The minimum value in the dataset

(xmin) is transformed to 0, and the maximum value (xmax)

is transformed to 1. The values in between are scaled pro-

portionally based on their distance from the minimum and

maximum.
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4.3. Spatial Visual Learning

This step aims to capture the visual features of each data

in d(t) using CNN. The process of computing visual fea-

tures with a CNN can be broken down in the following: Let

di be the normalized input data, which can be represented

as a three-dimensional tensor of size (H,W,C), where H
is the height, W is the width, and C is the number of chan-

nels. For instance, if the captured data is an image then it

will directly injected to the tensor. However, if it is a time

series then a conversion is required before injecting it to the

tensor. We used the Gramian Angular Fields (GAF) [39, 27]

to encode the time series as images. GAF encapsulates the

correlation structures and uses the output to generate 2D

images. It is particularly useful for representing temporal

patterns in a visual format that can be processed by image-

based algorithms. A time series signal is presented in GAF

as a polar coordinated system, and the angles of every data

point are transformed into matrices. Let K be a set of learn-

able kernels of size (Kh,Kw, C,O), where Kh and Kw are

the kernel height and width, and O is the number of output

channels. Each kernel Kj in K is convolved with the input

data di to produce a feature map Fl, where l ranges from 1
to O. This operation is defined as:

Fl = K
⊙

di
⊕

bl (4)

where
⊙

denotes the convolution operation,
⊕

is a ma-

trix addition, bl is a learnable bias term for the lth filter, and

the output feature map fl is of size (H’, W’, 1), where H’

and W’ are the height and width of the output feature map.

The output feature map Fl is then passed through a non-

linear activation function g, which introduces non-linearity

into the model. We use the commonly known activation

function, named ReLU, and which is defined as:

g(x) = max(0, x) (5)

where x is the input to the activation function. After each

convolutional layer, a pooling layer is often used to down-

sample the output feature map. We used the most com-

monly pooling operation which is max-pooling. It aims to

extract the maximum value within a pooling window of size

(F ′
h) from the input feature map. This operation is defined

as:

F ′
i = max

F ′
h

j=1Fi+(j−1)s (6)

where F ′
i is the output of the pooling operation at ith

position, s is the stride (i.e., the distance between adjacent

pooling windows), and Fi+(j−1)s is the input feature map

value at position i+(j−1)s. At the end of this step, we have

the set of data features F ′, each element F ′
i ∈ F ′ represents

the visual features of the image Ii.

4.4. Temporal Learning

To detect temporal dependencies in the series of spatial

embeddings produced by the CNN network, we design a

transformer-based network. Transformer is a type of neu-

ral network architecture that are able to effectively capture

long-range dependencies in sequential data. The key inno-

vation of the Transformer is the self-attention mechanism,

which allows the model to attend to different parts of the

input sequence when making predictions. A transformer

used for machine translation receives a one-dimensional in-

put and is followed by a succession of transformer layers

described as lightweight feed-forward networks that project

each element in the input independently. The existing trans-

formers’ self-attention mechanism computes the similarity

score between all representations, linearly aggregates the

feature representation, and changes the input representation

accordingly. Even while this combination produces excel-

lent results in machine translation, it results in a decrease

in computing time and is regarded as a needless procedure

in some computer vision applications, since nearby spa-

tial representations frequently correspond to the same visual

concept. Indeed, our methodology entails using the visual

CNN features learned in the previous stage directly in the

visual transformer. Overall, the function that the suggested

transformer targets to optimize is defined as:

V T (x) = softmax

(
CNN(x)AT

√
c

)
(7)

CNN(x) (F ′) is the visual features of the input x obtained

using the CNN model. c is a normalization constant, AT is

the attention layer that acts across the entire input. In the

following, we present our adaptation of transformer for an-

alyzing the sequence of features F ′ derived in the previous

step:

1. Patch Embeddings: Each input features F ′
i ∈ F ′ is

first divided into a set of non-overlapping patches, each

of which is then flattened into a vector representation

using a linear projection. These patch embeddings P
are then fed into the Transformer encoder as input se-

quences.

2. Encoder: The Transformer encoder consists of a stack

of several identical layers, each of which contains

multi-head attention and feedforward neural networks.

The multi-head attention mechanism allows the model

to attend to different parts of the input patches P and

capture long-range dependencies. In our transformer,

we will not use the decoder since the output in HAR
will be a fixed-length vector.

3. Positional Encoding: Since the transformer does not

use recurrent connections, our model needs to incor-

porate positional information about the input patches
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to capture the spatial structure of the features. This is

done by adding positional encodings to the patch em-

beddings before they are fed into the transformer en-

coder. The positional encodings are learned and repre-

sent the spatial location of each patch in the image.

4. Output Head: At the end of the encoder, an output

head will be added to the architecture to map the fi-

nal hidden states to the final output of the model. We

will use a fully connected layer integrated with soft-

max function.

5. Performance Evaluation

Intensive experiments have been carried out to evaluate the

performance of CVTN solution.

5.1. Dataset and Metrics

We use the Kinetics human action video dataset, a piv-

otal asset in the realm of HAR research. Comprising a

vast collection of more than 650,000 succinct video clips,

each lasting about 10 seconds, this dataset encapsulates a

comprehensive spectrum of 400 distinct action categories.

These categories encompass a wide array of human engage-

ments such as sports, culinary endeavors, and musical per-

formances, sourced meticulously from YouTube and metic-

ulously filtered to ensure exclusivity to human actions. We

will use the latest version, Kinetics-700, launched in 2019,

wherein the action taxonomy has been expanded to include

700 classes. Renowned as a benchmark standard, the Ki-

netics dataset plays a pivotal role in the evaluation of the

efficacy of human activity recognition algorithms. To eval-

uate the performance of CVTN, several factors have been

take into account, including:

1. Accuracy: This is a measure of how well the solu-

tion correctly identifies the human activity being performed.

This measure is determined by model accuracy. It is often

the most important metric for evaluating the performance

of a HAR model. Higher accuracy means that the model is

able to correctly identify the activity being performed more

often, and lower accuracy indicates that the model is mak-

ing more incorrect predictions.

2. Recognition rate: This refers to the ability of the so-

lution to perform well on new, unseen data. It refers to the

proportion of instances in a dataset that are correctly classi-

fied by a human activity recognition model. It is often used

as a measure of the model’s performance and is typically ex-

pressed as a percentage. For example, if a model correctly

identifies 100 activities out of a total of 150 instances in the

test set, the recognition rate would be 67%. The higher the

recognition rate, the better the performance of the model.

Models 20% 50% 80% 100%

DST-LSTM 44 58 68 71

Hybridnet 57 63 74 75

CVTN 62 75 89 95

Table 1: Recognition rate performance of CTVN compared

to baseline methods (DST-LSTM, and Hybridnet).

Category VT CNN VT + CNN

Standing in the room 94 91 95
Sitting on the floor 92 89 93
Sitting with stretched legs 89 88 90
Sitting cross-legged 88 87 89
Lying in bed, leg raised 87 85 93

average 85 88 92

Table 2: Impact of each network model on CVTN in the top

five frequent activities.

5.2. Baselines

We used these two recent baseline solutions for compar-

isons:

1. DST-LSTM [40]: It aims to categorize five common

activity states (standing, sitting, walking on the floor, de-

scending stairs, and ascending stairs) using collected data.

The data’s diverse information will be harnessed to develop

an LSTM model. This LSTM model’s strength in captur-

ing sequential patterns will ensure accurate classification of

activity states based on the provided data, enhancing the re-

liability of activity recognition.

2. Hybridnet [46]: It intelligently leveraged contextual

information using CNN, and graph neural architecture en-

hancing its ability to make informed predictions and deci-

sions based on the broader context. The robust combination

of intricate structural modeling and contextual awareness

in Hybridnet resulted in an accurate outcome, showcasing

the model’s advanced capabilities in handling complex data

scenarios.

5.3. Accuracy Performance

Numerous experiments have been conducted to evaluate the

precision performance of CTVN. We systematically ma-

nipulated the number of iterations (epochs) within VT and

CNN across a range of 100 to 1,000, and additionally ad-

justed the loss rate within the range of 0.01 to 0.09. The out-

comes of these experiments are visually depicted in Figure

3. Our observations reveal that the accuracy of the model

exhibits improvement with an escalation in the number of

epochs for both the CNN and VT. For instance, when em-

ploying 100 epochs for VT, 100 epochs for the CNN, and a

loss rate of 0.01, the model’s accuracy remains below 35%.
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Figure 3: Accuracy performance of CVTN for different CNN epochs (from 100, 500 to 1,000), different transformer epochs

(from 100 to 1,000), and for different loss rate {0.01, 0.05, 0.08, 0.09}.

In contrast, when VT is subjected to 1,000 epochs, the CNN

also undergoes 1,000 epochs, combined with a loss rate of

0.01, the model’s accuracy surpasses 84%. Additionally,

our findings suggest that elevating the loss rate leads to a

reduction in model accuracy. Specifically, the model’s ac-

curacy is high when the loss rate is set at 0.01 and 0.05,

whereas it diminishes notably for loss rates of 0.08 and 0.09.

Guided by these results, we have established the subsequent

parameters for the remaining experiments: the VT’s epoch

count is set to 1,000, the CNN’s epoch count is set to 1,000,

and the loss rate is maintained at 0.01.

5.4. Recognition Rate Performance

Numerous tests have been conducted to assess the efficacy

of recognition rate performance involving CVTN alongside

the baseline solutions. Parameter such as the proportion of

selected input features (ranging from 10% to 100%) was

subjected to variation. The outcomes of these experiments

are depicted in Table 1. The findings distinctly highlight

the advantageous standing of CVTN when contrasted with

the baseline techniques (DST-LSTM and Hybridnet), irre-

spective of the specific experimental conditions employed.

These observations affirm the viability of the proposed

methodologies in the realm of discerning human activities

from unobserved instances. The achievement of these out-

comes can be attributed to the effective fusion of both VT

and CNN architectures, enabling the acquisition of spa-

tiotemporal visual information from divergent data sensors

exhibiting substantial interdependence. CVTN emerges as a

viable option for data fusion strategies, wherein a sequence

of images is synthesized and trained using information from

multiple data sources.

5.5. Ablation Study

In this last experiment, we conduct an ablation study that in-

volves systematically removing the combined models to an-

alyze their impact on the overall CVTN outcome. From this

standpoint, we perform the analysis of three distinct model

configurations within the context of the CVTN (VT, CNN,

and a hybrid CNN with VT). The results of our ablation

study, shown in Table 2 serve to illustrate the performance

of each configuration. Notably, the hybrid CNN with VT

reaches the highest point of accomplishment across all de-

fined configurations. It showcases a clear improvement in

recognition accuracy, showcasing a 2% increase when com-

pared to using only VT, and an even more remarkable rise

of 4% when contrasted with using just a CNN.

6. Conclusion

This paper introduces CVTN (Convolution Visual Trans-

former Network) for HAR that empowers examination, and

recognizing human activities. It is a new technique for ro-

bustifying the HAR process by learning from sensor data

that is collectively represented in space and time. CNN be-

gins by learning visual spatial features from sensor data.

The visual features that have been learned are then injected

into VT, which encapsulates temporal data by observing the

sensor status at different timestamps. Kinetics was used to

test CVTN. The results show that the CVTN is clearly su-

perior to the most recent baseline HAR solutions. In order

to enhance spatiotemporal visual learning, future research

efforts should be directed towards the incorporation of var-

ious optimization techniques, such as hyperparameter opti-

mization [14, 13, 29]. Expanding the applicability of the

developed CVTN, and its adaptation on diverse scenarios,

notably in the domain of home elderly care [23], where its

potential to facilitate health monitoring holds promise. Fur-

thermore, considering the incorporation of CVTN into the

context of home-gait monitoring [1] presents a fascinating

path for CVTN‘s investigation to improved safety and over-

all well-being.
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