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Abstract

The input tokens to Vision Transformers carry little se-
mantic meaning as they are defined as regular equal-sized
patches of the input image, regardless of its content. How-
ever, processing uniform background areas of an image
should not necessitate as much compute as dense, cluttered
areas. To address this issue, we propose a dynamic mixed-
scale tokenization scheme for ViT, MSViT. Our method in-
troduces a conditional gating mechanism that selects the
optimal token scale for every image region, such that the
number of tokens is dynamically determined per input. In
addition, to enhance the conditional behavior of the gate
during training, we introduce a novel generalization of the
batch-shaping loss. We show that our gating module is
able to learn meaningful semantics despite operating lo-
cally at the coarse patch-level. The proposed gating mod-
ule is lightweight, agnostic to the choice of transformer
backbone, and trained within a few epochs with little train-
ing overhead. Furthermore, in contrast to token pruning,
MSViT does not lose information about the input, thus can
be readily applied for dense tasks. We validate MSViT on
the tasks of classification and segmentation where it leads
to improved accuracy-complexity trade-off.

1. Introduction
The Transformer architecture [51] has seen widespread

success across Natural Language Processing (NLP) tasks

and more recently in Computer Vision (CV) [11, 27, 49].

However, the quadratic time and memory complexity of
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Figure 1. We introduce a learnable module to dynamically se-

lect the optimal token scale for each region. This module can

be plugged in as a preprocessing step to any Vision Transformer.

Here we illustrate some mixed-scale masks on ImageNet samples

with varying levels of clutter, output by the scale selection module,

trained alongside a pretrained ViT-S/16 for 20 epochs to choose

between a coarse (32px, ) and a fine (16px, ) token scale.

transformers poses a challenge when deploying such mod-

els on compute constrained devices. In particular, the num-

ber of input tokens and the tokenization method are defining

aspects of the computational complexity of transformers. In

NLP, it is generally straightforward to use semantic units,

such as words or sentences, as input tokens: This leads to

little redundancy in the information carried by individual

tokens. Conversely, in CV, tokenization is usually achieved

by slicing an image into equal-sized, square patches without

considering their content. This introduces redundant infor-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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mation across tokens, leading to computational waste: For

instance, trivial background regions (e.g. sky and grass) are

often expressed by a large number of tokens, dominating

the bulk of compute in the model. Nonetheless, it remains

unclear how to design a more efficient tokenization that re-

duces input redundancy compared to such uniform patch-

ing. In fact, most successful token reduction methods in the

literature, such as token pruning [56, 34, 57, 29, 20, 30] or

token merging [35, 42], only act on intermediate layers of

the transformer, while earlier layers still inefficiently oper-

ate with a large number of redundant tokens.

In this work, we propose a novel, orthogonal approach:

We predict the tokenization scale for each image region as a

pre-processing step before the transformer. Intuitively, un-

informative image regions such as background can be pro-

cessed at a coarser scale than the foreground, without loss

of information, leading to a smaller total number of tokens.

To capture this behavior, we introduce a lightweight condi-

tional gating MLP trained to select the optimal tokenization

scale for every coarse local image region, as illustrated in

Figure 1, leading to a dynamic number of tokens per image.

Because it operates at the input level, the gate is agnostic to

the choice of transformer backbone. Furthermore, mixed-

scale tokenization is lossless, as every input region is cov-

ered by a token, making it well suited for dense prediction

tasks in contrast to other methods such as pruning. Never-

theless, learning such a scale selection module raises several

issues: (i) Current multi-scale ViT architectures are often

trained with extra parameters for each scale or have cumber-

some training pipelines with multiple stages [6, 62, 7]. In-

stead, we design a unified, single-stage model by maximiz-

ing parameter sharing across scales. (ii) The gating module

may learn a bad local minimum such as always outputting

the same trivial static pattern. To combat this, we intro-

duce a novel training loss that enables finer control over the

learned gating distribution, enhancing the dynamic behav-

ior of the mixed-scale tokenization. Finally, (iii) the cost

of training grows with the total number of fine and coarse

tokens. To reduce training costs, we employ an adaptive

trimming strategy at training time which relies on the un-

derlying mapping between coarse and fine tokens. The main

contributions of this work are as follows:

1. We design a dynamic scale selection gating mecha-

nism that acts as a preprocessing stage, agnostic to

the choice of transformer backbone, and trained jointly

with the transformer in a single stage with mixed-scale

tokens as inputs. We show in experiments that this dy-

namic tokenization process leads to improved compu-

tational costs by reducing the number of input tokens.

2. We propose a generalization of batch-shaping [13]

to better handle multi-dimensional distributions when

training dynamic gates: The resulting loss provides

better control over the learned scale distribution, and

allows for easier and better initialization of the gates.

3. We reduce the training overhead incurred from han-

dling a set of tokens for each scale by (i) defining the

gate locally at the coarse token level only and (ii) em-

ploying an adaptive trimming strategy during training.

2. Proposed method

In this work, we enhance the standard Vision Trans-

former (ViT) formalism with mixed-scale tokens that are

dynamically selected for each input image. In this section,

we briefly introduce ViT, then describe how we handle to-

kens extracted at different scales, with a focus on keeping

the architecture parameter-efficient (Section 2.1) and reduc-

ing training overhead (Section 2.3). Finally, we present the

generalized batch-shaping loss for training the mixed-scale

selection module (Section 2.2).

2.1. Parameter-efficient mixed-scale ViT

Given an input image of size W × W , a ViT first splits

the image into square patches of equal size, S, resulting in

a total of NS = �W/S�2 tokens. These tokens are flat-

tened, and individually embedded to the target dimension

d. A position encoding is then added to each token, which

is a vector capturing the initial 2D spatial location of the to-

ken. Finally, the tokens are fed to a transformer, T , which is

a sequence of Multiheaded Self-Attention (MHSA) blocks,

that compute global attention across the set of tokens, fol-

lowed by FFNs, which process each token independently

[51]. Our work is agnostic to the choice of the transformer

backbone T , thus, in the rest of the section, we only describe

changes made to the patching, token embedding, and posi-

tion encoding mechanisms to handle mixed-scale tokens.

Dynamic mixed-scale ViT. An overview of the proposed

mixed-scale vision transformer model (MSViT) is pre-

sented in Figure 2. In the scope of this paper, we consider

the case of two scales (Sf < Sc). We refer to Sf (resp.

Sc) as the fine (resp. coarse) scale. First, we extract square

patches at both scales, for a total of N = NSf
+NSc

tokens.

We then introduce a discrete gating mechanism, g, which

selects active tokens across both scales, for a given input im-

age: These tokens are further sent to the transformer, while

inactive ones are discarded at this stage.

In practice, we define the learned gate as a local oper-

ation, at the level of coarse tokens: The gate parses each

coarse image region individually and outputs a binary de-

cision on whether the region should be tokenized at either

the coarse or fine scale. We consider the case where the

fine-scale Sf evenly divides the coarse scale Sc. This way,

for all i, the i-th fine token can be mapped to the unique

coarse token C(i) = j it belongs to. Using this mapping,

we recover the complete binary mixed-scale mask at the fine
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Figure 2. Overview of the proposed dynamic mixed-scale tokenization scheme for ViT, MSViT. (a) The input image is first patched into

coarse image regions of size Sc × Sc. (b) Each coarse region is processed by a small 4-layer MLP, the gate g, outputting a binary decision

on whether the region should be processed at a coarse or fine scale. (c) The resulting mask, m, defines the set of mixed-scale tokens for the

input image. The corresponding mixed-scale position encodings are obtained by linearly interpolating the fine scale position encodings to

the coarse scale, when needed. Finally, the tokens are sent to a standard transformer backbone T which outputs the task-relevant prediction.

token level, m, using the coarse-level gate outputs:

∀j ∈ [1, NSc ], mj = GumbelSigmoid(g(xj)) ∈ [0, 1] (1)

mj = STE(mj) ∈ {0, 1} (2)

∀i ∈ [NSc + 1, NSc +NSf
], mi = 1−mC(i) (3)

Here, we distinguish between the soft outputs of the gate,

m ∈ [0, 1], used to constrain the gate during training, and

the discretized outputs m ∈ {0, 1} used during the forward

pass. In order, to estimate gradients for the discrete gate

operation, we use the Gumbel-Sigmoid relaxation of binary

variables during training [28] with the straight-through gra-

dient estimator (STE) [17, 1].

While this design choices for the gate may limit repre-

sentational power, as g only sees local regions of the image

as inputs, we find that it works well in practice and yields a

very lightweight gating strategy. Moreover, as in the origi-

nal ViT tokenization, token overlap is prevented by design,

as every image region can only be captured by a unique

scale.

Sharing parameters across scales. Previous mixed-scale

ViTs usually introduce extra parameters to handle each

scale [6, 55] or train a shared backbone stage by stage for

each scale separately [7, 62]. Instead, our intention is (i)
to fully share the token embedding, position encodings, and

the transformer backbone across scales, and (ii) to directly

train the model in one stage with batches of mixed-scale

tokens, rather than treating each scale individually. This

allows us to avoid extra parameter costs and makes our

method architecture agnostic. In addition, due to the dy-

namic nature of the gating mechanism, defining separate

branches per scale instead of sharing may lead to common

issues of training conditional models such as imbalanced

routing and data starvation [14, 43, 39].

To implement sharing across scales, we draw inspiration

from ViT [11, 2]: At inference, the authors scale a trained

model to a different input image size by linearly interpolat-

ing its position encodings to match the size of the new grid.

We extend this idea to our setting by defining the learned

embedding φf and position encoding parameters ρf relative

to the fine scale only (Figure 2 (c)). We then deterministi-

cally infer their equivalent for the coarse scale as:

φf : x ∈ R
Sf×Sf×3 �→ R

d, ρf ∈ R
NSf

×d
(4)

φc = φf ◦ resize(Sc → Sf ), ρc = interpolate(ρf ) (5)

In Appendix G.3, we show that this simple linear interpo-

lation scheme works very well in practice, but may suffer

when rescaling to a very low token resolution: For instance,

directly training with the coarse patch size 32 on inputs of

size 224px yields higher accuracy than the model with fine

patch size 16, rescaled for 112px inputs to reach the same

number of 49 tokens. Nevertheless, this is not an issue for

the image and patch sizes we consider in our experiments.

2.2. Learning the mixed-scale gating

We jointly train the transformer and the gate by balanc-

ing the model performance with computational efficiency,

forcing the model to only select a few tokens at fine scale:

L(x1...N ,m1...N , y) = Ltask(x, y;m) + λLgate(m) (6)
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Figure 3. Our proposed generalized batch-shaping (GBaS) allows for fine control over the learned distribution via a hyperprior (b): GBaS

allows for learning different distributions for each token position in contrast to BaS (c, top); In addition, GBaS explicitly controls this

flexibility through the variance hyperparameter σ, hence avoiding corner cases of BaS-flat (c, bottom) or L0 (a)

where Ltask is the task loss (e.g., cross-entropy) applied

on the masked transformer outputs, Lgate is a sparsity con-

straint on the gate output m (before STE), which directly

controls the model’s computational cost, and λ is a hyper-

parameter balancing both losses. In the next paragraphs, we

will motivate and define a novel gate loss to use for Lgate.

Common gate sparsity losses. The L0 loss is often used

as sparsity loss in the conditional computing literature[52].

Given the 2-dimensional active token mask for the current

batch, m ∈ [0, 1]B×N , we define:

LL0
gate(m) =

1

B

B∑
b=1

min

⎛
⎝0,

1

NSc

NSc∑
i=1

mb,i − g∗

⎞
⎠ (7)

where the hyperparameter g∗ ∈ [0, 1] is the target rate for

gate sparsity. However, L0 only penalizes the mean of the

distribution, and can not prevent the model from learning

static patterns, such as assigning the same probability to all

tokens independent of input, as illustrated in Figure 3 (a).

To enhance the desired conditional behavior, the recently

proposed batch-shaping loss [13] (BaS) constrains the dis-

tribution of the gate outputs, across the batch, to match a

certain prior p. In our setting, this means enforcing the same
prior across each spatial position. This lacks the necessary

flexibility for our use-case, as the gate could not learn for

instance that edges of the image are less likely to contain

fine-scale details. As a more flexible alternative, we apply

BaS directly on the flattened distribution of the gate outputs:

LBaS
gate (m) = [CDF({mb,i, ∀b, i})− CDF(p(g∗))]2 (8)

where CDF is the cumulative distribution function, and p is

a prior with mean g∗. Unfortunately, this variant is now too

flexible, e.g. it cannot prevent spatial positions from being

constantly on or off regardless of the input patch. Corner

cases for both variants of BaS are illustrated in Figure 3 (c).

Generalized batch-shaping loss. To address these short-

comings, we introduce the generalized batch-shaping loss
(GBaS) for finer control over the learned mask distribu-

tion, across both the batch and token dimensions. Like

BaS, GBaS constrains the marginal distribution at each to-

ken spatial position, m:,i ∀i ∈ [1, NSc
], but with a dedicated

independent prior instead of a shared one. Manually setting

the prior for each position would be tedious; Instead, we let

the model learn each of these independent prior’s parame-

ters, while controlling their distribution using a hyperprior
P with mean equal to the target sparsity g∗ (Figure 3 (b)):

LGBaS
gate (m) =

NS∑
i=1

[CDF({mb,i, ∀b})− CDF(p(θi))]
2

+ [CDF({θi, ∀i})− CDF(P(g∗;σ))]2 (9)

where θ are learned parameters defining each prior, and σ
is a variance hyperparameter controlling the spread of the

learned priors. When σ = 0, all priors are identical; hence

we recover the original BaS; When σ → +∞, there is little

constraint on the learned θ and we may encounter the same

corner cases as for BaS applied to the flattened distribution.

In summary, GBaS enables fine-grained control over the

learned distribution through the hyperprior. Another ben-

efit of GBaS is that we can easily inject prior knowledge

about which spatial positions are more likely to be kept at

fine/coarse scale by initializing the θ parameters accord-

ingly. In contrast, achieving a similar initialization with

BaS would require pretraining the gate to match the de-

sired prior. For instance, in most of our experiments with
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GBaS, we initialize the learned prior parameters θ with the

inverse normalized distances of each spatial position to the

center. We further compare BaS and GBaS in ablation ex-

periments in Section 4.3 and Appendix G. We use the Re-

laxed Bernoulli [28] distribution for the prior p, as we found

it easier to parametrize than the Beta distribution used in

BaS. We use a Gaussian for the hyperprior P with mean g∗

and variance given by the hyperparameter σ.

2.3. Reducing the training overhead

When executing the model with batches of data, inactive

tokens (mi = 0) cannot be pruned statically, as the masking

pattern output by the gate g varies across the batch. Instead,

we explicitly mask the inactive tokens in the attention lay-

ers and the output of the transformer backbone; the FFN

layers are applied individually to every token and hence

are not affected. Given the set of tokens across all scales,

x ∈ R
N×d and the current binary mask output by the gate,

m ∈ {0, 1}N , we must apply masking in every attention

block, such that the inactive tokens are ignored when up-

dating the representations of active ones:

∀i, j ∈ [1, N ], Amask(xi, xj) =
mj e

QiK
T
j

∑N
p=1 mp e

QiKT
p

(10)

where Amask(xi, xj) is the normalized attention score from

token i to j and Q and K denote the query and key em-

beddings of the tokens. Unfortunately, with this naive

masking approach the increased total number of tokens,

N = NSf
+NSc , leads to higher training costs.

To address this issue, we employ an adaptive trimming
(AT) strategy at training time: For each image in the batch,

we first reorder the tokens in descending order of the cor-

responding gate outputs m, omitting the class token or any

task-specific token. This reordering step takes advantage of

the fact that the transformer is not affected by the order of

the tokens. We then trim the token dimension to only keep

k tokens for each image, where k is the maximum number

of active tokens in any image in the current batch. As a

result, the number of tokens (and hence the computational

cost) is lower bounded by NSf
, i.e., the number of fine scale

tokens. This strategy does impact the gradients received by

the gate, effectively making the gating module less robust

to tokens flipping from the coarse to the fine scale during

training (see Appendix F). Nevertheless, as we show in Ap-

pendix F.3, this only leads to a small drop in accuracy in

practice but a clear reduction in training time (∼1.16-1.35

times per-epoch speedup, depending on the target sparsity).

For this reason, we always use AT in our training pipeline.

3. Related work
Self-Attention for computer vision. Starting from Vi-

sion Transformer (ViT) [11, 9, 4, 32], Multiheaded Self-

Attention (MHSA) has been successfully applied in many

vision tasks such as image classification [11, 49], object de-

tection [5, 61] or semantic segmentation [12, 59, 27]. While

ViTs are often able to match CNN-based models’ perfor-

mance with fewer computational resources [11], the number

of input tokens remains an important bottleneck to achieve

efficient transformers. Several works [48] have focused on

reducing the cost of the attention operation, which scales

quadratically with the number of tokens, by using low-rank

approximations [8, 54, 31] or exploiting redundant or sparse

structures [19, 53, 16, 21, 26, 53]. However, unlike for

NLP, the cost incurred by the Feed-Forward Neural Net-

works (FFNs) in ViTs is often significant due in part to the

generally smaller number of tokens. Hence, instead of fo-

cusing only on attention layers, a number of techniques have

been proposed to reduce the total number of tokens.

Token pruning and merging. Token pruning [56, 34, 57,

29, 20, 30, 23] and merging [35, 42, 3] are some of the

most successful token reduction approaches in the litera-

ture. These methods usually prune away a fixed number of

tokens in intermediate layers of the transformer based on

their class attention score [23, 57] or on the previous layer’s

features [34], or merge tokens into a fixed smaller number

of tokens using a cross-attention layer or projection [35, 42].

Orthogonal to these methods, our mixed-scale selection

scheme outputs a dynamic number of tokens, tailored to the

input image content. It is also designed as a preprocessing

module acting on the token set before the first Transformer

layer, and hence can be combined with methods such as to-

ken pruning or early-exiting which act on the intermediate

transformer layers. Finally, in contrast to pruning, mixed-

scale tokens are lossless, as every input image region is cov-

ered by a token. This is crucial for dense tasks such as seg-

mentation where the final spatial predictions are usually di-

rectly reconstructed from the tokens.

Mixed-scale ViTs. Mixing features from different scales

has shown positive results for convolutional networks [24,

25]. Following this insight, recent works have started to

investigate ways to incorporate mixed-scale information in

ViTs as well: For instance, Quadtree Attention [47] uses

hierarchical structures to improve the efficiency of MHSA,

while ReViT [62] learns a global input patch scale for each

image with an EfficientNet backbone trained with precom-

puted proxy labels. The majority of these works treat each

scale separately, either by incorporating extra parameters

(entire branch [6, 55] or layernorm parameters [62]) or by

training for each scale in separate stages [7, 62]. In contrast,

we design a simple single-stage model which directly han-

dles having mixed-scale tokens in one batch, for both train-
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ing and inference, and learns the optimal scale selection

pattern alongside the model features. Closest to our work

is [40], which leverages saliency maps from a pretrained

model to design a quadtree structure on token scales.

4. Experiments
4.1. ImageNet classification

We first benchmark the proposed mixed-scale tokeniza-

tion on ImageNet [41]: We use publicly available SotA ViT

backbones pretrained on ImageNet-21k [44, 11, 37], and

DeiT backbones pretrained on ImageNet [49, 36]. We im-

plement the gate as a lightweight 4-layer MLP with a scalar

output in [0, 1], applied to every coarse token individually.

After the first layer, a learned position encoding, specific to

the gate, is also added to the token representations. Finally,

the bias of the last layer is initialized such that the gate out-

puts 1: i.e., all patches are extracted at the fine scale at the

beginning of training. We set all other hyperparameters to

that of the original ViT (resp. DeiT) pipeline and finetune

all models for 20 epochs with a batch size of 512 on a single

device (see additional training details in Appendix C).

In Table 1, we evaluate the proposed mixed-scale MSViT

across different backbone architectures (ViT-S and ViT-

Tiny), pretraining strategies (ViT and DeiT), and input im-

age sizes. We report top-1 accuracy results as well as MACs

counts calculated via deepseed [38].

From the quantitative results, we observe that the mixed-

scale models consistently reach higher accuracy at equiv-

alent MACs across different compute budgets and input

sizes. We also display qualitative examples of the mixed-

scale selection patterns learned by the gate in Figure 1 and

Appendix A: Despite having a limited field of view, the

learned gate picks up on meaningful local features such as

background/foreground distinction to select tokens’ scales.

Furthermore, we observe that the learned mixed-scale pat-

tern is very similar across experimental settings: Two gates

with the same number of active tokens, trained for MSViT-

S/16 and MSViT-L/16 respectively, select the same scale for

78.4% of the tokens on the ImageNet validation set. Simi-

larly, the gates of a MSViT-S/16 model trained with 224px

and 192px inputs respectively, agree for 87.1% of the to-

kens. Motivated by this observation, we investigate in the

next section whether the learned mixed-scale gate can be

directly transferred as an off-the-shelf lightweight prepro-

cessing module to other vision transformer-based models.

4.2. Transferring mixed-scale tokenization across
tasks and backbones

4.2.1 Mixed-scale tokens for segmentation

In contrast to other token reduction methods, MSViT does

not discard information about any input image regions. It

can thus be readily applied to dense prediction tasks such as

DeiT-Small Avg # GMACs accuracy

backbone tokens (avg) top-1 top-5

DeiT-S/16 in=160 100 2.27 75.86 92.84

MSDeiT-S/16,32 in=224 97 2.27 76.99 93.38
DeiT-S/16 in=192 144 3.32 77.79 93.96

MSDeiT-S/16,32 in=224 142 3.32 78.76 94.32
DeiT-S/16 in=224 196 4.60 79.85 94.57

MSDeiT-S/16,32 in=224 173 4.08 79.38 94.38

ViT-Tiny Avg # GMACs accuracy

backbone tokens (avg) top-1 top-5

ViT-Ti/16 in=160 100 0.60 71.63 90.68

MSViT-Ti/16,32 in=224 95 0.60 72.57 91.32
ViT-Ti/16 in=192 144 0.89 74.24 92.22

MSViT-Ti/16,32 in=224 138 0.88 74.93 92.54
ViT-Ti/16 in=224 196 1.25 76.00 93.26

MSViT-Ti/16,32 in=224 154 0.98 75.51 92.98

ViT-Small Avg # GMACs accuracy

backbone tokens (avg) top-1 top-5

ViT-S/16 in=128 64 1.44 75.48 93.08

MSViT-S/16,32 in=224 75 1.76 77.16 94.14
ViT-S/16 in=160 100 2.27 78.88 94.95

MSViT-S/16,32 in=224 98 2.30 79.51 95.33
ViT-S/16 in=192 144 3.32 80.75 95.86

MSViT-S/16,32 in=224 138 3.23 81.47 96.14
ViT-S/16 in=224 196 4.60 82.02 96.45

MSViT-S/16,32 in=224 187 4.43 82.02 96.44

Table 1. Comparison of our dynamic mixed-scale model with the

corresponding backbone baseline evaluated at different input im-

age sizes. For ease of reading, the results are sorted by MACs,

and grouped by backbones. Inside each table, we group results

by comparable MAC counts or accuracy. We refer to models as

“arch/S in=X”, where arch is the backbone architecture, X is

the input image size, and S is the patch scale(s). The prefix MS
(Multi-Scale) refers to our mixed-scale models: We sweep over

values of the gate target g∗ ∈ {0.5, 0.25, 0.1} and loss weight

λ ∈ {1, 4, 20} to obtain dynamic models with various MACs

counts and report their GMACs and number of tokens averaged

over the evaluation set (For reference, the additional computational

cost induced by the gate for ViT-S is 0.017 GMACs). Additional

results for all hyperparameters and different input image sizes, and

including latency measurements, can be found in Appendix B.

token pruning. Following this insight, we augment the stan-

dard Segmenter training pipeline [18, 45] on ADE20k [60]

with one of our gates, pretrained on ImageNet and frozen.

The change is easy to implement: we replace the standard

patch embedding of the ViT encoder with our own mixed-

scale tokenization (Section 2.1) and keep it frozen during

training. We then propagate the mixed-scale mask into fur-

ther layers using masked attention (Equation (15)), and fi-

nally reshape the stream of mixed-scale tokens to the orig-

inal 2D image shape before feeding it to the decoder (see

Appendix E for details).

We report the results (mIOU, average MAC count, and

average latency) in Figure 4 (a, b). Similar to the classifica-
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Backbone g∗ # tokens MACs time mIoU

avg x 1e10 ms single-scale

Seg-T/16 (512px) - 1024 1.04 113.68 38.1

MSSeg-T/16

0.5 655 0.56 86.12 37.9

0.25 565 0.46 75.96 37.3

0.1 525 0.42 69.13 36.8

Seg-S/16 (512px) - 1024 3.17 252.09 45.3

MSSeg-S/16

0.5 684 1.92 184.81 44.9

0.25 586 1.59 153.12 44.1

0.1 552 1.48 144.02 43.3

(a) Single-scale segmentation results of our mixed-scale model

with ViT-S and ViT-Ti backbones finetuned on ADE20K [60]. We

measure the computational cost of the encoder, as the decoder cost

is the same for both MSViT and ViT backbones; We also report the

average runtime per image measured on a Geforce 2080 Ti GPU

Mixed-scale mask MSSeg-S/16 (g∗ = 0.25) Seg-S/16

(b) Example of a mixed-scale mask and segmentation output, as

well as the baseline backbone’s output (best seen zoomed). We

report additional qualitative results in Appendix D.

Bottom 10
traffic light (0.03%)

bottle (0.09%)

flag (0.03%)

pole (0.06%)

streetlight (0.07%)

trade name (0.05%)

clock (0.03%)

book (0.19%)

bookcase (0.23%)

minibike (0.04%)

23%

24%

24%

26%

28%

28%

28%

29%

32%

32%

Top 10
field (0.74%)

ceiling (3.49%)

bathtub (0.26%)

sand (0.25%)

sea (0.95%)

lake (0.08%)

runway (0.12%)

road (3.50%)

grass (1.80%)

sky (9.12%)

74%

75%

77%

77%

78%

78%

80%

80%

81%

84%

% of pixels in coarse patches

(c) ADE20K classes with the highest and lowest percentage of

pixels falling in coarse patches. We also write the pixel frequency

of each class in the whole dataset next to its label.

Figure 4. We train Segmenter [18, 45] on the ADE20k [60] dataset,

after adding a (frozen) mixed-scale gate trained on ImageNet. We

report quantitative results in Table (a), a qualitative example in (b),
and a break-down of classes most often in coarse regions in (c)

tion task, we observe improved accuracy-efficiency trade-

offs across different backbone sizes and gate sparsities: For

instance with a ViT-S backbone, we can save roughly 40%

MACs for a minor drop of 0.4 in mIoU. In addition, the

scale selection pattern learned on ImageNet is still very

meaningful for the images in ADE20k: In Figure 4 (c), we

show that classes represented via coarse tokens often corre-

spond to uniform regions such as sky or sea, which typically

occupy large regions of the image.

(a) EViT [22] + mixed-scale (b) DyViT [33] + mixed-scale

Figure 5. Mixed-scale tokenization combine well with token prun-

ing methods, leading to improved efficient/accuracy trade-offs as

compared to using token pruning on its own.

4.2.2 Pruning mixed-scale tokens

Token pruning methods iteratively discard a fixed ratio of

the tokens in several intermediate layers of the transformer,

based on their global class token attention [56, 34, 57, 29,

35, 20, 30]. In contrast, MSViT treats every local region

individually and reduces the number of tokens before ap-

plying any transformer layer, using pixel-level information

only, and without discarding any image region. As a result,

both methods are orthogonal and select active tokens on dif-

ferent criteria. To verify how they interact, we augment two

SotA pruning methods on DeiT-S, namely EViT [23, 22]

and DyViT [34, 33], with one of our pretrained frozen gates

instead of the standard ViT tokenization, and then train each

model with their respective original pipeline, for different

pruning ratios. We report results in Figure 5. We observe

that mixed-scale tokenization followed by token pruning

in the intermediate layers complement one another well,

which also introduces an interesting trade-off: Rather than

using very high pruning ratios, better accuracy/efficiency

performance can be reached by combining mixed-scale to-

kenization with a token pruning ratio.

4.2.3 Mixed-scale tokens for hierarchical ViTs

Hierarchical (or Multi-scale) Vision Transformers [27, 26,

15, 10, 58] is a popular family of models that draw inspira-

tion from the inductive bias of CNNs to build efficient ViT

architectures: For instance in Swin, the image is initially

split in very small tokens (4x4) which interact through lo-

cal attention windows (7x7 tokens) and are progressively

merged into larger tokens as depth increases.

To incorporate mixed-scale tokens in this scenario, we

process fine-scale regions with the standard Swin paradigm;

Coarse tokens on the other hand are passed through a single

linear embedding and merged back in the stream of tokens

at layer �, once the fine tokens stream has been merged all

the way up to the coarse scale. We discuss this process in

more details in Appendix E. We report results for two values

of � in Table 2: The value of � = 3 yields better performance

than merging the coarse and fine tokens in an earlier block

(� = 2, bottom table).
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� = 3
Base g∗ = 0.5 g∗ = 0.1

acc GMACs acc GMACs acc GMACs

Swin-T 81.0 4.3 80.0 3.6 78.8 3.1

Swin-S 83.4 8.6 82.4 6.9 81.4 5.9

Swin-L 86.0 33.8 85.4 27.7 84.7 23.3

� = 2
Base g∗ = 0.5 g∗ = 0.1

acc GMACs acc GMACs acc GMACs

Swin-T 81.0 4.3 80.4 4.0 79.6 3.8

Swin-S 83.4 8.6 83.1 8.2 82.5 8.0

Swin-L 86.0 33.8 85.9 32.6 85.4 31.6

Table 2. We incorporate mixed-scale information in Swin [26] by

keeping coarse tokens determined by the gate out from the atten-

tion mechanism until layer �. We then train the models at different

sizes and gate sparsities in the origina Swin training pipeline.

4.3. Ablation experiments

4.3.1 Generalized batch-shaping loss (GBaS)

In Section 2.2, we introduced the novel GBaS, which allows

for more control over the conditional behavior of the gate,

and enables us to easily inject prior knowledge about the

spatial distribution of the selected scale at initialization. In

Figure 6 (a), we confirm that the best trade-off is achieved

by GBaS, further improved when the learned priors are ini-

tialized as the inverse normalized distance of each spatial

position to the center (ctr init for short).

In addition, we observe that the cropping data augmenta-

tion used during training is a key factor. By default, we use

the standard ”Inception-style” cropping strategy[46] which

leads to a shift between the tokens distributions at train and

test time [50]. This behavior can be observed qualitatively

in Figure 7 (a): When training with Inception crops, there is

high uncertainty on the location of objects, and the L0 loss

ends up stuck on a trivial static pattern early during training.

On the other hand, GBaS learns more centered mixed-scale

patterns, but still captures uncertainty over spatial positions

through the learned priors (Fig. 7 (b) top row), which can

be further reduced with ctr init (bottom row).

In contrast, with a lighter cropping strategy, all losses

learn that, on average, fine scale tokens are more likely to

appear in the center-top of the image, where the object to

categorize usually lies (see Appendix G). As a result, all

batch-shaping variants perform equally well, and the L0

loss even outperforms them in some cases (Figure 6 (b)).

In summary, GBaS is more robust to train/test discrep-

ancy than other losses; Nevertheless when there is no no-

table distribution shift, then even a simple L0 sparsity loss

can reach a similar or even better performance.

4.3.2 Benefits of learning a dynamic gate

In Figure 8, we illustrate how the learned gate module dy-

namically adapts the mixed-scale pattern, hence the compu-

tation cost, to the input image content. We further investi-

(a) Inception-style crops data aug-

mentation (high train/test shift)
(b) Light crops data augmentation

(small train/test shift)

Figure 6. Accuracy-to-MACs comparison on MSViT-S/16,32 of

the L0, batch-shaping (BaS) and generalized batch-shaping losses,

with different random cropping augmentation strategies.

(a) Average (top) and variance (bottom) across the validation set

of the learned masks selecting between fine and coarse scale.

(b) Prior parameters θ learned with the GBaS loss with/without

ctr init (top/bottom). The first column is initial values of θ.

Figure 7. Illustration of the masks (a) and priors (b) learned by the

model with Inception-style crop data augmentations: The gate is

more prone to learn trivial mixed-scale patterns if not controlled

properly during training using the GBaS. In addition, initializing

the prior parameters in GBaS with the ctr init is enough to

guide the gate towards a more central pattern, as illustrated in (b).

gate and highlight this behavior quantitatively in Appendix

G.1, in which we compare using a learned gate versus us-

ing a fixed oracle mixed-resolution pattern where all central

patches are at the fine scale, and any region further than a

certain radius from the center is kept at coarse scale.

5. Conclusions

In this work, we proposed a dynamic mixed-scale tok-

enization scheme for ViT, MSViT, via a novel conditional
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Figure 8. Example of the learned dynamic gate outputs when ap-

plied on random image zooms and shifts of the validation dataset

gating mechanism. The gate is agnostic to the choice of

transformer backbone, and is trained jointly with it, in a

single-stage, with mixed-scale tokens. To improve the con-

ditional behaviour of the gate, we proposed a generalization

of batch-shaping [13] to better handle multi-dimensional
distributions. GBaS improves results and allows for eas-

ier and better initialization of the gates. Our experiments on

image classification and semantic segmentation show that

the proposed dynamic tokenization enhances computational

efficiency by reducing the number of input tokens, with

minimal impact on performance. For both tasks, the gate

learns to represent uniform and background regions with

coarse tokens and higher entropy regions with fine ones.
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