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Abstract

Online signature verification (OSV) is a standardized
personal authentication scheme with wide social accep-
tance in critical real-time applications include access con-
trol, m-commerce, etc. Even though the current advances
in Deep learning (DL) technologies catalysed state-of-the-
art frameworks for challenging domains like computer vi-
sion, speech recognition, etc., the DL-based frameworks
are voluminous with huge trainable parameters and are
hard to deploy in real-time systems demanding faster in-
ference. To adopt DL into OSV for improved performance,
we propose an OSV framework made up of teacher-student
collaborative knowledge distillation (TSKD) technique. A
heavy Transformer based teacher is trained first and the
teacher knowledge is distilled into a very lightweight Con-
volutional Neural Network (CNN) based student. A well
trained teacher network results in an efficient deep repre-
sentative feature learning by the student and results in a
performance improvement. In a thorough set of experi-
ments with three popular and standard datasets, i.e., the
MCYT-100, SUSIG, and SVC, TSOSVNet framework, with
a CNN based student model requiring only 3266 trainable
parameters results in an EER of 12.42% compared to the
recent SOTA 13.38% by a model with 206277 parameters
in skilled 01 category of MCYT-100 dataset. In compari-
son to cutting-edge CNN-based OSV models, the proposed
TSOSVNet produced a state-of-the-art EER in the most of
the test categories with an average of 90% lesser trainable
parameters.

1. Introduction

Online Signature biometrics is efficient in user recog-

nition, verification, and security applications. The online

signature has inherent advantages, like it cannot be forgot-

ten, cannot get lost, and is almost impossible to imitate per-

fectly or duplicate compared to other biometrics such as

passwords, keys and ID cards [9, 23] etc,. Due to these

advantages, online signature verification gained momentum

to use in real-time applications and demonstrated outstand-

ing performance in numerous computer vision activities like

person-identification, transactions, agreements, etc [9, 47].

Tolosona et al. [42] put forward an OSV framework con-

sisting of a Siamese based RNNs, advanced GRU’s to ex-

tract the deep representative features and feed them into the

DTW network. The framework resulted in better EER in

skilled forgeries compared to DTW-based frameworks. In

2019, a series of OSV techniques have been proposed based

on convolutional neural networks (CNNs) [3], [48], [32],

[31], [34], [19], [21] and these frameworks yield lesser EER

compared to the sequence models. In [3], three types of

features representing a signature’s, physical, frequency and

statistical properties are calculated, and these features are

feed into the ensembled classifier. Using a normalised dis-

tribution summation technique, the classification outcomes

of seven classifiers are combined. Vorugunti et al. [32]

designed an OSV framework using fusion of feature repre-

sentations by fusing the hand-crafted and deep representa-

tive features from an Auto Encoder. The composite feature

set is passed on to the Depth-wise Separable Convolutional

Neural Network (DWSCNN), which can achieve an EER

of 13.38% in one-shot learning. Vorugunti et al. [8], com-

bined CNN and LSTM to form a composite model, in which

the local deep features from CNN are input to LSTM net-
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work to learn long-term dependencies of an input signature.

Lai et al.[19] devised a model in which synthetic signatures

are generated using a neuromotor with different distortion

levels.To rank the synthesised signature samples, a simple

one-dimensional convolutional network is employed. The

framework yields an EER of 5.50% in the skilled 01 cat-

egory of the MCYT-100 dataset. In an extension work,

Lai et al.[20], proposed synthetic signature generation tech-

nique using Sigma Lognormal model by applying different

distortion levels on genuine template signatures. The syn-

thetic signatures are ranked based on average precision op-

timization. These samples are used to train the 1D CNN

based OSV framework. The framework results in an EER

of 3.84% in skilled 01 category of MCYT-100 dataset. Re-

cently Vorugunti et al.[44] Analysed the influence of con-

volution type and order on the EER output of OSV frame-

works.

Even though various deep learning based OSV frame-

works focusing on CNN [32, 31, 34, 19, 3, 44], LSTM [42],

combination of CNN and LSTM [8] have been proposed,

the CNN suffers from inherent drawbacks like acting only

on local receptive fields of the given input signature and in-

effective to capture global signing patterns [43, 51]. The

LSTM frameworks have fundamental pitfalls like depend-

ing on previously computed hidden states to calculate the

current output restricts the efficiency of the OSV frame-

works based on CNN and LSTM backbones [7, 2]. Re-

cently, Transformer-based architectures resulted in superior

performance in Natural Language Processing (NLP) [43],

Speech [45], and Image processing [51]. Vision Trans-

former (ViT) [12] has been proposed, which overcomes the

drawbacks of LSTM and CNNs [6]. Unlike the LSTM-

based frameworks, Transformer architecture, enables ac-

cess any part of the sequence history, regardless of the

length of the sequence. This makes the Transformer po-

tentially more befitting for learning the recurring patterns

with long-term dependencies like online signatures [1].

Based on the above discussion, even though the fact that

Transformer variants are powerful and best suits in effec-

tively learning the long-term signing patterns, Transformer

based OSV remains unexplored in the literature. The mas-

sive number of trainable parameters results in extremely

high training and inference costs. They are unsuitable for

low-power, resource-constrained devices due to their high

memory and computation requirements [5, 39]. Hence, to

reap the benefits of Transformer architecture in OSV and to

overcome the performance-limiting bottlenecks, our contri-

bution in this work is two-fold:

1) C1: We successfully apply Transformer architec-

ture to Online Signature Verification. So that self-attention

mechanism, which is critical element of learning long term

spatial relationship of each signature is effectively applied

to OSV.

2) C2: We design a teacher-student based knowledge

distillation (TSKD) technique which involves the Trans-

former based teacher network and distilling the knowledge

from the Teacher to a single convolution layer lightweight

CNN based student network.

3) C3: We conduct a comprehensive set of experiments,

to demonstrate Transformer’s efficiency in addressing long-

term dependencies better than sequence models like LSTM,

GRU.

The remainder of the paper is organized as follows. Sec-

tion 2 discuss the proposed Teacher-Student based OSV

framework. Section 3 examines the experimentation and

comparative analysis of the proposed TSOSVNET frame-

work with the recent and state-of-the-art frameworks and

the conclusions are drawn in Section 4.

2. Proposed Teacher-student network based
Online Signature Verification framework

As shown in Fig. 1 and 3, we have developed three

teacher networks 1. A CNN based teacher network com-

prising of two convolution blocks followed by the dense

layer with 64 nodes (VanillaCNN). 2. As shown in Fig.

1, a teacher encompassing the transformer with convolution

block is marked in red (TranConv). 3. As shown in Fig. 1

(a) and (b), the same Transformer architecture, the convolu-

tion block is replaced with a single dense layer consisting of

128 and 64 nodes (TranDense). As depicted in Fig. 4, the

student architecture remains same for all the three teacher

architectures. Further, we refer to each teacher network as

VanillaCNN, TranConv, and TranDense respectively. The

rationale behind selecting the three types of teacher archi-

tectures is to investigate the efficient network structures and

the quality of intermediate feature embeddings and soft log-

its learned by the corresponding teacher networks to trans-

fer the robust feature representations to the student network.

2.1. Input Signature format to the OSV framework

As depicted in Fig. 1 and Table 2, for each acquired raw

signature from a writer, a set of statistical formulae based

features, which characterize the whole signature, are com-

puted. E.g. (standard deviation of x)/Δx, where ’x’ in-

dicates the trace of the x-coordinates of the signature. As

illustrated in Table 2, for the MCYT-100 dataset, a total of

100 global features and for SVC, and SUSIG datasets 47

global features are computed.

2.2. Transformer: TranConv

To explain the workflow of the proposed architecture, we

are considering a signature from the MCYT-100 dataset. As

depicted in Fig. 1, a feature vector of length 100 × 1 rep-

resenting a signature is input to the Transformer. Initially,

for the feature vector linear and periodic time features are
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Figure 1. The illustration of the Transformer architecture and corresponding encoder architecture.

Figure 2. The self attention mechanism of the encoder architecture.

computed and concatenated with the original input feature

vector which result in a batch of size 100 × 3. The time

embedded feature vector F = (f1, ..., fT ) of dimension

100 × 3 is passed onto both the encoder and convolution

blocks.

2.2.1 Self Attention Block

As portrayed in Fig. 1(b), the attention layer is composed

of multi-head attention block, which consists of a set of

self-attention blocks. We have set the number of heads to

12. The self-attention block is depicted in Fig. 2. Same

set of operations are performed in each self-attention block,

which is described as follows: the time-embedded signa-

ture feature vector F of size 100 × 3, is passed to the two
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Figure 3. The architecture of the VanillaCNN teacher network composed of only convolution blocks.

Figure 4. The architecture of the Student network of the proposed OSV framework.

dense layers named Q and K consisting of 256 neurons

each. The attention weights Query, Key, and V alue are

computed as Query = F · WQ, Key = F · WK and

V alue = F ·WV . WQ, WK and WV represents the weight

matrices learnt through the dense layers Q, K and V . The

outputs of the self-attention layer are computed as follows:

Attention Output = softmax((Query · KeyT )/
√
256) ·

V alue. The Attention Output from each self-attention

head is of dimension (100, 256). As depicted in Fig. 1(b),

the output from 12 attention heads is concatenated to form

an attention vector of length (100, 3072). The concatenated

attention vector is feed into a dense layer of size 3, to output

a final vector of length (100, 3). The output from the multi

attention block is passed to a convolution layer with 32 fil-

ters of dimension 1 × 1 and results in a convolved feature

vector of length 100 × 32. The output is passed to the sec-

ond convolution layer with three filters of dimension 1 × 1
and results in a feature vector of size 100 × 3. The output

from the transformer encoder is 100× 3.

2.2.2 Convolution Block

As illustrated in Fig. 1, the time-embedded feature vector

F = (f1, ..., fT ) of dimension 100× 3 is passed on to a set

of convolution blocks. The first convolution block is a 1D

convolution layer consisting of 32 filters, each of size 1× 3
and outputs a set of deep representative feature vectors of

size 100×32 and passed on to the second convolution block.

The same set of operations are performed on the output of

the first convolution block and outputs a feature vector of

dimension 100× 32.

The output from the transformer encoder block is of size

100× 3, and the convolution block is of size 100× 32. The

outputs are passed on to the global average pooling (GAP)

layers, and the resultant outcome is concatenated to form an

output of size 100×32. Finally, the feature vector is passed

onto the fully-connected layer based classifier for classifi-

cation into Genuine and Forgery. As discussed above, in

the case of TranDense, the convolution blocks (which are

marked red) in Fig. 1 (a) and (b) are replaced with dense

layers of size 128 and 32 nodes respectively and the same

set of operations are performed.

2.3. Transformer: VanillaCNN

As depicted in Fig. 3, a VanillaCNN is a CNN with two

convolution blocks. The transformer encoder network is

not used. An input feature vector F = (f1, ..., fT ) of size

1 × 100 is given as an input to the first convolution block,

which contains 32 filters, each of size 1 × 3, and outputs

a feature map of size 100 × 32. The similar operations is

executed in the second convolution block and outputs a rep-

resentative feature map of size 100 × 32. Global Average

Pooling is applied to the deep feature representations from

the convolution block. Finally, the classifier outputs the sig-

nature class.

2.4. Student Network

As depicted in Fig. 4, we have used same student net-

work for all three types of teacher networks, i.e, Vanil-

laCNN, TranDense, and TranConv. The student network

consists of a single convolution block of 32 filters, each of

size 1×3. The feature representations from the convolution

block of size 100 × 32 are flattened and passed onto the fi-

nal softmax layer for classification. As illustrated in Table
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Table 1. The number of parameters required for a teacher network and corresponding distilled student network.

Teacher Type Teacher Student % of parameters reduced
Only Conv1D Layers (VanillaCNN) 208738 6658 96.81%

Transformer + Dense (TranDense) 83432 6658 92.01%

Transformer + Convolution (TranConv) 118580 3266 97.25%

1, the student network requires only 3266 parameters com-

pared to the corresponding teacher TranConv. This results

in a reduction of 97.25% of parameters. We have used a

widely used knowledge distillation approach to facilitate the

transfer knowledge from more significant knowledge capac-

ity teachers to a student [13, 27, 50].

2.5. Knowledge Distillation Technique

In this section, we briefly discuss about the knowledge

distillation [50, 17] procedure from the teacher network

to the student network. As depicted in Fig 1 (a), the

last feature of the teacher network can be expressed as

Tf1 = T (F ;WAttnLayer3), Tf2 = T (F ;WConvlayer2).
TF = Tf1||Tf2 and corresponding logit as logits T =
Ct(Dense(TF );W

dense). AttnLayer3 represents the

third and last attention layer of the attention block and

WAttnLayer3 represents the corresponding weights. As

depicted in Fig 1, Convlayer2 represents the convo-

lution layer of the second convolution block, Dense
represents a dense layer of the classifier Ct. Similarly,

we compute the last feature of the student’s network

as Sf = Cs(F ;WConvlayer1). As depicted in Fig

4, the students network consists of a single convolu-

tion block and a single dense layered classifier, the

features extracted by the student are equal to the log-

its logits S. The difference between the teacher and

the student output logits is measured by the Kull-

back–Leibler (KL) divergence, which can be stated as :
1
N

∑N
i=1 LKL(Ct(Dense(T (Fi;W

AttnLayer3)||
T (Fi;W

Convlayer2)),W dense), Cs(F ;WConvlayer1))
The following is the definition of the cross-entropy loss

between the true label and the student network’s predicted

value: 1
N

∑N
i=1 LCE(Cs(F ;WConvlayer1), yi). The

distiller’s objective is to reduce the difference between

the teacher and student predictions, as well as the differ-

ence between the student output and the true label, i.e.,

argminws

∑
(α∗τ2∗LKL+(1−α)∗LCE). ws represents

the parameters of the student, α denotes the weight of

KL divergence. τ indicates the distillation temperature,

which is used to produce a softer probability distribution

(softmax) over classes (Genuine or Forgery).

3. Experimentation and Results
This section initially provides a summary of the

datasets used to evaluate the performance of our proposed

TSOSVNet. As illustrated in Table 1, We evaluated our

framework and compared it to the most recent SOTA OSV

frameworks using three benchmark datasets (MCYT-100,

SVC, and SUSIG). In this section, In line with the literature

[14, 22, 24, 18], we have thoroughly appraised the proposed

framework in Skilled 01 (which evaluates one-shot learn-

ing of the framework), Skilled 05, Skilled 10, Skilled 15,

Skilled 20 categories.

Let ‘W’ indicate the number writers in the system. ‘R’,

‘F’ indicates the number of Real/Genuine and Fake/Forgery

signature samples specific to each user. W=100, R=25,

F=25 in MCYT-330 and MCYT-100 datasets. In evaluat-

ing the Skilled 01 category for Ui, one genuine and one

forgery sample of Ui is used to train the framework. Re-

maining ‘R-1’, i.e., (25-1=24) genuine samples are used

to test the framework for True Acceptance Rate (TAR).

‘F-1’, i.e., (25-1 =24) forgery signature samples are used

to gauge the False Acceptance Rate (FAR) of the frame-

work. Similar is the case with Skilled 05/10/15/,..,/(G-5)

categories. In short Skilled 01/05/10/15/20 are represented

as S 01/05/10/15/20.

As shown in Table 1, the student network reduces the

number of parameters by 96.81%, 92.01%, and 97.25%,

respectively for each corresponding teacher network. In

case of TranConv, the student has 3266 trainable parameters

which reduces the parameter count by 97.25%, followed by

VanillaCNN and TranDense. To choose the best teacher ar-

chitecture among the three and to appraise the best teacher

network with SOTA OSV frameworks, we did an ablation

study, which is depicted in Table 3.

Table 3 illustrates the EER outcome of the proposed

teacher and corresponding student networks with MCYT-

100 dataset. Even though, the student distilled from Vanil-

laCNN resulted in the least EER of 11.69% and 2.05% re-

spectively, in S 01 and S 05 categories, the student distilled

from TranConv resulted in the least EER in S 10, S 15 and

S 20 categories. The student distilled from TranDense is

unable to result in lesser EER values in any category. Simi-

lar studies have been done for SVC and SUSIG datasets.

Based on the above discussion, we can summarize that,

in all three datasets, the student distilled from TranConv

resulted in the least EER compared to other teacher net-

works. This performance can be attributed to the following

reasons :1) The larger and more robust teacher networks

are expected to learn efficient, representative, and reliable

knowledge. 2) The CNN efficiently captures spatial local

signing patterns and the Transformer is efficient in captur-

ing long-range correlations of signing patterns. The hybrid
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Table 2. The datasets specifics used in the experimental study.

DataSet MCYT-100 SVC SUSIG
Total number of Writers 100 40 94

Number of features representing a signature 100 47 47

Number of genuine/ real signatures
for each writer 25 20 20

Number of forgery/ fake signatures
for each writer 25 20 10

Total set of real signatures 2500 800 1880

Total set of fake signatures 2500 800 940

teacher network resulted in the efficient distillation of short

and long range representative features to the student net-

work.

Fig. 5 portrays the EER recorded for each user by the

three teachers, i.e., VanillaCNN, TranConv, and TranDense,

and Fig. 6 shows the EER outcome by the corresponding

students in Skilled 01 category of MCYT dataset. The num-

ber of users who reached the matching EER is shown by

the intensity of the colour map. Figure. 5(a) depicts that

the teacher network representing VanillaCNN yields 0 EER

for close to 6 users. About 15 individuals obtained an EER

ranging from 0.4 to 0.5, and for three users, between 95-

100, the EER is 1.0. Figure. 6(a) illustrates the EER out-

come by the student network distilled from VanillaCNN.

Compared to Fig. 5a, Fig. 6a is more dense in the upper

region. More EER is recorded between 0.20 to 0.65. This

indicates the teacher network is ineffective, and the student

cannot generalize the input signature classification. The

same is shown by an EER of 11.69%, as depicted in the

Table 3. Similar is the case with Fig. 5b and Fig. 6b. In

the case of Fig. 6c, the teacher TranConv records slightly

higher EER than VanillaCNN and TranDense.

Table 4 illustrates the performance appraisal of the

proposed framework with the latest frameworks pertaining

to MCYT-100 dataset, which is the most commonly used

dataset in the OSV domain. As depicted in Table 4, we have

compared the effectiveness of the proposed OSV frame-

work with both the DL and non-DL-based OSV frame-

works. The DL-based frameworks proposed in the litera-

ture till now [33], [30], [4], [49], and [46] require approxi-

mately 95101, 35423, 206277, 10000, and 580000 trainable

parameters respectively. The student network resultant from

TranConv requires only 3266 trainable parameters and still

achieves the state-of-the-art EER outcome in Skilled 01,

Skilled 10, Skilled 15 and Skilled 20 categories. Achiev-

ing an EER of 12.42% in the Skilled 01 category (one-shot

learning) with only 3266 trainable parameters endorse the

competence of the proposed framework.

Table 5 compares the EER results obtained using the

proposed framework to those obtained using the most recent

frameworks evaluated using the SVC dataset. In Skilled 01

category, the proposed framework outcomes an EER of

6.45%, which is 20% higher than the framework with

SOTA EER 5.37%. But as depicted in the table, the pro-

posed framework requires 96.56% parameters lesser than

the framework with State-of-the-art EER. Table 6 illustrates

the EER outcome of the proposed framework with other lat-

est frameworks assessed with the SUSIG dataset and can

make similar observations.

Fig. 7 illustrates the attentions learnt during training

by the three teacher networks VanillaCNN, TranDense and

TranConv respectively. The intensity or score of each fea-

ture of the time embedded input feature vector determines

the importance of each feature in classifying a signature

as genuine or forgery. Fig. 7(a) illustrates the attentions

representing the most varying deep representative features

of user id 1 learned by VanillaCNN. The model looks into

the feature ids/numbers 2,4,27 (marked in thick red) are the

most important representatives in classifying the signature

of user id 1.

4. Conclusion and Future Work

Our contribution in this work is twofold. We have de-

signed a hybrid CNN-based Transformer network for On-

line Signature Verification (OSV). TranConv architectures

take merits of both CNN’s and transformers to capture local

and global signing patterns of the users. The inherent disad-

vantage of the transformers in both performance and com-

putational cost is overcome by employing Teacher Student

network-based knowledge Distillation. The TrancConv

based student resulted in state-of-the-art EER in Skilled 01

category with only one convolution layer. The novel ad-

vantages like lightweight and higher classification accuracy

of the proposed framework makes it competent to adopt in

challenging real time applications like M-Commerce etc.
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