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Figure 1: A visual comparison of inpainting methods. Existing models struggle when applied to complex-structured images such as

animal faces or images that contain multiple objects.

Abstract

Image inpainting aims to generate realistic content for
missing regions of an image. Existing methods often strug-
gle to produce visually coherent content for missing regions
of an image, which results in blurry or distorted structures
around the damaged areas. These methods rely on sur-
rounding texture information and have difficulty in gener-
ating content that harmonizes well with the broader context
of the image. To address this limitation, we propose a novel
model that generates plausible content for missing regions
while ensuring that the generated content is consistent with
the overall context of the original image. In particular, we
introduce a novel context-adaptive transformer for image
inpainting (TransInpaint) that relies on the visible content
and the position of the missing regions. Additionally, we
design a texture enhancement network that combines skip
features from the encoder with the coarse features produced
by the generator, yielding a more comprehensive and robust

representation of image content. Based on extensive evalu-
ations on challenging datasets, our proposed TransInpaint
outperforms the cutting-edge generative models for image
inpainting in terms of quality, textures, and structures.

1. Introduction
Image inpainting (a.k.a. completion) is a challenging

problem in computer vision due to its broad range of appli-

cations and ill-posed nature. Its goal is to generate plausible

content for damaged or missing regions of an image. It has

a wide range of real-world applications, including image

manipulation [21] and object removal [33]. The most chal-

lenging aspect of image completion is predicting realistic

content for distorted regions while maintaining consistency

and coherence across the entire image. However, this chal-

lenge is accentuated when dealing with complex patterns or

structures, such as images that contain multiple objects or

animals’ faces [15, 16]. Because these images have intri-
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cate details and fine-grained textures, which can be difficult

to accurately capture and reconstruct in the completed im-

age. Fig. 1 illustrates the limitations of current inpainting

methods in generating high-quality content for regions that

contain complex structures. For example, CR-Fill [48] and

TFill [50] are unable to generate an accurate replacement

for the missing regions, resulting in an unrealistic and inco-

herent final image. While MAT [15] performs better in gen-

erating high-resolution completed results, it still struggles

to generate textures that smoothly integrate with the overall

image context, especially when used on images with com-

plex patterns like those seen on the building. Furthermore,

existing image completion methods often rely on surround-

ing textures to fill in missing regions, which may not be ef-

fective for all types of images. For instance, in Fig. 1 (first

row), we can observe that MAT, struggles to accurately re-

construct the lion’s eyes. This is mainly due to the lack of

contextual information in the surrounding regions, which

prevents the model from accurately capturing the structure

and shape of the eyes in the lion’s face and leads to an in-

complete structure estimation.

Convolutional neural network (CNN)-based image com-

pletion methods have shown promising results on small and

aligned masked images [25, 48]. However, when dealing

with images that contain complex structures, these meth-

ods are unable to capture the semantic relationships be-

tween distant regions. This difficulty is due to the inher-

ent properties of CNNs, such as the slow growth of their

effective receptive field and the dominance of nearby pix-

els. To address these challenges, recent studies have ex-

plored the use of more flexible models, such as transform-

ers [5, 12, 22, 32, 36]. The transformer is suitable for non-

local modeling and can effectively attend to relevant fea-

tures across the entire image, even those far from the miss-

ing region. While some recent works have utilized trans-

formers for completion [37, 43, 50], they have mainly fo-

cused on generating low-resolution predictions, which can

result in coarse image structures and compromised qual-

ity. Other studies have used auto-regressive transformers

to handle complex structures [14, 45, 47], which are well-

suited for small and regular masks. However, when it comes

to missing regions with arbitrary shapes and sizes, these ap-

proaches cannot be as effective [16].

In this paper, TransInpaint is introduced to effectively
generate plausible content for missing regions of an im-

age while maintaining the original structure of the image.

Our model proposes a Context-adaptive Transformer (CT)

to analyze the image context by capturing the intricate co-

occurrence features and using this information to estimate

the type and shape of the missing region. Additionally,

a texture enhancement network (TENet) is proposed that

combines the generated coarse features and skip features

from the encoder to effectively build repeating textures.

As shown in Fig. 1, TransInpaint generates high-quality

missing content that seamlessly blends with the overall im-

age structure. Our main contributions can be summarized

as: (1) A novel image completion architecture is proposed

that includes a CT network for predicting the missing con-

tents. We also introduce TENet which integrates local and

global layers into a compact and discriminative representa-

tion. This helps the model effectively handle complex struc-

tures and improve the quality of the generated images. (2)
Empirical results on challenging CelebA, Places2, and Ima-

geNet datasets indicate that our proposed TransInpaint out-

performs previous completion methods by a large margin

across various evaluation metrics. Notably, our model pro-

vides higher completion fidelity when dealing with images

containing multiple objects and complex patterns.

2. Related Works
Image completion, compared to image generation [30],

is a more challenging task, particularly when substantial

portions of the image are missing. Traditional diffusion-

based approaches [1, 2] transfer information from nearby,

undamaged regions to the missing areas. Patch-based or

exemplar-based methods [4, 13] select patches with sim-

ilar appearances to fill in the missing regions. However,

diffusion-based methods can introduce blurs and tend to

fail when the missing regions are large [15], while patch-

based methods struggle with completing large missing re-

gions in complex scenes as they rely heavily on the patch-

wise matching of low-level features [47]. Deep learning

has achieved remarkable progress in image inpainting in re-

cent years. Contextual information is exploited by Pathak

et al. [24] using adversarial training in combination with

an autoencoder-based architecture to fill incomplete images.

Several variations [18, 42, 10] of the CNN architecture have

been proposed for image inpainting. Besides, more ad-

vanced learning methods have been introduced, such as lo-

cal and global discrimination [9], gated convolution [46],

and contextual attention [19, 41], etc. Multi-stage genera-

tion, which leverages intermediate clues like object edges

[23], structures [27], and semantic segmentation maps [33],

has gained significant attention for its ability to generate

realistic textures and reasonable structures. Moreover, re-

cent research has focused on addressing more challenging

image completion tasks, such as filling large holes with

irregular shapes. LaMa [34] is a one-stage network that

combines multi-scale receptive fields to capture both global

and local context information and generate patterns for mis-

sion regions. However, LaMa can generate faded or blurry

structures when the missing region is large and extends be-

yond the object boundary. CR-Fill [48] proposes a contex-

tual framework by incorporating a learnable loss function,

but fails to preserve the texture of the original input im-

age and produces unrealistic outputs. Denoising diffusion
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models [20, 28, 38, 40] and autoregressive transformer ap-

proaches [17, 37, 47] show promise in generating realistic

content by using accurate likelihood computation and itera-

tive sampling. However, their performances are limited by

variational learning and raster scan-order-based generation,

which make it difficult to generate realistic content when the

input image has a large and irregularly missing part. On the

other hand, diffusion models have recently gained attention

due to their ability to generate high-quality images [16, 44].

TFill [50] is a transformer-based architecture designed

to capture long-range dependence between pixels in the en-

coder, but its performance heavily relies on the size of the

missing regions. In cases where the missing regions are

large or contain complex structures, TFill cannot produce

plausible results, as shown in Fig. 1 and reported by [31].

MAT [15] is a GAN-based image completion model that

contains transformer blocks with style manipulation and

a mask-updating approach. However, MAT suffers from

distortion at the interface between the produced instances

and their surroundings [16], especially in complex images

with intricate patterns and structures, where the completed

region may appear inconsistent with the surrounding con-

text. Our TransInpaint model differs from previous ap-

proaches in that it improves visual consistency and gener-

ates high-quality outputs that are more semantically plau-

sible, especially at the boundaries between the generated

and unmasked regions. This is achieved by leveraging the

strengths of our CT and TENet, which allow for better mod-

eling of the context of the input image and the generation of

more realistic and visually coherent outputs.

3. Proposed Method
Our proposed model aims to reconstruct distorted im-

ages where the visual instances have been damaged. This is

a challenging task as the model not only needs to produce

plausible instances but also ensure that the constructed in-

stances flawlessly match the rest of the image. Our TransIn-

paint model addresses this problem in two steps. First, our

context-adaptive transformer (CT) is used to reconstruct the

masked image by determining a contextually relevant in-

stance. This is achieved by adapting the object detection

with the Detection Transformer (DETR) [3] to identify the

missing instances. Second, the reconstructed and masked

images are fed to another CNN (TENet), which uses ap-

pearance priors and unmasked pixels to replenish texture

details and convert the masked input into a realistic image.

The TransInpaint pipeline is shown in Fig. 2.

(A) Predicting Missed Instances: TransInpaint uses the

pre-trained DETR model [3] to predict the classes of in-

stances and determines the relationships between objects

and content in a given scene. The input (non-masked) image

is denoted by x, while the masked image is represented by

xm. Let P = [p1, ..., pi] and c = [c1, ..., ci]
� be the bound-

ing box (BB) coordinates and object classes of the visible

instances, respectively, that are extracted from the segmen-

tation map SM = DETR(xm), and i is the expected num-

ber of instances. The CT network uses extracted object

classes c to create learnable input tokens. These tokens are

then concatenated with the tokens for the masked region

to form the input sequence for the transformer. The trans-

former generates a probability distribution over the possible

classes for the missing context yout, based on the avail-

able context yin and the masked region. The class with

the highest probability is selected as the predicted class for

yout. This process allows the network to determine the most

likely class for the missing context based on the available

context and the masked region. Once the class of the miss-

ing context is determined, appearance priors are used to

generate the appearance of the missing instance. Indeed,

the appearance priors are learned from the unmasked pix-

els of the input image and the available instances P , using

our network. These appearance features are then combined

with the predicted class of the missing context to generate

the appearance of the missing instance. Another solution is

to use DETR object queries as input tokens directly, which

yields lower performance compared to using learnable class

embedding (see ”TransInpaint w/o CT” in Table 1).

The positional encoding provides location information

about the available instances to the learnable class embed-

ding to improve the accuracy of the prediction. Positional

encoding vectors are generated using a sigmoid activation

function applied to a linear layer that takes as input the nor-

malized center coordinates, height (H), and width (W ) of

the bounding boxes (BB). The CT network computes the

following functions:

z0 = Ecor + Eclass = MLP(c′) + ρ(MLP(P ′)), z0 ∈ R
(i+1)×v

z′t = MSA(LN(zt−1)) + zt−1, t = 1, ..., T

zt = MLP(LN(z′t)) + z′t, t = 1, ..., T

y = LN(z0T ),
(1)

where MLP is a multi-layer perceptron, MSA is multi-head

self-attention, LN denotes layer normalization, ρ represents

a sigmoid activation function, v denotes the embedding vec-

tors’ dimension, P ′ is [p0] ∪ P , [p0] denotes BB coordinate

for the masked region, and c′ is [c0] ∪ c in which c0 repre-

sents additional class tokens for contents that are lost. CT

has eight heads and twelve layers of transformer encoders

(T = 12). The output of the last transformer layer is then

projected to an element-wise distribution using 512 com-

ponents of visual vocabulary. Additionally, the model uses

the masked language (ML) objective, which is similar to the

one used by DETR. Following the ML objective, the input

sequence is discretized, and the indexes of the missing re-

gion tokens are represented by I = h1 , h2 , ..., hJ , where J
is the total number of missing region tokens. The model is
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Figure 2: Our proposed TransInpaint pipeline consists of two steps: a CT, and a TENet. The CT network detects lost instances and

damaged regions in the input image, generating appearance priors through sampling. The TENet then uses these appearance priors, along

with the CT output, to generate high-quality and natural-looking outputs. It achieves this through a combination of Down/Up ResNet

blocks, Feature Synthesis, and TE modules.

trained to minimize the negative log-likelihood of the miss-

ing region tokens (XI ) based on the visible region tokens

(X−I ) in the coarse prior X . This means that the model

is trained to predict the missing region tokens based on the

information provided by the visible region tokens as,

�ML = E
X

⎡
⎣ 1

J

J∑
j=1

− log p(κhJ
|X−I , θ)

⎤
⎦ , (2)

where θ denotes the parameters of the transformer. It is im-

portant to highlight that in our model, the combination of

the appearance priors and unmasked pixels provides valu-

able information to generate texture details that are consis-

tent with the overall structure and appearance of the com-

pleted image.

Sampling Method. In this section, we introduce how to ob-

tain realistic appearance priors using the proposed CT net-

work. However, directly sampling the entire set of masked

positions can lead to unrealistic results because the CT

learns the distribution of the missing region tokens based on

the visible region tokens. Indeed, sampling them indepen-

dently can result in unnatural-looking outputs. To address

this issue, the missing region tokens are sampled using a

Gibbs sampling procedure that accounts for the correlations

between the missing region tokens. During each iteration of

Gibbs sampling, a grid position from p(κhJ
|X−I , X<hJ

, θ)
is sampled using the top-k predicted components, where

X<hJ represents the previously generated tokens. The sam-

pled token is then replaced with its corresponding masked

token, and this process is continued until all missing region

tokens have been filled. The positions are selected sequen-

tially, similar to the PixelCNN [35]. After sampling, a set

of completed token sequences is obtained. The appearance

priors X ∈ R
L×3 are then reconstructed using a vocabulary

query for each discrete sequence derived from the CT.

(B) Texture Enhancement Network (TENet): After ob-

taining the low-dimensional appearance priors, we trans-

form X into xt for further processing. The challenge now

is to learn a deterministic mapping that can re-scale xt to

its original resolution and maintain consistency between the

missed regions and the unmasked regions. To achieve this,

we propose TENet guided by xm to generate high-quality
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features from the reconstructed appearance.

xCT = Bδ(x
↑
t ⊗ xm) ∈ R

H,W×3, (3)

where B is the network’s backbone that is parametrized by

δ, x↑
t is the result of xt bilinear interpolation, and ⊗ is the

function of concatenation along channel dimension. Then,

we feed the xCT to our TENet. To create realistic textures

and semantic structures within the missing regions of the

image, we introduce the Feature Synthesis module (FSM)

as shown in Fig. 2 (b). FSM uses skip connections between

encoder and decoder layers that have the same resolution

scale. It takes as input the features f from the previous layer

in the generator (which correspond to the created textures

from the preceding layers), as well as the encoded skip fea-

tures fskip (which correspond to the existing textures in the

original image). This integration of features allows us to

accurately generate repeated textures, leading to more re-

alistic and visually appealing results. FSM divides chan-

nels into two parallel branches (local and global). The lo-

cal branch uses depth-wise convolutions (DWConv) to ex-

tract local features and provide positional information for

our Texture Enhancement (TE) module. The global branch,

on the other hand, uses the TE to obtain global contexts

by processing the entire feature map. Finally, the outputs

of the two branches are concatenated to obtain the final

feature representation. ViT [5] is selected as the basis for

the TE module. In TE, the input is a set of feature vec-

tors xp ∈ R
N×C , where N is the number of tokens and

C is the channel quantity. Feature vectors are obtained by

splitting the input feature map m ∈ R
C×H×W into patches

mp ∈ R
N×D2·C and down-sampling them. D is the down-

sampling rate, and (H,W ) is the feature map’s resolution.

The TE consists of a MSA module and a MLP without

LN to improve its effectiveness. The MLP has a GELU

[7] activation and two linear layers to address the rank col-

lapse issue. The output feature map of TE is computed us-

ing up-sampling (U) of the TE’s output token embeddings

and adding them to the original feature patches mp, result-

ing in mout = U(z′p) + mp, where z′p is the output token

embeddings of TE. Finally, the output sequence mout is re-

shaped into an enhanced feature map mc ∈ R
C×H×W .

Given the token embeddings xp as the input sequence of

the TE, while (Q = xpWq, K = xpWk, V = xpWv) a

single self-attention head can be written as:

Q = xpWq, K = xpWk, V = xpWv, (4)

A = softmax(
QKT

√
Dk

)((λcIv + Wc)V). (5)

in which Wq , Wk, Wv denote linear projection matrices.

Q, K, V indicate the query, key, value matrices, and Dk

denotes the channel quantity of the token embeddings. Iv is

an identity matrix, whose rank is the same as V. Wc is the

diagonal matrix. λc is the scaling factor, which is set to 0.5.

Therefore, our TE can be written as:

zp = MSA(xp) + xp, xp = D(mp), (6)

z′p = MLP(zp) + zp, (7)

mout = U(z′p) + mp. (8)

where the D indicates the down-sampling layer (average

pooling). The MLP, composed of two linear layers and a

GELU activation layer to mitigate the rank collapse issue.

mout = U(z′p)+mp, where the U indicates the up-sampling

layer, which is a DWConv. Finally we reshape the output

sequence mout to an enhanced feature map mc ∈ R
C×H×W .

We use instance normalization instead of batch normal-

ization in our TENet generation network since different

missing regions will have an impact on each batch’s means

and variances. In our architecture, ResNet block down is

the same as ResNet block up, in which we apply the aver-

age pooling layer after 3× 3 and 1× 1 Convolution layers.

(C) Network Training: The masked pixels are represented

by xm, and the model uses the unmasked pixels to recover

the corresponding pixels in the input. Feature vectors are

obtained using our TransInpaint. The encoder extracts fea-

ture maps, which are then used to compute a set of latent

vectors V . These vectors V are processed by a decoder to re-

construct the image from the latent vectors, which results in

the reconstructed image xr. Additionally, the model recon-

structs an earlier image xCT from CT, which is a reference

image used for comparison during training. To perform this

reconstruction we use the following loss function:

�TransInpaint = �mask(xm, xr) + �pix(xCT , xr)+

β‖∇̂[V]� f‖22 + λ�st‖f − fr‖22 + �adv(xm, xr),
(9)

where fr and f are the feature maps from the reconstructed

and GT images. Mask loss measures the reconstruction

error between xm and the predicted image xr. Pixel loss

ensures the consistency between xr and the earlier recon-

structed image xCT . Commitment loss measures the differ-

ence between the latent feature vectors V and their corre-

sponding feature vectors f . The gradient of V is estimated

by the decoder and compared to the true gradient f . ∇̂[·] is

a pause-gradient operation that stops gradients from flowing

into its argument, and β = 0.25, and Style loss, in which

λ = 250. Indeed, the �mask determines the dissimilarity

between the corrupted xm and reconstructed images xr. It

is composed of three components, the �1 between two im-

ages’ pixel values, the perceptual loss (�P ), and the style

loss (�S). Following is a detailed description of the losses

listed above.
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Figure 3: Comparison of qualitative completion results on CelebA images.

On the basis of the activation maps from VGG-16, the con-

ceptual loss (�P ) and style loss (�S) are computed as:

�P =

LP∑
l

M(|�l(xm)� �l(xr)|), (10)

�S =

LS∑
l

M(|G(�l(xm))� G(�l(xr))|), (11)

in which �l(.) denotes different layers in VGG-16, and G(.)
represents the function that returns the Gram matrix of its

argument. For �P and �S , LP is set to {lrelu1-1, lrelu2-1,

..., lrelu5-1}, and LS is set to {lrelu2-2, lrelu3-4, lrelu4-4,

lrelu5-2} respectively. �Mask is, therefore, equal to the sum

of the above two losses and the �1 .

The adversarial loss �A of our model is calculated using a

discriminator network DA(.):

�A = −M(log[1�DA(xr)])−M(log[DA(xm)]), (12)

in which M(.) denotes a mean-value operation and log[.]
represents the element-wise logarithm operation. The net-

work architecture of the discriminator is identical to TFill.

4. Experimental Validation
(A) Experimental Methodology: Our model is evaluated

on three datasets: CelebA-HQ [11], Places2 [51], and Ima-

geNet [29]. We follow the standard training, validation, and

testing splits for each dataset. For ImageNet, only 1K im-

ages from the test split are randomly selected for evaluation,

the same as in [37]. To generate the missing image regions

for training, we re-split the train and validation subsets, and

randomly cropped the images to include between 10% and

50% of the total image area, including the missing rectan-

gular part. The BB boundary is randomly selected at 50

points, and irregular sections are created by drawing lines

between those points. We evaluate our model using three

metrics commonly used in image inpainting: learned per-

ceptual image patch similarity (LPIPS) [49] and fréchet in-

ception score (FID) [8] provide quantitative measurements

of how well the completed images match the original im-

ages in terms of perceptual quality. We also use the struc-

tural similarity index (SSIM) [39] that evaluates the sim-

ilarity between the original image and the completed im-

age based on their luminance, and structural information.

Our model is implemented in PyTorch and we use four RTX

3090 GPUs to train the model with a batch size of 32 for 1M

iterations. We apply spectral normalization to all networks

and initialize them using Orthogonal Initialization. The net-

works are trained from scratch using the Adam optimizer

with a fixed learning rate of 1e-4, β1 = 0, and β2 = 0.9. The

transformer is optimized with Adam (learning rate = 3e-4).

To ensure a fair comparison with other inpainting meth-

ods, the training and testing images are of size 256 × 256
with random regular or irregular masks. We compare our

TransInpaint with several inpainting approaches including
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Figure 4: Comparison of qualitative completion results on Places2 and ImageNet images.

Table 1: Quantitative comparisons on CelebA, Places2, and ImageNet datasets on center-masked images. Results are based on LPIPS (↓),

FID (↓) and SSIM (↑). ”*” indicates TransInpaint trained only with DETR, instead of CT. TransInpaint w/o TENet indicates our model

trained with standard encoder/decoder network. TransInpaint w/o FSM indicates our model with TENet, but we use two convolution layers

instead of FSM to aggregate f and fskip.

Method CelebA Places2 ImageNet
LPIPS FID SSIM LPIPS FID SSIM LPIPS FID SSIM

JPGNet [6] ACM-MM’21 0.129 14.62 0.869 0.163 21.26 0.784 0.196 24.35 0.709
CR-Fill [48] ICCV’21 0.107 6.37 0.914 0.131 10.85 0.837 0.173 11.42 0.785
TFill [50] CVPR’22 0.092 5.23 0.919 0.039 9.11 0.843 0.162 10.81 0.797
LaMa [34] WACV’22 0.085 4.93 0.925 0.121 8.75 0.851 0.159 10.52 0.810
GAVQ [26] CVPR’23 0.088 4.96 0.920 0.124 8.84 0.842 0.163 10.70 0.787
MAT [15] CVPR’22 0.074 4.54 0.936 0.110 8.39 0.862 0.128 10.24 0.816
TransInpaint w/o CT * 0.101 6.34 0.908 0.130 10.97 0.844 0.166 11.25 0.776

TransInpaint w/o TENet 0.113 6.97 0.915 0.144 13.34 0.838 0.178 15.84 0.789

TransInpaint w/o FSM 0.098 6.11 0.926 0.123 10.14 0.852 0.153 10.67 0.797

TransInpaint (ours) 0.079 4.46 0.941 0.104 8.05 0.884 0.115 9.93 0.834

JPGNet [6], CR-Fill [48], TFill [50], LaMa [34], GAVQ

[26], MAT [15] using the provided pre-trained weights.

(B) Qualitative Results: Figs. 3 and 4 provide a qualita-

tive comparison of state-of-art inpainting methods on the

CelebA, Places2, and ImageNet datasets. In general, CR-

Fill does not produce plausible structures, and TFill gener-

ates textures with unnatural artifacts, indicating that struc-

tural information has minor contributions to texture synthe-

sis. TransInpaint outperforms LaMa and MAT in capturing

the global context and preserving realistic textures, espe-

cially on challenging Places2 and ImageNet images. It also

outperforms other models in generating instances that are

realistic and visually similar to the original images.

(C) Quantitative Results: Table 1 provides a comparison

of our TransInpaint model with several state-of-art methods.

For a fair comparison, we tested against models on the same

masks. TransInpaint outperforms other methods in terms of

the three evaluation metrics. MAT outperforms other meth-

ods on CelebA, as it achieves a lower LPIPS score. LaMa

performs better than TFill in generating the target instance

on Places2. However, as shown in Table 1 and Figs. 3 and

4, our model can fill missing regions with more visually re-

alistic instances that are close to the original instances, re-

sulting in better LPIPS, FID, and SSIM performance. For

example, on ImageNet, TransInpaint achieves LPIPS and

FID scores of 0.115 and 9.93, respectively, which are 11%
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Figure 5: Left: Comparison of qualitative completion results on CelebA images with large missing regions. Right: Plot of FID score

versus the mask ratio on the CelebA dataset.

and 4% better than other methods. In Fig. 5 (left), it can be

observed that state-of-the-art models cannot reconstruct im-

ages with large missing regions, resulting in distorted out-

puts, while TransInpaint generates plausible outputs with-

out any artifacts. Furthermore, Fig. 5 (right) depicts the

FID score versus the mask ratio. Although MAT has a simi-

lar FID score to our model for the min mask ratio, our image

completion outperforms MAT by a higher margin for large

masks. The high level of TransInpaint performance can be

the result of two factors: (1) our training strategy, and use

of the CT module to generate relevant content for the miss-

ing instances, and (2) the TENet that reuses high-frequency

features. Combining skip features from the encoder with

coarse features from the generator allows for better model-

ing of long-range dependencies and global context.

(D) Ablation Study: Qualitative and quantitative compar-

isons were conducted to justify the effectiveness of our pro-

posed TransInpaint. Table 1 and Figs. 3, and 4 show in-

painting results with and without our proposed modules.

By using CT and TENet networks, our TransInpaint learns

to generate texture details in the output image without any

distortions, artifacts, or blurriness. In particular, without

the CT module, our TransInpaint model cannot have sat-

isfactory performance on images with multiple objects or

complex textures. For example, without the CT module on

Places2, our model has a FID of 10.97. On the other hand,

without the TENet module, TransInpaint struggles with tex-

ture reconstruction (FID of 15.84 on ImageNet). Moreover,

as the qualitative evaluations in Figs. 3, and 4 show, our

FSM module plays a pivotal role in achieving high-quality

inpainting results, particularly in the generation of repeating

textures. The use of skip connections in the FSM enhances

the flow of information between the layers, facilitating ef-

ficient feature reuse and preserving structural information.

Use of the FSM in our model results in 21% improvement

of FID on the Places2. The proposed modules are the key

components of our framework and play an important role in

reconstructing the texture of the original image.

(E) Visual Inspection: We perform a user study against

other models to more accurately assess the subjective qual-

ity. We take twentyfive masked images at random from the

TFill

LaMa

MAT

CR-Fill

O
u
rs
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Figure 6: The results of a study on visual inspection. The values

represent the preference for the comparison pair.

Places2 test set. Different approaches are used to produce

reconstructed outputs for a test image. In this assessment,

participants are given two separate generated images at the

same time, one created by our model and the other by one of

the baselines. Participants are asked to select the most pho-

torealistic and visually natural image. We collect responses

from thirty participants and calculate the ratios of each ap-

proach using the data given in Fig. 6. Our model has 69%
likelihood to be selected.

5. Conclusion
We have proposed a new Context-adaptive Transformer

(TransInpaint) for image inpainting. Rather than filling up

the damaged regions of an image with surrounding textures,

TransInpaint synthesizes context-adaptive visual contents.

TransInpaint provides high prediction accuracy while pre-

serving the pixels with the least uncertainty using our pro-

posed context-adaptive transformer and transformer-based

feature enhancement network, resulting in high-quality and

plausible completion. Through a set of experiments on three

challenging benchmarks, we show that TransInpaint pro-

vides an advantage over the baseline models. Although our

model has demonstrated superior performance compared

to existing state-of-art approaches, it still faces limitations

when it comes to accurately reconstructing complex shapes,

such as the intricate details of animal eyes. We are moti-

vated to address this challenge as part of our future work

by leveraging the power of diffusion techniques to capture

these intricate structures, thereby enhancing the realism and

quality of completed images.
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