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Abstract

Medical image segmentation serves as a crucial under-
pinning for a myriad of clinical applications. The ad-
vent of deep learning techniques has significantly propelled
advancements in this field. However, challenges persist
due to the limited availability of labelled medical imag-
ing data and the substantial cost of data annotation. This
paper introduces a novel semi-supervised learning strat-
egy, amalgamating pseudo-labelling and contrastive learn-
ing with a consistency regularization framework. This inno-
vative approach incorporates a modified contrastive learn-
ing strategy and a confidence-aware pseudo-labeling strat-
egy, both of which are integrated into a dual-segmentation
network ensemble learning structure. Inspired by the
recent success of self-attention mechanisms, we harness
the power of the Vision Transofmer(ViT) within our pro-
posed semi-supervised framework, and conduct a compre-
hensive comparison among various combinations of ViT
and Convolutional Neural Network(CNN) with the pro-
posed strategy. The efficacy of our proposed method is
validated using a publicly available medical image seg-
mentation dataset, where it demonstrates state-of-the-art
performance against established methods. The proposed
method, all baseline methods, and dataset are available at
https://github.com/ziyangwang007/CV-SSL-MIS.

1. Introduction
Medical image segmentation is a fundamental facet of

computer-aided diagnosis, facilitating precise identification

and quantification of anatomical structures and patholog-

ical regions within medical imaging. The segmented im-

ages gleaned from this process are instrumental in a broad

range of clinical applications, including treatment planning,

disease monitoring, and surgical navigation. Over the past

*Ziyang Wang and Congying Ma are joint first authors, and contribute
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decade, deep learning techniques, primarily CNN, have pro-

foundly transformed the field, attaining state-of-the-art per-

formance in a myriad of segmentation tasks [6, 24, 27, 33].

Despite these advancements, CNN-based segmentation net-

works exhibit certain limitations in modelling global con-

text information due to their local receptive fields and inher-

ent spatial invariance, as outlined in recent studies [6,22,23,

38, 42]. As a result, contemporary research has shifted its

focus towards self-attention-based approaches [12, 54, 56],

examining the potential of ViT to model long-range depen-

dencies for medical image segmentation [3, 5, 23, 51].

Despite advancements in segmentation network, apply-

ing deep learning methods to medical image segmentation

is hindered by the limited availability of labelled medi-

cal imaging data. Obtaining such data is labour-intensive

and time-consuming, often requiring manual annotation

by expert radiologists [1]. This constraint has driven re-

search towards developing semi-supervised learning meth-

ods, which can exploit both labelled and unlabelled data

to improve segmentation performance [18, 20, 21, 31, 37],

among which series of consistency-based concepts have

been proposed. Aimed at further improving performance

under different data situations, other studies proposed self-

supervised learning [4, 15] and multi-task learning [7, 28],

which can further improve feature learning performance.

The incorporation of consistency learning and contrastive

learning have been tackled in recent studies, employing a

basic contrastive learning framework or taking contrastive

learning as a pre-trainning strategy [19]. Deploying consis-

tency learning and contrastive learning simultaneously with

corresponding backbone networks for image segmentation

with semi-supervised fashion, however, should be further

explored.

In this paper, we introduce a novel approach to

semi-supervised medical image segmentation: the Dual-

contrastive Dual-consistency regularization ensemble Dual-

Vision Transformer, named 3D-ViT. This method amalga-

mates the strengths of consistency and contrastive learning

to optimize the utilization of limited annotations. To de-
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velop a contrastive learning strategy within a consistency

learning framework, the primary goal is to encourage the

consistency between sub-networks to the large extent. The

3D-ViT incorporates a confidence-aware pseudo-labelling

strategy through and a robust contrastive learning strategy,

both of which are based on domain-adaptive data augmen-

tations. The key contributions of this paper are as follows:

1. Dual-Consistency Learning: The introduced dual-

consistency learning reinforces prediction uniformity

across sub-networks and perturbed input images. For

a best compatibility with the contrastive learning, en-

sembled pseudo labels, generated via weakly aug-

mented images and masked with a confidence thresh-

old, are utilized for unlabelled data.

2. Dual-Contrastive Learning: We propose an en-

hanced contrastive learning strategy via two pairs of

projectors, seamlessly integrated into semi-supervised

frameworks to bolster feature learning performance,

which acts on image-level feature maps and exploits

both labelled and unlabelled data via comparisons be-

tween weak and strong augmentations.

3. Dual-Transformer: Building upon the successes of

self-attention mechanisms [3], we investigate ViT’s

potential in segmentation tasks. For a fair and com-

prehensive comparison, we probe both ViT-based and

CNN-based segmentation networks with identical ar-

chitecture and diverse learning schemes, showcasing

that our proposed 3D-ViT surpasses CNN or combi-

nation of CNN & ViT with an ablation study. The

framework is robust over diverse combinations of sub-

networks, surpassing most selected baseline methods.

4. Performance: We evaluate the efficacy of the pro-

posed 3D-ViT on a public cardiac segmentation dataset

[1]. We compare its performance against various

existing methods [10, 31, 36, 37, 39, 40, 44–47, 53,

55], demonstrating that the 3D-ViT outperforms other

semi-supervised methods. We conduct our experi-

ments under identical hyper-parameter settings and

data conditions, employing multiple evaluation met-

rics. The code for 3D-ViT and all baseline methods

are available for further research and exploration.

2. Related Work
Segmentation Network: Image semantic segmentation

has been extensively studied in recent years, with the pri-

mary focus on developing deep-learning-based networks

for accurate and robust segmentation. The development

of CNN-based segmentation networks such as FCN [24],

DeepLab [6], U-Net [33], and V-Net [27] have signifi-

cantly contributed to the success of medical image segmen-

tation. Various advanced techniques to further improve per-

formance, such as 3D CNN [11], Atrous CNN [43], residual

connections [13], attention mechanisms [29], and densely

connected [16], have also been explored in segmentation

networks, achieving state-of-the-art results on CT, MRI, and

ultrasound tasks [27, 33, 48]. Recent research has also fo-

cused on applying self-attention mechanisms [38], for im-

age processing tasks, such as ViT [12]. ViT-based net-

works thus have been further explored for dense prediction

downstream tasks, such as Swin-Transformer [23], and Seg-

Former [51]. Within the realm of medical image analysis,

most studies have sought to integrate traditional CNN tech-

niques with ViT, resulting in networks like TransUNet [5]

and SwinUNet [3,23]. In this paper, we construct segmenta-

tion networks based on classical encoder-decoder U-shaped

networks, enriched with ViT layers. We further incorporate

CNN layers to provide a fair comparison and demonstrate

the efficacy of our proposed 3D-ViT.

Contrastive Learning: Contrastive learning has

emerged as a powerful tool for learning robust and dis-

criminative feature representations, and it is a form of self-

supervised learning [30]. The key idea is to learn an em-

bedding space where similar images are pulled closer to-

gether, while dissimilar images are pushed apart. This ap-

proach has been successful in various tasks, including self-

supervised learning for feature representation [9, 14], and

unsupervised domain adaptation [17]. In medical image

analysis, contrastive learning has been employed to tackle

challenges associated with limited annotations and to en-

hance feature learning capabilities, thereby improving per-

formance [4, 15, 52]. Researchers have also investigated

various strategies for contrastive learning, such as different

augmentation techniques, similarity metrics, and negative

sample mining, to further enhance the effectiveness of the

networks [25, 49]. Our proposed 3D-ViT utilizes two pairs

of projectors for two comparisons for contrastive learning

on image-level feature information to fully improve feature

learning performance.

Semi-Supervised Learning: Semi-supervised learning

has gained significant attention as a means to address the

scarcity of labelled data in medical imaging applications.

Early works in this field include the use of temporal en-

sembling [20], Mean Teacher [37], uncertainty-aware mean

teacher [53], and Deep Co-Training [31]. More recent ap-

proaches have leveraged adversarial training [18, 44] and

pseudo-label-based methods such as cross pseudo super-

vision [10] to tackle unlabelled data under consistency-

aware concerns. The primary goal of semi-supervised ap-

proaches is to enforce consistent inference for perturbed

versions of the same unlabelled data or networks. Re-

cent studies have also explored semi-supervised learning to

the feature learning power of ViT-based segmentation net-

works [26, 47, 48]. The proposed 3D-ViT extends the con-
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Figure 1. The Framework of the 3D-ViT for Semi-Supervised Medical Image Segmentation.

sistency concern with data perturbation (weak and strong

image augmentation) and simultaneously network perturba-

tion (two separate ViT) in a semi-supervised framework as

dual-consistency learning.

3. Approach
The framework of 3D-ViT is briefly illustrated in Fig-

ure 1. In the semi-supervised study, (Xl,Yl) ∈ L, (Xu) ∈
U, and (Xt,Yt) ∈ T typically denote the labelled train-

ing dataset, unlabelled training dataset, and testing dataset,

respectively. Here, X ∈ R
h×w represents a 2D grayscale

image, and Yl,Yt ∈ N
h×w
4 represents a 4-class ground

truth segmentation mask with pixel values ranging from 0

to 3. pp, ps and Yp are the predicted probability distri-

bution, feature with softmax activated, and the predicted

segmentation mask by a segmentation network given X as

f(θ) : X �→ pp �→ ps �→ Yp with the θ as parameters.

Two segmentation networks f are based on ViT-based net-

work but initialized separately as fV a(θ1) and fV b(θ2). A

pair of projectors p(·) is introduced to each network to ex-

tract representation features of pp for the labelled and un-

labelled training sets, respectively, for contrastive learning

purposes. The overall losses are categorized as supervi-

sion loss Ls, self-supervised contrastive loss Lc, and semi-

supervised pseudo labelling lossLp, and the final evaluation

is conducted by calculating the difference between the pair

of (Yp,Yt) on the test set. In the following sections, sub-

scripts or superscripts−l or−u are used to denote variables

on labelled or unlabelled training sets, and −s and −w are

used to denote variables processed by strongly or weakly

augumentation. The details of dual-contrastive learning

about p(·), Lc, dual-consistency learning about Lp are dis-

cussed in the following subsections, respectively.

3.1. Training Objective

The training objective of the proposed 3D-ViT is to min-

imize the sum of the supervision loss Ls, self-supervision

via contrastive learning loss Lc, and the semi-supervision

via pseudo labelling loss Lp. The sum of loss is indicated

in Eq. 1. A pair of optimizers then aim to minimize the

total loss by updating the parameters of a pair of segmenta-

tion networks (fV a(θ1), fV b(θ2)) and the parameters of two

pairs of projectors (pV a
l (·), pV a

u (·)) and (pV b
l (·), pV b

u (·)) for

dual-ViT.

L = LV a
s + LV b

s︸ ︷︷ ︸
s

+λ1Lc−1

labelled︷ ︸︸ ︷
+ λ1 (λ2Lc−u︸ ︷︷ ︸

self

+ LV a
p + LV b

p︸ ︷︷ ︸
semi

unlabelled︷ ︸︸ ︷
)

(1)

where Ls is for labelled training set via supervised learn-

ing, Lp is for unlabelled training set via semi-supervised

learning, Lc−l and Lc−u represent the contrastive learn-

ing loss for labelled and unlabelled training sets via self-

supervised learning, respectively. λ1 and λ2 (initial values

set as 1 and 0.1) are associated with a ramp-up function [34]

for solely unlabelled training set enabling the whole 3D-ViT

to be initialized from the labelled training set and gradually

to be shifted to focusing on learning from the unlabelled

training set. The supervision loss Ls is the sum of the train-

ing losses LV a
s and LV b

s of two networks on the labelled

training set (Xl,Yl) ∈ L, illustrated as:
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Ls = LV a
s + LV b

s

= CE(Yl, pV a−l
p ) + Dice(Yl, pV a−l

s )

+ CE(Yl, pV b−l
p ) + Dice(Yl, pV b−l

s ) (2)

where CE and Dice represent the CrossEntropy-based

and DiceCoefficient-based difference measures. TheLc and

Lp are discussed in 3.2 and 3.3, respectively.

3.2. Dual-Consistency Learning

Inspired by the consistency-aware concept of two net-

works cross-teaching each other via pseudo labels [10, 26,

36], and for better integration with contrastive learning, we

leverage the consistency learning via both image perturba-

tion and network perturbation simultaneously.

Consistency under image perturbation is achieved by

high-confidence pseudo-labelling. With the same weak and

strong augmentation strategy for contrastive learning, two

networks’ predictions on a weakly augmented unlabelled

image are merged and considered as a pseudo label to su-

pervise the prediction of the same image which is strongly

augmented. The augmentation implementation is detailed

in Section 4.2. To generate a pseudo label, the softmax

probability map ps of each weakly augmented image is nor-

malized and masked with a threshold to retain local predic-

tions with high confidence; the procedure is denoted as m(·)
and the threshold is set as 0.95. Then the masked probability

maps from two networks are merged to generate a pseudo

label. The generation of the pseudo label is illustrated in

Eq. 3:

Yp = argmax
(
m(pV a−u

s ) +m(pV b−u
s )

)
(3)

The pseudo labels are masked and merged to 1) handle

uncertain predictions and stabilise the training procedure

with only high confidence predictions utilized; 2) increase

the consistency of the two networks by using an ensem-

bled pseudo label to improve the performance of contrastive

learning [14]. The above process enforces consistency be-

tween the network’s predictions under different data aug-

mentations, which helps the network learn more robust and

discriminative features.

Consistency under network perturbation is established

via two networks cross teaching where the sum of semi-

supervised consistency loss is illustrated in Eq. 4:

Lp = LVa
p + LVb

p

= CE(Yp, pV a−u
p ) + Dice(Yp, pV a−u

s )

+ CE(Y, pV b−u
p ) + Dice(Yp, pV b−u

s ) (4)

where LVa
p and LVb

p represent the semi-supervision

losses for fV iTa and fV iTb by the merged pseudo label, re-

spectively.

3.3. Dual-Contrastive Learning

Contrastive learning has emerged as a prominent tech-

nique in numerous computer vision tasks, particularly when

annotated data is scarce [41, 52]. The fundamental idea be-

hind this approach is that an input image subjected to var-

ious augmentations should yield similar feature represen-

tations when processed by a neural network encoder while

maintaining dissimilarity with the feature representations of

distinct images [4]. To capture this notion, an appropriate

contrastive loss function is formulated, and the projector is

trained using raw data to minimize this loss, thereby im-

proving the network’s learning capabilities [8]. In our pro-

posed dual-contrastive learning strategy, two pairs of pro-

jectors, (pV iTa
l (·), pV iTa

u (·)) and (pV iTb
l (·), pV iTb

u (·)), are

added to two separate ViTs to extract image-level feature

maps, which are then used to measure the similarity of two

augmented images within a feature space. The InfoNCE

loss [4] is used for this purpose, illustrated in Eq. 5.

Lc = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

(5)

Where either q and k are two batches of representa-

tion features generated by either pair of projectors (pV a
l (·),

pV b
l (·)) or (pV a

u (·), pV b
u (·)); the similarity between them is

measured by dot product. (q · k+) represents the similarity

between a positive sample pair, and (q · ki) represents the

similarity between a negative sample pair. Within a train-

ing batch, feature representations of the same image from

different networks, with weak or strong augmentations are

considered to be positive pairs, and feature representations

for different images are negative pairs. We construct con-

trastive learning between and within the two networks. For

labelled data, the comparison is between feature represen-

tations of weakly augmented images generated by separate

networks; for unlabelled data, the comparison is between

representations of weakly and strongly augmented images,

generated from the same network while via different pro-

jectors, as shown in Figure 1. Two contrastive loss mecha-

nisms are employed. For labelled data, the encoders gener-

ating both representations are updated end-to-end through

back-propagation. For unlabelled data, inspired by the

MoCo momentum contrast mechanism [14], the projector

which generates the feature for weakly augmented images

is updated as the exponential moving average (EMA) of the

other projector for the same network, while only the pro-

jector generating the feature for strongly augmented im-

ages is updated through back-propagation. With a higher

weight, the contrastive loss for labelled data Lc−l is utilized

to trigger contrastive training and guide the unlabelled data

loss Lc−u. τ is a temperature parameter scaling the sim-

ilarity [50] , set as 0.1, and K is the number of negative

pairs. The architectures of the projectors are identical and
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are developed following VGG-style networks with the same

structure of CNN and dense layers [25, 35].

4. Experiments
4.1. Datasets

The proposed 3D-ViT has been validated on the MRI

Cardiac Segmentation(ACDC) dataset from the MICCAI

Challenge 2017 [1]. It consists of 100 patient MRI scans di-

vided into five different groups (normal cases, heart failure

with infarction, dilated cardiomyopathy, hypertrophic car-

diomyopathy, and abnormal right ventricle) with four anno-

tated classes (right ventricle, myocardium, and left ventri-

cle). This dataset provides a representative benchmark for

evaluating the performance of our method in a challenging

medical image segmentation task. All the images have been

resized to 224×224 considering the ViT input fashion [23].

Figure 2. (a) The Encoder-Decoder Segmentation Network Archi-

tecture. (b) 2 Successive CNN or ViT Layers of Each Encoder or

Decoder Network Block.

4.2. Augmentation Strategy

In 3D-ViT, two categories of data augmentation are em-

ployed: weak and strong augmentations, adapted from

CTAugment [2]. These augmentations serve to 1) gener-

ate multi-view images for contrastive learning and consis-

tency learning, as explained above; 2) generate additional

training examples from the available labelled and unlabelled

data, enhancing the generalization capabilities of the net-

work. In this study, domain-adaptive augmentations are im-

plemented on the dataset. The Weak Augmentation in-

cludes Rescale, Rotate, Affine, etc.; the Strong Augmenta-
tion includes Contrast, Blur, Sharpness, etc. Random times

(within a certain range) of transformations of the above

methods are implemented during either weak augmentation

or strong augmentation. The random range is designed to

both encourage larger feature space with deeper transfor-

mation and ensure consistency meanwhile with shallower

transformations. For image segmentation tasks, the shape

and location of objects in an image should be kept con-

sistent between the two levels of augmentation, for either

purpose of pseudo-labeling or contrastive learning. Hence,

weak-augmented images are set as inputs for the strong aug-

mentation, where no further geometric transformations (e.g.

flips, affine) are involved. The strength and times of trans-

formations are decaying during training.

4.3. Implementation

The experiments are conducted using PyTorch on 4

Nvidia GeForce RTX 3090 GPUs and an Intel Core i9-

10900K CPU. The run times average around 5 hours for

30,000 iterations. The batch size is set to 24, and the op-

timizer is SGD [32], with a learning rate of 0.01, momen-

tum of 0.9, and weight decay of 0.0001. The networks are

evaluated on the validation set every 200 iterations, and the

network with the best performance is selected as the final

network for testing. All the baseline methods and 3D-ViT

are trained to employ the same hyperparameters, which in-

clude the segmentation network, optimizer, learning rate,

batch size, and the number of iterations. The labeled train-

ing set, unlabeled training set, validation set, and test set are

randomly selected, and the list of images for each set can be

accessed.

4.4. CNN & ViT Segmentation Network

For the experiment, we utilize ViT and CNN layers

within a unified Encoder-Decoder style segmentation net-

work architecture, outlined in Figure 2, to facilitate a fair

comparison [44]. For each level of the encoder or decoder,

we employ two successive 3× 3 convolutions, dropout, and

batch normalization to construct the CNN-based network

block. Alternatively, we use layer normalization, shift-

window-based multi-head self-attention, residual connec-

tion, and multi-layer perception to construct the ViT-based

network block. This results in pure CNN- or ViT-based

UNet structures [3, 33].

4.5. Comparison with Baseline

Dice Coefficient(Dice), Intersection over Union(IoU),

Accuracy(Acc), Precision(Pre), Sensitivity(Sen), Speci-

ficity(Spe), and Average Surface Distance(ASD) are uti-
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Figure 3. Example Raw Images with Corresponding Inferences Against Ground Truth of Each Method.

Table 1. The Performance of All Baseline Methods and 3D-ViT on MRI Cardiac Test Set When 20% of Training Set is Annotated.

Network Dice↑ IoU↑ Acc↑ Pre↑ Sen↑ Spe↑ ASD↓
DAN [55] 0.8965 0.8124 0.9958 0.9052 0.8896 0.9735 1.9143

ADVENT [40] 0.9027 0.8227 0.9961 0.9155 0.8927 0.9740 1.8744

ICT [39] 0.9020 0.8215 0.9960 0.9103 0.8966 0.9749 2.2401

MT [37] 0.8949 0.8098 0.9958 0.9087 0.8837 0.9719 2.3086

UAMT [53] 0.9036 0.8242 0.9960 0.9098 0.8993 0.9756 2.1622

CPS [10] 0.9126 0.8392 0.9965 0.9179 0.9084 0.9790 1.6037

TVL [46] 0.9185 0.8493 0.9967 0.9152 0.9220 0.9842 1.8044

DCN [31] 0.8982 0.8152 0.9958 0.9100 0.8900 0.9724 2.2003

UAMTViT [47] 0.8921 0.8052 0.9958 0.8971 0.8881 0.9768 18.5518

CAAViT [44] 0.8956 0.8109 0.9959 0.9016 0.8903 0.9763 20.1265

CESSViT [45] 0.9107 0.8360 0.9964 0.9041 0.9178 0.9842 16.7005

3D-ViT 0.9295 0.8722 0.9973 0.9274 0.9319 0.9878 1.1525

lized as metrics. Our proposed method is compared with

other semi-supervised frameworks, including Deep Adver-

sarial Network (DAN) [55], Adversarial Entropy Minimiza-

tion for Domain Adaptation(ADVENT) [40], Interpolation

Consistency Training(ICT) [39], Mean Teachers (MT) [37],

Uncertainty-Aware Mean Teachers (UAMT) [53], Cross

Pseudo Supervision(CPS) [10], Deep Co-Training (DCN)

[31], Triple-View Learning(TVL) [46], UAMTViT [47],

CAAViT [44], and CESSViT [45]. For a fair comparison,

the segmentation backbone networks for all baseline semi-

supervised frameworks are based on CNN-based UNet [33]

and Swin ViT-based UNet [3] without any modification.

The detailed results are reported in Table 1, where all base-

line methods are compared directly with 3D-ViT when 20%

of training data is assumed as labelled data, and ↑, ↓ repre-

sent the higher/lower, the better. Different data situations

with 20%, 30%, and 50% of training data as labelled data

are further explored and reported in Table 2. The best per-

formance is highlighted in bold, and the second-best per-

formance of 3D-ViT is underlined. The quantitative re-

sults demonstrate that 3D-ViT outperforms all other base-

line methods on various metrics under different data situa-

tions. To provide a more exhaustive assessment, we eval-

uated each prediction and present the distribution of IoU

in Figure 4. The X-axis represents the IoU threshold, and

the Y-axis signifies the number of predicted images corre-

sponding to each threshold. The upper subfigure in Figure 4

displays the number of predictions where the corresponding
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Table 2. The Performance of All Baseline Methods and 3D-ViT on MRI Cardiac Test Set Under Different Data Situations.

Labelled 20% 30% 50%

Network Dice↑ IoU↑ ASD↓ Dice↑ IoU↑ ASD↓ Dice↑ IoU↑ ASD↓
DAN [55] 0.8965 0.8124 1.9143 0.9093 0.8337 1.8898 0.9204 0.8525 1.3368

ADVENT [40] 0.9027 0.8227 1.8744 0.9177 0.8479 1.7516 0.9250 0.8605 1.3544

ICT [39] 0.9020 0.8215 2.2401 0.9153 0.8438 1.6228 0.9215 0.8544 1.5970

MT [37] 0.8949 0.8098 2.3086 0.9120 0.8382 1.7767 0.9121 0.8384 5.0554

UAMT [53] 0.9036 0.8242 2.1622 0.9145 0.8425 1.5430 0.9241 0.8589 1.2174

CPS [10] 0.9126 0.8392 1.6037 0.9172 0.8471 3.3960 0.9255 0.8613 1.0584
TVL [46] 0.9185 0.8493 1.8044 0.9186 0.8495 1.8636 0.9276 0.8650 2.3329

DCN [31] 0.8982 0.8152 2.2003 0.9119 0.8381 2.2896 0.9221 0.8555 2.9990

UAMTViT [47] 0.8921 0.8052 18.5518 0.9029 0.8230 17.5107 0.9173 0.8472 13.4582

CAAViT [44] 0.8956 0.8109 20.1265 0.9098 0.8345 1.8804 0.9252 0.8608 1.3828

CESSViT [45] 0.9107 0.8360 16.7005 0.9128 0.8396 13.2589 0.9210 0.8536 10.6794

3D-ViT 0.9295 0.8722 1.1525 0.9316 0.8756 1.1263 0.9328 0.8777 1.1215

Figure 4. The IoU Distribution of Corresponding Inference

Against Ground Truth of Each method.

IoU performance is equal to or lower than the IoU thresh-

old. The bottom subfigure of Figure 4 illustrates the num-

ber of predictions whose IoU performance exactly matches

the IoU threshold. These results underscore that our pro-

posed 3D-ViT method is more inclined to generate predic-

tions with high IoU values, thereby reinforcing its superior

performance in comparison to other methods.

Some qualitative results, i.e., example images of infer-

ence against ground truth, are depicted in Figure 3, where

yellow, red, green, and black indicate the true positive, false

positive, false negative and true positive pixels; (a) repre-

sents input raw images, and (b-m) represents each baseline

method and 3D-ViT following the same order of Table 1.

4.6. Ablation Study

To elucidate the individual and collective contributions

of network structures and learning strategies in our pro-

Figure 5. Illustrations of Two (a) and One (b) Pairs of Projectors.

posed 3D-ViT, we undertake an ablation study on the case

with 20% labelled data. For a fair comparison, we fur-

ther investigate not only the ViT-based 3D-ViT, but also

CNN-based network. Additionally, we scrutinize the im-

pact of contrastive learning schemes, comparing scenarios

in which they are utilized with or without labelled or un-

labelled contrastive learning losses. The results of our in-
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Table 3. Ablation Study on the 3D-ViT for Semi-Supervised Image Segmentation When 20% of Training Set is Annotated.

Dual Network Contrastive Learning
Dual Projectors mDice↑ mIOU↑

CNN ViT Lc−l Lc−u

�× 2 - 0.9278 0.8695

�× 2 � 0.9242 0.8634

�× 2 � � 0.9260 0.8664

�× 2 � � � 0.9257 0.8657

� � - 0.9267 0.8676

� � � 0.9260 0.8664

� � � � 0.9263 0.8669

� � � � � 0.9260 0.8664

�× 2 - 0.9283 0.8623

�× 2 � 0.9288 0.8710

�× 2 � � 0.9280 0.8697

�× 2 � � � 0.9295 0.8722

Figure 6. The Performance of 3D-ViT Compared to Fully Super-

vised under Various Data Situations with Dice.

quiry are illustrated in Table 3. A single checkmark (�)

within the Dual Network column signifies the mandatory

employment of segmentation networks, encompassing hy-

brid CNN or ViT segmentation networks, along with vary-

ing contrastive learning schemes; double checkmarks (�×
2) denote a framework constructed with two identical archi-

tecture backbone networks, i.e. 3D-ViT or an extended 3D-

CNN. A checkmark (�) within the Dual Projectors column

indicates separate projectors for labelled and unlabelled set

in a sub-network (Figure 5 (a)), as 3D-ViT. Otherwise the

two sets share a single projector (Figure 5 (b)). The ablation

study demonstrates insights into the individual and joint ef-

fects of proposed design and contributions. As shown in

Table 3, overall, the performance of 3D-ViT is remark-

ably higher than all the baselines in Table 1 with the same

amount (20 %) of labelled data, and higher or compara-

ble to the performance of baselines with 50% labelled data,

among which the architecture with two ViTs and separate

projectors (3D-ViT) performs the best. The cases without

contrastive learning (the first, fifth and ninth rows) prove

the success of the consistency learning strategy. Further-

more, we illustrated the full range performance of 3D-ViT

against the best performance it can attain (fully supervised),

as shown in Figure 6. With only 1 % labelled data, the net-

work achieves dice near 90 %, and with only 5 % labelled

data, the network performs better than most of the base-

lines with 20 % labelled data. As shown in Figure 6, the

network can achieve near-perfect performance with limited

data. However, from Table 3, although the proposed learn-

ing strategies are robust across diverse constructions, only

the setting with two ViTs can make good use of contrastive

learning upon the confidence-aware pseudo labelling. Ex-

cept the structures with two ViTs, the performance between

one and two pairs of projectors are comparable, which is

reasonable as the power of contrastive learning has not been

fully utilized.

5. Conclusion
In this paper, we proposed 3D-ViT, a novel contrastive

consistency segmentation transformer that effectively uti-

lizes limited annotations for medical image segmentation.

By incorporating a modified dual-contrastive learning strat-

egy and a dual-consistency scheme, our method promotes

the development of robust feature representations and en-

sures prediction consistency across perturbed input im-

ages. The dual-ViT is also explored within the proposed

framework and validates its promising performance against

other semi-supervised methods with various combinations

of CNN- or ViT-based networks. The 3D-ViT achieves

state-of-the-art performance to the best of our knowledge.

We look forward to validating the 3D-ViT in other limited-

annotation situations such as weakly-supervised learning.
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