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Abstract

This paper presents a module, Spatial Cross-scale Con-
volution (SCSC), which is verified to be effective in improv-
ing both CNNs and Transformers. Nowadays, CNNs and
Transformers have been successful in a variety of tasks. Es-
pecially for Transformers, increasing works achieve state-
of-the-art performance in the computer vision community.
Therefore, researchers start to explore the mechanism of
those architectures. Large receptive fields, sparse connec-
tions, weight sharing, and dynamic weight have been con-
sidered keys to designing effective base models [39, 24, 63,
44]. However, there are still some issues to be addressed:
large dense kernels and self-attention are inefficient, and
large receptive fields make it hard to capture local features.
Inspired by the above analyses and to solve the mentioned
problems, in this paper, we design a general module tak-
ing in these design keys to enhance both CNNs and Trans-
formers. SCSC introduces an efficient spatial cross-scale
encoder and spatial embed module to capture assorted fea-
tures in one layer. On the face recognition task, FaceResNet
with SCSC can improve 2.7% with 68% fewer FLOPs1 and
79% fewer parameters. On the ImageNet classification task,
Swin Transformer with SCSC can achieve even better per-
formance with 22% fewer FLOPs, and ResNet with CSCS
can improve 5.3% with similar complexity. Furthermore, a
traditional network (e.g., ResNet) embedded with SCSC can
match Swin Transformer’s performance.

1. Introduction

Vision transformers have achieved impressive break-

throughs in a variety of tasks, including classification, ob-

ject detection, segmentation, video action recognition, and

etc. [19, 49, 39], making transformers promising backbones

for vision applications. Transformers have a strong repre-

sentation ability for their special designs, supporting a va-

riety of data forms (tensor, set, sequence, graph, and etc.),

1The number of multiply-adds operations. ∗Equal contribution. This

work was completed when Xijun Wang was an intern at MEGVII.

and being robust to blocks and noise [12, 18, 57, 42]. As

a result, more and more researchers are trying to figure out

what makes transformers so powerful. Han et al. [24] and

[63] analyze vision transformers from the respective of re-

ceptive fields, sparse connectivity, weight sharing, and dy-

namic weight, which has been considered as desired prop-

erties in model architecture design.

For receptive field, [19, 39, 17, 46] have shown that large

kernels can efficiently introduce large receptive fields and

can partially avoid the optimization problem caused by the

increase of model depth. [46, 13, 8, 43, 6] has proved that

large kernel (kernel size ≥ 5×5) applied to CNN can obtain

competitive performance, especially for downstream tasks.

However, the intensive computational cost of large dense

kernels makes it hard to be widely used in practice. For

Transformer, multi-head self-attention layer can simulate a

convolutional layer by linear projection operations [12], to

some extent, transformer acts like a global receptive field

CNN network. But the high computational cost of self-

attention still hinder transformers to be applied in practice.

To alleviate the intensive computational complexity, [39]

and [24] have explored the sparse connectivity property,

[39] proposed shifted windowing scheme by limiting self-

attention computation to local windows. And [24] utilizes

7 × 7 depth-wise convolution[9, 28] to simulate the local

window scheme. However, the efficiency and spatial mod-

eling ability still can be improved. Moreover, the receptive

field in one layer could be more diverse.

For weight sharing, both CNN and Swin-Transformer

[39] have applied weight sharing mechanism to obtain com-

putational efficiency. The difference is CNNs share weights

across spatial dimension while Swin-Transformer shares

weight across channel dimension.

For dynamic weight, there are many works [30, 32, 59,

3] illustrate its effectiveness on CNN. And transformers’

self-attention structure uses dynamic weight for each input

instance so that model capacity is increased.

To conclude, all the four properties listed above in var-

ious architectures have potential to improve performance

or efficiency. Convolution is efficient because of its spa-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Illustration of Spatial Cross-scale Convolution Module (SCSC) with different receptive fields in one layer. First, we decrease the

input feature maps’ channel to get the channel reduced features maps, which can save the channel-wise convolution computational cost.

Second, we apply m different Spatial encoder to get m different receptive fields feature maps. Third, we use Spatial Embed Module to

merge the m feature maps to get the embedded feature maps. Finally, we recover the channel number as same as the input feature maps to

get the output feature maps.

tial sharing pattern, and transformers have a large capacity

because of their self-attention’s large receptive field and dy-

namic scheme. Therefore, convolution and self-attention

have complementary qualities, and a well-designed module

that combines all desirable properties is possible.

To deal with all the above limitations and exploit com-

plementary qualities of Transformer and CNN once for all,

in this work, we propose a Spatial Cross-scale Convolu-

tion Module (SCSC), which can capture microscopic and

macroscopic feature representation synchronously without

intensive computational cost. As shown in Figure 1, for

SCSC, different from the mainstream CNN’s small kernel

size or the Transformer’s global receptive field, we design

an intermediate expression for the receptive field and spatial

modeling ability by using a wide range of kernel sizes from

3×3 to 13×13, depth-wise convolution is applied for its ef-

ficiency. Small kernels (e.g., 3× 3) have advantage in mod-

eling low-level and detailed information as shown in the up-

per red path in Figure 1, large kernels (e.g., 13 × 13) can

handle the semantic dependence in a large receptive field

as shown in the lower green path in Figure 1. Therefore,

keeping both of them can obtain diverse spatial represen-

tations. Furthermore, we design an efficient spatial embed

module to aggregate the different spatial representation fea-

tures, which can capably integrate different levels of infor-

mation. As a result, in our proposed SCSC, we can acquire

different receptive fields in one layer, share weight in both

spatial-wise and channel-wise, exploit depth-wise convolu-

tion to hold the sparse connectivity property, and apply the

spatial embed module to bring dynamic connection across

the channel dimension.

Moreover, we have evaluated the proposed SCSC in dif-

ferent tasks. On ImageNet classification, Swin-T embedded

with SCSC obtains 81.6% (VS Swin-T: 81.3%) Top-1 ac-

curacy with 22% (1G) fewer FLOPs. ConvNet embedded

with SCSC obtains 82.3% Top-1 accuracy. On MS1M face

recognition, FaceResNet embedded with SCSC achieves

95.6% (VS FaceResNet: 92.6%) rank-1 face identification

accuracy with 68% fewer FLOPs and 79% fewer param-

eters . On COCO detection, Swin-SCSC with Mask R-

CNN gains 43.2% (VS Swin-T: 42.7) box AP with 23G

fewer FLOPs. On ADE20K segmentation, ResNet-SCSC

achieve 45.7% mIoU (VS Swin-T: 44.4%). These experi-

ments demonstrate the effectiveness of our proposed SCSC.

To summarize, we make the following contributions:

1) Present a high capacity and effective convolution mod-

ule SCSC, which can dynamically combine a large range

of receptive fields (pixel-wise) in one layer to enhance the

presentation ability.

2) Architectures applied with SCSC can obtain better per-

formance with fewer computational cost and parameters.

Furthermore, SCSC is a general module and can be applied

to strengthen both CNNs and Transformers.

3) SCSC module can power the classical neural networks

(e.g., ResNet50) to achieve comparable performance with

strong Transformers (e.g., Swin).
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2. Related Work

2.1. Vision Transformers

Recently, increasing Vision Transformers obtain state-

of-the-art performance on visual tasks [34, 23]. To improve

the original vision Transformer (ViT) [19], [10] offers a

conditional positional encoding (CPE) technique. Unlike

prior fixed or learnable positional encodings, which are pre-

defined and independent of input tokens, CPE is dynami-

cally produced and conditioned by the immediate neighbor-

hood of the input tokens. For self-attention, [14] provides

gated positional self-attention (GPSA), a kind of positional

self-attention that includes a ”soft” convolutional inductive

bias. And [21] presents a new attention mechanism called

external attention, which substitutes self-attention in exist-

ing popular architectures. External attention is linear in

complexity and implicitly considers all data samples’ cor-

relations. By preserving encoder branches at various scales

while engaging attention across scales, [55] introduces a

co-scale mechanism to image Transformers. [62] creates

a progressive tokenization system in order to overcome the

restriction of ViT when training from scratch on a medium-

sized dataset such as ImageNet.

To make Transformer more efficient, [55] introduces

Convolutional Vision Transformer (CvT), which enhances

the performance and efficiency of Vision Transformer (ViT)

by incorporating convolutions into ViT to provide the best

of both designs. [39] proposes a hierarchical Transformer

named Swin Transformer that computes its representation

using Shifted windows. The shifted windowing scheme

brings greater efficiency by limiting self-attention computa-

tion to non-overlapping local windows while also allowing

for cross-window connection, making Swin an efficient and

effective Vision Transformer architecture. To go further,

[17] creates CSWin Self-Attention, which divides multi-

heads into parallel groups and conducts self-attention in

horizontal and vertical stripes.

For different transformers design and learning strategies,

[49] constructs competitive convolution free transformers

DeiTs, which can compete with the state-of-the-art on Im-

ageNet without using any external data at that time. They

also present a transformer-specific teacher-student method.

[51] offers Pyramid Vision Transformer (PVT), which ad-

dresses the challenges of applying Transformer to a va-

riety of dense prediction applications. Moreover, Cross-

Former [52] uses cross-scale convolution as a downsample

(embedding) layer which blends each embedding with mul-

tiple patches of different scales for self-attention module.

Instead of proposing algorithms only to complement the

shortcomings of ViTs, our method absorbs the advantages

of vision transformer (e.g. large receptive field) and go a

further step to benefit both transformer and CNN.

2.2. Large Kernel and Spatial Modeling

In the exploration of large kernels, DetNAS [8] chooses

large-kernel blocks in low-level layers and deep blocks in

high-level layers. [43] discovers that the large kernel (and

effective receptive field) plays a crucial role when we have

to do classification and localization tasks at the same time

(e.g., semantic segmentation). To solve both classification

and localization challenges in semantic segmentation, [43]

presents a Global Convolutional Network. Deeplab [6] ap-

plies ”atrous convolution” with upsampled filters for dense

feature extraction for semantic segmentation and expands

it even further to atrous spatial pyramid pooling, which

stores objects and visual information at several scales. Con-

vNet [40] revisits the use of large kernel-sized (7×7) convo-

lutions and RepLKNet [16] further scale up receptive fields

using 31 × 31re-parameterized large depth-wise convolu-

tions. However, RepLKNet [16] focus on large models with

a large number of parameters (≥ 79M).

To better model spatial information, [13] presents de-

formable ConvNets for modeling dense spatial transforma-

tion to learn receptive fields adaptively. Inception family

(e.g., GoogLeNet [47] and Inception-V4 [46]) extract multi-

scale features by different convolutional kernels and fuse

them statically using concatenation. DRConv [3] learns

a guided mask to assign different customized weights to

different spatial regions for better spatial representation.

SKNet [36] proposes a dynamic selection technique in

CNNs that allows each neuron to modify its receptive field

size adaptively based on different scales of input.

Compared with these methods, we additionally intro-

duce large range of receptive field (especially large recep-

tive field), and consider weight sharing and dynamic mech-

anism at the same time.

2.3. Dynamic Mechanism

With the prevalence of data dependency mechanism [1,

31, 50] , which emphasizes to extract more customized fea-

ture for diverse representation [41]. Benefited from the data

dependency mechanism, networks can flexibly adjust them-

selves, including the structure and parameters, to automati-

cally fit the fickle information to improve the representation

ability of neural networks. [5, 54] indicate that different re-

gions in the spatial dimension are not equally important in

representation learning and should be processed differently.

For instance, activation in important regions needs to be am-

plified to play a dominant role in the forward propagation.

SKNet [36] designs a dynamic module to channel-wisely

select suitable receptive fields based on channel attention

and achieves better performance. It dynamically restruc-

tures the networks for the sake of different receptive fields

with dilated convolutions [60, 61].

From the aspect of dynamic weights, CondConv [59] ob-

tains dynamic weights by the dynamical linear combination
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of several weights. And the specialized convolution kernels

for each sample are learned in a way similar to the mix-

ture of experts. In the spatial domain, to handle object de-

formations, Deformable Kernels [20] directly resamples the

original kernel space to adapt the effective receptive field

(ERF) while leaving the receptive field untouched. Local

Relation Networks [29] adaptively determine aggregation

weights for spatial dimension based on the compositional

relationship of local pixel pairs. Non-local [53] operation

computes the response at each position as the weighted sum

of the features at all positions, which can make it capture

long-range dependencies. Different from above dynamic

methods, apart from dynamic filters, DRConv achieves a

dynamic guided mask to automatically determine the distri-

bution of multiple filters so that it can process variable dis-

tribution of spatial semantics. However, these methods have

high computational and memory complexity which signifi-

cantly limits the efficiency of the model.

2.4. CNN VS Transformers

Apart from designing new Vision Transformers, some

works focus on exploring the relationship between Trans-

former and CNN. [63] performs empirical research on vari-

ous DNN frameworks (e.g., CNN, Transformer, and MLP)

in order to grasp their benefits and drawbacks better. [12]

shows that self-attention layers can learn to behave similar

to convolutional layers. [48] discovers that CNN-based pre-

trained models are competitive and outperform their Trans-

former counterparts in some NLP settings. [24] recasts lo-

cal attention as a channel-wise locally-connected layer and

empirically find that the models based on depth-wise con-

volution with lower processing complexity perform on par

with or somewhat better than Swin Transformer. In this pa-

per, we propose an effective general convolution module,

which narrows the gap between CNNs and Transformers.

3. Method
For CNNs and Transformers, CNNs can exploit large

kernels to obtain large receptive fields, and Transformers

can get global receptive fields through self-attention. Nev-

ertheless, both large dense kernels and self-attention mecha-

nisms cannot avoid the high computational cost. Moreover,

large kernels may hinder the model to capture local features.

Therefore, find an efficient way to obtain large effective re-

ceptive fields and keep the feature diversity meanwhile at-

tracts increasing attention.

Since depth-wise convolution is widely used in modern

CNNs for its efficiency and effectiveness, it becomes feasi-

ble solution to introduce large receptive fields without in-

tensive computational cost. As analyzed in [24], depth-

wise convolution can resemble local attention (Local Vision

Transformer, e.g., Swin-Transformer [39]) in sparse con-

nectivity. But the fixed large windows or kernels may not
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Figure 2. Design details of Spatial Cross-scale Convolution Mod-

ule (SCSC).

be a good manner to capture local features and still have

space to be improved.

Therefore, based on depth-wise convolution, we applied

a wide range of kernel size from 3 × 3 to 13 × 13 to ob-

tain effective receptive fields, so as to capture microscopic

and macroscopic feature representation. This way can cap-

ture different receptive fields in one layer and strengthen the

spatial modeling ability. Furthermore, we put forward an

efficient spatial embed module to combine different level

spatial features, which can further enhance the overall pre-

sentation ability.

3.1. SCSC: Spatial Cross-scale Convolution Module

For clear illustration, we split SCSC into four steps:

Channel Reduction, Spatial Cross-scale Encoder, Spatial

Combination, and Channel Recover. Taking a K layers

CNN for example, the input of the kth layer can be denoted

as Xk ∈ R
N×C×H×W , where N, C, H, W are batchsize,

channel, height, and width respectively. As shown in Fig-

ure 2, for Channel Reduction, we use conv 1 × 1 as the

mapping function,

Xk
d = W k

d ⊗Xk, (1)

where ⊗ denotes convolutional operation, Xk
d ∈

R
N×C//m×H×W , m is a constant and means how many
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downsp. rate

(output size)
Swin Swin-SCSC ResNet ResNet-SCSC

stage1
4×

(56×56)

concat 4×4, 96-d, LN[
win. sz. 7×7

dim 96, head 3

]
× 2

concat 4×4, 96-d, LN

SCSC block[
kernel sz.

[3,11]

]
× 2

bottleneck block[
kernel sz.

[1,3]

]
× 3

SCSC block[
kernel sz.

[3,9,13]

]
× 3

stage2
8×

(28×28)

concat 2×2, 192-d, LN[
win. sz. 7×7

dim 96, head 3

]
× 2

concat 2×2, 192-d, LN

SCSC block[
kernel sz.

[3,9]

]
× 2

bottleneck block[
kernel sz.

[1,3]

]
× 4

SCSC block[
kernel sz.

[3,7,11]

]
× 5

stage3
16×

(14×14)

concat 2×2, 384-d, LN[
win. sz. 7×7

dim 96, head 3

]
× 6

concat 2×2, 384-d, LN

SCSC block[
kernel sz.

[3,7]

]
× 6

bottleneck block[
kernel sz.

[1,3]

]
× 6

SCSC block[
kernel sz.

[3,5,7]

]
× 12

stage4
32×

(7×7)

concat 2×2, 768-d, LN[
win. sz. 7×7

dim 96, head 3

]
× 2

concat 2×2, 768-d, LN

SCSC block[
kernel sz.

[3,5]

]
× 2

bottleneck block[
kernel sz.

[1,3]

]
× 3

SCSC block[
kernel sz.

[3,5]

]
× 3

Table 1. Detailed architecture specifications. The kernel size (sz.) of our SCSC can be any combination for the specific tasks, here we just

give some examples.

different kernels in Spatial Cross-scale Encoder. Then we

calculate the Spatial Cross-scale Encoder by

Xk
s =

{
Xk

s1 , ..., X
k
si , ..., X

k
sm

}
, (2)

Xk
si = W k

si ⊗Xk
d , W k

si ∈ R
C//m×C//m×v×v, (3)

in which i ∈ [1,m], v ∈ [3, 13], Xk
si ∈ R

N×C//m×H′×W ′
.

After getting different level spatial features, we design a

Spatial Embed Module to dynamically fuse multi-scale fea-

tures at each spatial position (i.e., pixel level).

Mk = SEM(Xk
d ), (4)

in SEM(), we use 1 × 1 conv to reduce the channel num-

ber to m ∗ g, then apply sigmoid function, the result noted

as Mk ∈ R
N×m∗g×H′×W ′

, g is a constant and means the

combination times, which can bring more dynamic combi-

nations. We reshape the Xk
s to N×g∗H ′∗W ′×C//m//g×

m, and Mk to N × g ∗H ′ ∗W ′ ×m× 1. and then we can

get the embedded feature,

Xk
e = Matmul(Xk

s ,Mk), (5)

where Xk
e ∈ R

N×C//m×H′×W ′
.

Finally, we product Channel Recover operation by

Xk
o = W k

r ⊗Xk
e , (6)

and Xk
o ∈ R

N×C×H′×W ′
. All the operations are differen-

tiable, so our objective function is

min
Wk

d ,Wk
s ,WMk ,Wk

r |Kk=1

1

n

n∑
i=1

L(Yi; Ŷ |Xi), (7)

in which W is the learnable weights, (Xi, Yi), i ∈ [1, n] is

the input image and label, Ŷ is the predicted label. L() is

the loss function.

3.2. Architecture

The proposed SCSC module can be easily embedded

in any existing architecture. As shown in Table 1, taking

the most used CNN ResNet for example, we directly re-

place the original bottleneck block of ResNet-50 with our

SCSC block. For Transformer, we replace the self-attention

with the proposed SCSC module, in which the pre-linear-

projections and post-linear-projections over the values can

be regarded as the 1×1 convolutions in our design.

3.3. Discussion and Limitation

Some existing methods have contributed to exploring the

effectiveness of multi-scale features, but they are subop-

timal in terms of efficiency. For example, PSP [26] and

ASPP [6] use sampling operators (e.g., pooling or atrous

convolution) to efficiently extract multi-scale features, but

this comes with the expense of losing spatial information.

CrossFormer and GoogleNet use resource-intensive oper-

ations, such as regular convolution with large kernels, to

extract multi-scale features, and they fuse them through

static concatenation. However, this approach significantly

increases model parameters.

In contrast, our SCSC approach not only introduces a

wide range of receptive fields for effective representation

learning but also incorporates weight sharing and dynamic

mechanisms for greater efficiency. This allows our model

to achieve high performance while keeping the model size

and computation cost low.

In details, first, our SCSC is compact and effective, the

Channel Reduction step decreases the size of the input fea-

ture maps, and then inputs feature maps into the Spatial

Cross-scale Encoder, which consists of depth-wise convo-
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Model Image Resolution Kernel Size Range Params FLOPs Top-1 Acc. (%)

ResNet-50 [27] 224× 224 1× 1 to 3× 3 26M 4.1G 76.2

ResNet-101 [27] 224× 224 1× 1 to 3× 3 45M 7.9G 77.4

ResNet-152 [27] 224× 224 1× 1 to 3× 3 60M 11.6G 78.3

SKNet-50 [36] 224× 224 1× 1 to 5× 5 27M 4.5G 79.3

SKNet-100 [36] 224× 224 1× 1 to 5× 5 49M 8.5G 79.8

SENet [30] 224× 224 1× 1 to 3× 3 22M 3.9G 79.9

ResNeXt [58] 224× 224 1× 1 to 3× 3 25M 4.2G 80.1

ResNet-SCSC-V1 (Ours) 224× 224 1× 1 to 13× 13 10M 1.7G 79.4
ResNet-SCSC-V2 (Ours) 224× 224 1× 1 to 13× 13 12M 2.2G 80.3
ResNet-SCSC-V3 (Ours) 224× 224 1× 1 to 13× 13 25M 4.5G 81.5

ViT-B/16 [19] 384× 384 Global Receptive Field 86M 55.4G 77.9

ViT-L/16 [19] 384× 384 Global Receptive Field 307M 190.7G 76.5

DeiT-S [49] 224× 224 Global Receptive Field 22M 4.6G 79.8

DW-Conv.-T [24] 224× 224 7× 7 24M 3.8G 81.3

Swin-T [39] 224× 224 Local Window 7× 7 28M 4.5G 81.3

ConvNet-T [40] 224× 224 7× 7 28M 4.5G 82.1

Swin-T-SCSC (Ours) 224× 224 1× 1 to 11× 11 22M 3.5G 81.6
ConvNet-T-SCSC (Ours) 224× 224 1× 1 to 11× 11 28M 4.5G 82.2

Table 2. Comparison of Top-1 classification accuracy with different architectures (CNNs and Transformers) and some state-of-the-art

backbones on ImageNet.

lution with a wide range of kernel size to model the spatial

information. This manner can effectively avoid the inten-

sive computational cost. In the meanwhile, the wide range

of kernel size provides different receptive fields in one layer,

small kernels for the detailed local information, large ker-

nels for the semantic dependence. Furthermore, we design a

dynamic Spatial Embed Module to merge the different spa-

tial information. The proposed SCSC naturally aggregates

the advantage of CNN and Transformer, small kernels and

weight sharing from the CNN, large receptive fields and dy-

namic from the Transformer. However, it still has its limi-

tation: depth-wise convolution may need exceptional accel-

eration in practice.

4. Experiments

In this section, we evaluate the effectiveness of

our proposed SCSC module by embedding it into

the classical CNN backbones (ResNet-50 [27], Mobile-

FaceNet [7] and FaceResNet [15]), and state-of-the-art

Swin-Transformer [39] respectively. We conduct exper-

iments for SCSC-based architectures on ImageNet [45],

MS1M-V2 [22], COCO 2017 [38] and ADE20K[64] in

terms of image classification, face recognition, object de-

tection and segmentation.

4.1. Classification

We take classical ResNet-50 [27] and state-of-the-art

Swin-Transformer [39] as the backbone to evaluate SCSC

by replacing their original components respectively.

Settings: The ImageNet 2012 dataset [45] is a well-

known image classification dataset includes 1.28 million

training images and 50k validation images from 1000

classes. All our models are trained on the whole training

dataset and validated using the single-crop top-1 valida-

tion accuracy. The training settings follow [39], all mod-

els in our experiments are trained for 300 epochs with

AdamW [35] optimizer and a cosine decay learning rate

scheduler starts from 0.001/0.0005. We set batch size as

1024 and weight decay as 0.05.

Resnet50 with SCSC. We directly replace the original

bottleneck block with our SCSC block. Following the main-

stream works, we refer to the four residual stages of ResNet-

50 as c2, c3, c4, c5, respectively. And the block number

for the four stages are 3, 4, 6, 3, respectively. For ResNet-

SCSC-V1, the four stages’ input/output channel number

are 96, 192, 384, 512, expansion is set as 2. The kernel

sets for the four stages are [3,9,13], [3,7,11], [3,5,7] and

[3,5] respectively. We increase the numbers of blocks in

c2,c3,c4,c5 from 3,4,6,3 to 3,4,8,3 so that the FLOPs can

match the original network. For ResNet-SCSC-V2, most

setting keep the same as ResNet-SCSC-V1, except increas-

ing the numbers of blocks in c2,c3,c4,c5 from 3,4,8,3 to

3,5,12,3. For ResNet-SCSC-V3, most settings keep the

same as ResNet-SCSC-V2, except the expansion is set as

3. We list the architecture of ResNet-SCSC-V3 in Table 1.

Swin-Transformer with SCSC. We replace local

self-attention with our SCSC module. The pre-linear-

projections and post-linear-projections over the values can

be regarded as the 1×1 convolutions in our design.

The results are shown in Table 2. As can be seen, for

ResNet-SCSC-V1 and ResNet-SCSC-V2, we use much less

computational cost and parameters to obtain competitive re-

sults. For ResNet-SCSC-V3, with comparable model com-
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Model Params FLOPs Acc.(%)

MobileFaceNet [7] 0.98M 162M 90.9

MobileFaceNet-SCSC 0.89M 146M 92.0
FaceResNet [15] 40.3M 1050M 92.9

FaceResNet-SCSC 8.3M 330M 95.6
Table 3. Results of SCSC on Megaface. “Acc.” refers to the rank-1

face identification accuracy with 1M distractors.

plexity, we successfully make the performance of a clas-

sical CNN architecture (ResNet) match the Transformers’

performance. For Swin-Transformer, with our SCSC mod-

ule, it achieves a higher accuracy with 1G (22%) FLOPs

fewer computational cost. These results show that SCSC-

based architectures not only have a considerable improve-

ment, but also saving computational cost and parameters,

demonstrating the effectiveness of our method.

4.2. Face Recognition

We further evaluate the effectiveness of our SCSC on

Face Recognition task. MobileFaceNet [7] and FaceRes-

Net [15] are applied as our backbone with input size 96×96.

Settings: MS1M-V2 dataset is a large-scale face dataset

with 5.8M images from 85k celebrities. We use a refined

semi-automatic version of the MS-Celeb-1M dataset [22]

which consists of 1M photos from 100k identities for train-

ing. The dataset we use for validation is MegaFace [33],

which includes 1M images of 60k identities as the gallery

set and 100k images of 530 different individuals. We use

SGD with a momentum of 0.9 to optimize the model, and

the batch size is 512. We train all the models for 420k it-

erations. The learning rate begins with 0.1 and is divided

by 10 at 252k, 364k, and 406k iterations. For evaluation,

we use face identification metric which refers to the rank-1

accuracy on MegaFace as the evaluation indicator.

MobileFaceNet with SCSC. We directly replace the orig-

inal bottleneck block with our SCSC block. In [7], there

are 5 stages, we denote them as s1, s2, s3, s4, s5, respec-

tively. And the block number for the five stages are 5, 1, 6,

1,2, respectively. For MobileFaceNet-SCSC, the kernel sets

for the five stages are [3,9], [3,7], [3,7], [3,5] and [3,5] re-

spectively. The kernel size is relatively small because of the

input image size is small. We set expansion as 3 so that not

reducing too many FLOPs since MobileFaceNet is already

an efficient network.

FaceResNet with SCSC. As in FaceResNet [15], we denote

the four residual stages of FaceResNet as c2, c3, c4, c5,

respectively. And the block number for the four stages are

3, 2, 2, 2. For FaceResNet-SCSC, We set the numbers of

blocks in c2,c3,c4,c5 as 6,6,6,4. The kernel sets for the four

stages are [5,11], [3,9], [3,5] and [3,3] respectively.

As Table 3 shows, given that MobileFaceNet is already

an efficient network, MobileFaceNet-SCSC still outper-

forms the baseline by 1.1% gain even with fewer FLOPs

and parameters. Moreover, FaceResNet-SCSC surpasses

Backbone box AP mask AP FLOPs Params

R50 [27] 38.2 34.7 260.1G 44.2M

R101 [27] 40.0 36.1 336.2G 63.2M

X101-32x4d [58] 41.9 37.5 340.0G 62.8M

X101-64x4d [58] 42.8 38.4 493.4G 101.9M

Swin-T [39] 42.7 39.3 263.8G 47.8M

ResNet-SCSC 44.0 40.4 270.8G 44.9M

Swin-SCSC 43.2 39.6 240.5G 41.8M
Table 4. Results of object detection and instance segmentation on

the COCO mini-val with Mask R-CNN (1x schedule). FLOPs are

measured on an 800 × 1280 image.

Backbone box AP mask AP FLOPs Params

R50 [27] 46.3 43.4 739G 82M

DeiT-S [49] 48.0 41.4 889G 80M

Swin-T [39] 50.4 43.7 742G 86M

DW Conv.-T [24] 49.9 43.4 730G 82M

ResNet-SCSC 50.3 43.7 749G 83M

Swin-SCSC 49.9 43.2 719G 80M
Table 5. Results of object detection and instance segmentation per-

formance on the COCO mini-val with Cascade Mask R-CNN (3x

schedule). FLOPs are measured on an 800 × 1280 image.

FaceResNet by a large margin of 2.7% accuracy with 68%

fewer computational cost and 79% fewer parameters, fur-

ther indicating the superiority of our proposed SCSC.

4.3. Detection

To evaluate the effectiveness of our SCSC on object de-

tection, we utilize the COCO 2017 dataset [38] which con-

sists of 80k train images and 40k val images.

Settings: we exploit Mask R-CNN [25] and Cascade Mask

R-CNN [2] framework with FPN [37]. For Mask-RCNN,

the implementation is based on MMDetection [4]. We train

the detection networks on 8 GPU with mini-batch 2 per

GPU for 1x schedule (12 epochs). We use AdamW opti-

mizer, and the initial learning rate is 0.0001, started after

500 iteration warmup and decayed by 0.1 times at the 8th

and 11th epoch. We use stochastic drop path regularization

of 0.2 and weight decay of 0.05. All other hyper-parameters

follow the default settings in MMDetection [4]. For Cas-

cade Mask-RCNN, we follow the implementation, training,

and test settings from Swin Transformer [39]. Backbone

weights are initialized by the parameters of Swin-SCSC and

ResNet-SCSC respectively.

As shown in Table 4, we compare Swin-SCSC and

ResNet-SCSC with standard ConvNets, i.e., ResNe(X)t,

and previous Transformer networks, e.g., Swin-T with

Mask R-CNN. The comparisons are conducted by chang-

ing only the backbones with other settings unchanged.

Our ResNet-SCSC architecture achieves 5.0% improve-

ment over baseline ResNet-50. Compared with strong base-

line Swin-T, ResNet-SCSC improves 1.3% box AP and

1.1% mask AP over Swin-T. Swin-SCSC achieves better
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Backbone mIoU FLOPs Params

R50 [27] 42.1 952G 67M

R101 [27] 43.8 1029G 86M

DeiT-S [49] 42.9 1099G 52M

DW Conv.-T [24] 45.5 928G 56M

Swin-T [39] 44.4 941G 60M

ResNet-SCSC 45.7 956G 64M

Swin-SCSC 44.0 916G 54M
Table 6. Results of semantic segmentation on the ADE20K val set

with UperNet. FLOPs are measured on an 512 × 2048 image.

performance even with 23G FLOPs fewer computational

cost and 6M fewer parameters, illustrating that SCSC also

works on downstream tasks.

4.4. Semantic Segmentation

Settings: ADE20K[64] is a widely used semantic seg-

mentation dataset, covering a broad range of 150 semantic

categories. It has 25K images, with 20K for training, 2K for

validation, and another 3K for testing. We utilize the imple-

mentation of UperNet [56] in MMSegmentation [11] as our

base framework for its high efficiency. We use the same set-

ting as the Swin Transformer [39]. Models are trained on 8

GPUs with mini-batch 2 per GPU for 160k iterations. We

employ the AdamW optimizer with an initial learning rate

of 0.00006, a weight decay of 0.01, a scheduler that uses

linear learning rate decay, and a linear warmup of 1,500 it-

erations. SyncBN and stochastic depth with the ratio of 0.3

is applied for Swin-SCSC. The experimental results are re-

ported as single-scale testing. All other hyper-parameters

follow the default settings in MMSegmentation [11].

Table 6 lists the mIoU, FLOPs and model size (num-

ber of parameters) for different backbones. Compared

with Swin-T, our ResNet-SCSC achieves +1.3 mIoU higher

(45.7 vs. 44.4) than Swin-T with slightly larger model size

and computation cost. Our Swin-SCSC achieves compara-

ble performance with 25G less computation cost and 6M

fewer parameters.

4.5. Ablation Study

We conduct a series of experiments to evaluate the im-

pact of specific design choices in our spatial Cross-scale

Convolution Module. We use the ImageNet classification

dataset [45] for our experiments, and follow the same ex-

perimental settings as described in section 4.1 by default.

The effectiveness of combination number g in Spatial
Embed Module: We use ResNet-SCSC to explore which

combination number g in Spatial Embed Module is better.

We set g as 2, 4, 8, respectively, and the Top-1 accuracy is

81.1%, 81.5%, and 81.2% respectively. Therefore, we set

g = 4 by default.

The Effect of Spatial Embed Module: We design the Spa-

tial Embed Module (SEM) for fusing multi-scale features

dynamically. For ResNet-SCSC, if we only use 7x7 ker-

nel size, we will get 80.6% top-1 accuracy. Adding Spatial

Cross-scale Encoder, the accuracy can reach 81.0%. Fur-

ther adding Spatial Embed Module, we can obtain 81.6%

accuracy. This shows the effectiveness of dynamic fusing

by using our SEM.
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Figure 3. Influence of DW kernel size in Spatial Embed Module.

We set DW kernel size as 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11,

13×13, SCSC setting, respectively. Larger kernel will result better

performance, but when the kernel size increase too large, the ac-

curacy begin to decline. Our SCSC achieves a large improvement

by using different receptive fields in one layer

Kernel size: We train Swin-SCSC for 100 epochs to ex-

plore the choices of kernel sizes. We set the size of depth-

wise (DW) kernels with 3× 3, 5× 5, 7× 7, 9× 9, 11× 11,

13×13, as well as our SCSC setting. As shown in Figure 3,

larger kernels results in better accuracy but when the ker-

nel size exceeds 11 × 11, accuracy begins to decline. Our

results demonstrate that both excessively small and exces-

sively large kernel sizes are suboptimal. Furthermore, using

different receptive fields in one layer achieves the highest

accuracy and significantly outperforms other methods. This

suggests that utilizing multiple receptive fields can effec-

tively enhance the performance of model.

5. Conclusion and Future Work

Different from the mainstream CNN’s small kernel size

and the Transformer’s global receptive field, we increase

the spatial modeling ability by using a wide range of kernel

sizes. Furthermore, we design an efficient spatial embed-

ding module to merge the different spatial representation

features. As a result, the proposed SCSC naturally com-

bines the advantage of CNNs and Transformers, small ker-

nel and weight sharing from the CNN, large receptive field

and dynamic from the Transformer. Intensive experiments

illustrate the effectiveness and generalization of our SCSC.

In the future, we will explore more about the relationship

between CNNs and Transformers.
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