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Abstract

This paper presents a novel framework called HST for
semi-supervised video object segmentation (VOS). HST ex-
tracts image and video features using the latest Swin Trans-
former and Video Swin Transformer to inherit their induc-
tive bias for the spatiotemporal locality, which is essential
for temporally coherent VOS. To take full advantage of the
image and video features, HST casts image and video fea-
tures as a query and memory, respectively. By applying
efficient memory read operations at multiple scales, HST
produces hierarchical features for the precise reconstruc-
tion of object masks. HST shows effectiveness and robust-
ness in handling challenging scenarios with occluded and
fast-moving objects under cluttered backgrounds. In partic-
ular, HST-B outperforms the state-of-the-art competitors on
multiple popular benchmarks, i.e., YouTube-VOS (85.0%),
DAVIS 2017 (85.9%), and DAVIS 2016 (94.0%).

1. Introduction

Semi-supervised video object segmentation (VOS) is the

task of extracting a target object from a video sequence

given an object mask of the first frame. It is a very chal-

lenging task because the appearance of the target object can

change drastically over time. In addition, occlusion, clut-

tered backgrounds, and other objects similar to the target

object make the task further challenging. As this task con-

tinues to advance, it has opened up a realm of possibili-

ties for diverse high-level vision applications [xxx]. Con-

sequently, extensive research has been conducted on semi-

supervised VOS over the last decade. The interested reader

can refer to [14, 35, 60] for a systematic literature review.

Recently, memory-based VOS methods [5,15–17,19,22,

23,25,28,32,33,37,46,49,50,53] have achieved remarkable

performance. The key idea is to build a memory containing

the information from the past frames with given or predicted

masks and use the current frame as a query for matching.

As shown in Figure 1(a), these methods typically apply a

*Corresponding author.

convolutional neural network (CNN)-based encoder to each

frame and perform dense matching between the features ex-

tracted from the query and memory. Due to the non-local

nature of this matching, they show robustness in handling

moving objects and cameras. In particular, the space-time

memory network (STM) [32] introduces a space-time mem-

ory read operation that performs dense matching between

the query and the memory in the feature space to cover all

space-time pixel locations. However, the global-to-global

matching in STM requires high computational complexity

and suffers from false matching to objects similar to the tar-

get object. Therefore, many follow-up studies attempted to

enforce local constraints using kernelized memory [37] and

optical flow [53].

Meanwhile, the success of the Vision Transformer

(ViT) [11] has brought significant attention to a

Transformer-based solution for VOS. Several recent

Transformer-based methods [12, 30, 48, 58] have shown

state-of-the-art performance on several VOS benchmarks.

However, these methods apply an image Transformer

to each frame, as shown in Figure 1(b), and are thus

still challenging to enforce Transformers to handle the

temporal coherence of the segmentation. In this paper, we

introduce a new approach that fully exploits spatiotemporal

features for semi-supervised VOS. Inspired by the Swin

Transformer [26] and its extension to video frames, called

the Video Swin Transformer [27], we propose a novel

integration of them for VOS, called HST. HST first extracts

multi-scale features from the image and video using their

respective Transformers, as shown in Figure 1(c). Then, the

image features from the current frame are used as a query,

and the video features from the past frames and their object

masks are used as memory. Although HST performs dense

matching between the query and memory, it does not suffer

from false matching to objects similar to the target object

due to the locality inductive bias of the Swin Transformers.

We also apply an efficient hierarchical memory read

operation to reduce computational complexity. HST shows

robustness in segmenting small, fast-moving, and occluded

objects under cluttered backgrounds. Our baseline model,

HST-B, yields competitive performance in several VOS

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Comparison of the methods for extracting key and value maps from current and past frames: (a) Feature extractor

is applied to each frame, (b) image Transformer is applied to each frame, and (c) image and video Transformers are applied

to current and past frames, respectively.

benchmarks, including the YouTube-VOS 2018 and 2019

validation datasets (85.0% & 84.9%) and the DAVIS 2016

validation (94.0%) and 2017 validation and test datasets

(85.9% & 79.9%).

The main contributions are summarized as follows:

• We propose a Swin Transformer-inspired VOS frame-

work called HST that uses image and video Swin

Transformers to extract spatial and spatiotemporal fea-

tures. To the best of our knowledge, HST is the first

to integrate image and video Swin Transformers for

VOS.

• We apply a dedicated memory read operation for

HST that efficiently measures the similarities between

multi-scale spatial and spatiotemporal features.

• Experimental results on the DAVIS and YouTube-VOS

datasets demonstrate the state-of-the-art performance

of HST.

2. Related Work
2.1. Semi-supervised Video Object Segmentation

Semi-supervised VOS methods have been developed to

propagate the manual annotation from the first frame to the

entire video sequence. Early semi-supervised VOS meth-

ods, such as OSVOS [2] and MoNet [51], fine-tune pre-

trained networks at test time using the annotation from the

first frame as the ground-truth. OnAVOS [45] applies an on-

line adaptation mechanism to use pixels with very confident

predictions from the following frames as additional training

examples. MaskTrack [34] and PReMVOS [29] further es-

timate optical flow to facilitate the propagation of the seg-

mentation mask.

Although promising results have been shown, online

learning-based methods inevitably have high computational

complexity, restricting their practical use. Recent efforts

thus have been devoted to offline learning-based methods

such that the trained networks can robustly handle any input

videos without additional training. To this end, OSMN [56]

uses spatial and visual modulators to adapt the segmenta-

tion model to the appearance of a specific object. Video-

Match [17] applies a soft matching layer to compute the

similarity of the foreground and background between the

first frame and every input frame. FEELVOS [44] and

CFBI [57, 59] perform pixel-level matching not only be-

tween the first and current frames but also between the pre-

vious and current frames. STM [32] embeds the past frames

and their prediction masks in memory and uses the cur-

rent frame as the query for global matching. KMN [37],

RMNet [53], and HMMN [38] further use local constraints

such as optical flow and kernel to overcome the drawback

of global matching. STCN [6] extracts key features for each

image independently for effective feature reuse and replaces

dot product by L2 similarity for better memory coverage.

2.2. Vision Transformers

The Transformer [43] has been introduced as a network

architecture solely based on attention mechanisms. Com-

pared to recurrent neural networks (RNNs) that require

extensive sequential operations, Transformer networks are

more parallelizable and require less training time, mak-

ing them attractive to several natural language process-

ing tasks [1, 8, 10, 41]. Recently, Transformer networks

have been successfully applied to many computer vision

tasks and have shown significant performance improve-

ment over CNN-based networks. The representative work

called ViT [11] divides an input image into non-overlapping
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Figure 2: An overview of HST. The encoder consists of image and video Transformers to extract multi-scale spatial and

spatiotemporal features from current and past frames. The memory read block performs dense matching on the coarsest

scale, and the top-k memory read blocks operate on the finer scales. The decoder receives multi-scale features from the

encoder and produces a final mask prediction.

patches and performs linear embedding to construct input

for the Transformer encoder. DeiT [42] integrates a teacher-

student strategy to the Transformer such that the student

model can be efficiently trained on a small dataset. A no-

table extension of ViT called Swin Transformer [26] builds

multi-resolution feature maps on Transformers and restricts

self-attention within local windows, leading to linear com-

putational complexity with respect to image size. Video

Swin Transformer [27] expands the scope of local atten-

tion from the spatial domain to the spatiotemporal domain,

achieving state-of-the-art accuracy on several video recog-

nition benchmarks. Furthermore, the powerful feature rep-

resentation ability of the Swin Transformer has reached out-

standing performance on a variety of tasks, including video

categorization and image inpainting [3, 9, 18].

2.3. Transformer-based Segmentation

Several recent endeavors have been made to apply vi-

sion Transformers to dense prediction tasks. DETR [4] inte-

grates a CNN backbone with a Transformer encoder and de-

coder to build a fully end-to-end object detector and shows

that dense prediction tasks such as panoptic segmentation

can be handled by adding a mask head on top of the decoder

outputs. SegFormer [52] obtains a segmentation mask using

a hierarchical pyramid ViT architecture as an encoder and

a simple MLP-based structure with upsampling operations

as a decoder. Segmenter [40] exploits a mask Transformer

decoder to predict a better segmentation mask. Towards a

more VOS-dedicated Transformer design, VIS [48] applies

an instance sequence matching and segmentation strategy.

TransVOS [30] extracts features from the current frame and

reference sets and feeds them to the Transformer encoder to

model the temporal and spatial relationships. SST [12] uses

a sparse attention-based Transformer block to extract pixel-

level embedding and spatial-temporal features. AOT [58]

associates multiple target objects into the same embedding

space to perform multi-object segmentation as efficiently as

single object segmentation. AOT also shows that the per-

formance can be further improved by changing a ResNet

encoder to a Swin Transformer encoder.

However, many Transformer-based VOS methods still

use a CNN-based encoder for feature extraction [12,30,58],

limiting the modeling capacity of Transformers. Fully

Transformer-based feature extraction methods have been at-

tempted, but they apply the standard Transformer or Swin

Transformer [58] to each frame separately, leading to sub-

optimal extraction of spatiotemporal information in a video

sequence. HST integrates image and video Transformers

towards a complete spatiotemporal feature extraction for

VOS.

3. Approach

We explain our method for segmenting one target ob-

ject in a video, but multi-object segmentation can be readily

conducted by following the common standard of indepen-
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dent segmentation and merging [6, 32, 37, 38]. We use the

features extracted from the past frames (with given or esti-

mated object masks) and the current frame as memory and

query, respectively. The query should contain spatial in-

formation, such as the position, shape, and texture of the

target object, and the memory should contain spatiotempo-

ral information, such as the trajectory and deformation of

the target object and changes in the background to support

temporally coherent target object segmentation. To this end,

we present HST that can fully exploit spatial and spatiotem-

poral information from the current and past frames. More-

over, since dense matching between the query and memory

is needed to take full advantage of the information in video

frames, we design a hierarchical memory read operation

that efficiently matches multi-scale spatial and spatiotem-

poral features.

Figure 2 illustrates the overall flow of HST. We adopt

Swin Transformer [26] and Video Swin Transformer [27]

to design a query encoder (image as input) and a mem-

ory encoder (images and masks as input). For brevity, we

call these two Swin Transformers image Transformer and

video Transformer, respectively. Each Transformer extracts

multi-scale features, resulting in the key and value maps for

matching with each other. The decoder takes all the com-

puted features and outputs a mask prediction. The following

subsections detail each component of HST.

3.1. Image Feature Extraction

Our image feature extractor is based on Swin Trans-

former [26] that incorporates inductive bias for the spa-

tial locality, which is preferable for dense prediction tasks

such as VOS. Image Transformer first splits a current frame

of size H ×W × 3 into non-overlapping patches of size

Px × Py × 3 and applies a linear embedding layer, result-

ing in a C-dimensional embedding for each patch or “to-

ken”. Unlike the standard Transformer that computes self-

attention across all tokens [43], Swin Transformer com-

putes self-attention only within each window. The query

encoder of HST consists of four stacks of Swin Trans-

former blocks with patch merging blocks for generating

multi-scale features [26]. To introduce cross-window con-

nections, a Swin Transformer block is embodied with con-

secutive multi-head self-attention units with and without a

shifted window.

For each window consisting of M × M patches, the

query, key and value matrices Q, K and V are computed

as

Q = XPQ, K = XPK , V = XPV , (1)

where PQ, PK and PV are projection matrices that are

shared across different windows. Generally, we have

Q,K, V ∈ R
M2×d. The attention matrix is thus computed

by the self-attention mechanism in a local window as

Attention(Q,K, V ) = SoftMax(QKT /
√
d+B)V, (2)

where B is the learnable relative positional encoding. In

practice, following [43], we perform the attention function

for h times in parallel and concatenate the results for multi-

head self-attention (MSA).

Next, a multi-layer perceptron (MLP) that has two fully-

connected layers with GELU non-linearity between them is

used for further feature transformations. The LayerNorm

(LN) layer is added before both MSA and MLP, and the

residual connection is employed for both modules. The

whole process is formulated as

Z = MSA(LN(X)) +X,

X = MLP(LN(Z)) + Z.
(3)

However, when the partition is fixed for different lay-

ers, there is no connection across local windows. There-

fore, regular and shifted window partitioning are used al-

ternately to enable cross-window connections [26], where

shifted window partitioning means shifting the feature by

(�M2 �, �M
2 �) pixels before partitioning.

3.2. Video Feature Extraction

Our video feature extractor is based on Video Swin

Transformer [27] that extends the scope of local atten-

tion from the spatial domain to the spatiotemporal do-

main. Specifically, the past T frames and their corre-

sponding object masks with size T × H × W × 4 (RGB

+ mask) are divided into non-overlapping patches of size

Pt × Px × Py × 4, followed by a linear embedding layer

to obtain a C-dimensional embedding for each token. To

incorporate inductive bias for the spatiotemporal locality,

video Transformer computes self-attention only within each

3D window. The memory encoder of HST consists of four

stacks of Video Swin Transformer blocks with patch merg-

ing blocks for generating multi-scale features [27], where

each Video Swin Transformer block is embodied with con-

secutive multi-head self-attention units with and without a

3D shifted window.

consisting of T frames which each contatin H ×W × 3
pixels. We obtain T

P × H
M × W

M ×C tokens using a 3D patch

partitioning layer. Then, it computes the 3D self-attention

separately for each window. We follow equation (1), (2)

where Q,K, V ∈ R
PM2×d by introducing 3D relative po-

sition bias B ∈ R
P 2×M2×M2

.

The model is built by replacing the MSA module in

the standard Transformer layer with the 3D shifted window

based MSA module and keeping the other components un-

changed. Therefore, the whole process is formulated as

Z = 3D-MSA(LN(X)) +X,

X = 3D-MLP(LN(Z)) + Z.
(4)
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Similar to image feature extraction, this 3D shifted win-

dow design introduces connections between neighboring

non-overlapping 3D windows in the previous layer, where

shifted window partitioning means shifting the feature by

(�P
2 �, �M

2 �, �M
2 �) pixels before partitioning.

3.3. Memory Read and Decoding

3.3.1 Memory Read

We now have image and video features ready to use for

object segmentation. Let F i
image ∈ R

Hi×Wi×Ci and

F i
video ∈ R

Ti×Hi×Wi×Ci denote image and video fea-

tures obtained after the i-th stage of the query encoder and

memory encoder, respectively. The feature dimensions are

given as Hi = H × (
1
2

)i+1
, Wi = W × (

1
2

)i+1
, and

Ci = C × 2i−1 [26, 27]. We fix Ti to T to maintain the

temporal resolution. Considering F i
image as a query and

F i
video as memory, we extract key and value maps from

them [32]. The key and value maps of the query are denoted

as kQi ∈ R
Ci
8 ×HiWi and vQi ∈ R

Ci
2 ×HiWi , respectively,

and those of the memory are denoted as kMi ∈ R
Ci
8 ×TiHiWi

and vMi ∈ R
Ci
2 ×TiHiWi , respectively.

Due to extremely high dimensionality of the key and

value maps, we apply dense matching between the query

and memory only at the last stage as follows:

s4(q, p) =
(
kQ4 (q)

)T

kM4 (p), (5)

W4(q, p) = SoftMaxp(s4(q, p)), (6)

where p = (pt, px, py) and q = (qx, qy) denote the grid

cell locations in the memory and query, respectively, and

thus
(
kQ4 (q)

)T

kM4 (p) performs the dot product between

two C4

8 -dimensional vectors at the locations p and q in the

memory and query, and T indicates the transpose operator.

s4 ∈ R
H4W4×T4H4W4 thus contains similarity values in ev-

ery space-time locations, and SoftMaxp performs the Soft-

Max operation along the memory axis. vM4 is multiplied

with W4 and then concatenated with vQ4 as follows:

y4 =
[
vQ4 , vM4 WT

4

]
, (7)

where [,] represents the concatenation along the feature

dimension. y4 ∈ R
C4×H4W4 represents the output of the

memory read operation at the fourth stage.

Since the computational complexity required for (Eq. 5)-

(Eq. 7) grows quadratically with respect to the size of the

feature map, we apply an efficient read operation called top-

k read [5, 38] at the earlier stages. Specifically, the affinity

maps for the earlier stages si (i = 1, 2, 3) are obtained using

only the top-k indices as follows:

si(q, :) =
(
kQi (q)

)T

kMi (p), p ∈ Ωi
q, (8)

where Ωi
q denotes the set of the top-k indices for the query

pixel q found from s4 that are mapped to the i-th stage [38].

Ω3
q, Ω2

q, and Ω1
q contain 4k positions in kM3 , 16k positions in

kM2 , and 64k positions in kM1 , respectively, such that more

pixels can be matched at the higher scales. si(q, :) thus

collects the similarity values in these top 44−ik locations.

Wi ∈ R
HiWi×44−ik is obtained by applying the SoftMax

operation to si. Finally, only a sparse matching to the se-

lected locations from the memory is performed as follows:

yi =
[
vQi , ṽMi WT

i

]
, i = {1, 2, 3}, (9)

where ṽMi ∈ R
Ci
2 ×44−ik is constructed by sampling 44−ik

samples for each query pixel from vMi . The output of the

memory read yi ∈ R
Ci×HiWi is passed to the decoder to

extract a mask prediction.

3.3.2 Decoder

We use the refinement module in [31] as the building block

of our decoder. The output of the last stage memory read,

i.e., y4, is gradually upsampled with convolutional layers.

The refinement module at each stage also takes the output of

the top-k memory read at the corresponding scale through

skip connections. The refinement module produces an ob-

ject mask with the size H1 × W1

(
= H

4 × W
4

)
, which is

bilinearly upsampled to the original resolution. The soft ag-

gregation of the output masks [32] is applied when handling

multiple objects.

3.4. Architecture Variants

We introduce four architecture variants of HST, i.e.,

HST-T, HST-S, HST-B, and HST-L, by using the following

hyper-parameter settings.

• HST-T: C = 96, L = {2, 2, 6, 2}, M = 7

• HST-S: C = 96, L = {2, 2, 18, 2}, M = 7

• HST-B: C = 128, L = {2, 2, 18, 2}, M = 12

• HST-L: C = 192, L = {2, 2, 18, 2}, M = 12

where L is the number of block layer, M is window size.

The image and video Transformers of the base model (HST-

B) require 193.6 M parameters, and those for the rest three

variants require approximately 0.25× (HST-T), 0.5× (HST-

S), and 2× (HST-L) of the parameters, respectively.

4. Experiments
4.1. Implementation Details

Training. We followed the same training strategy as

STM [32], HMMN [38], PCVOS [33]. We initialized

the image Transformer blocks with ImageNet pre-trained
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Table 1: Comparison on the DAVIS 2016 validation set.

(+Y) indicates YouTube-VOS is additionally used for train-

ing, and OL denotes the use of online-learning strategies

during test time. * denotes time measurements from the

corresponding papers. † denotes the results obtained using

the first and previous frames as input of the video Trans-

former.

Method OL J&F J F Time (s)

OSVOS [2] � 80.2 79.8 80.6 9*

MaskRNN [16] � 80.8 80.7 80.9 -

PReMVOS [29] � 86.8 84.9 88.6 30*

STM [32] (+Y) 89.3 88.7 89.9 0.10

KMN [37] (+Y) 90.5 89.5 91.5 -

HMMN [38] (+Y) 90.4 89.6 92.0 0.07

AOT [58] (+Y) 91.1 90.1 92.1 0.06

STCN [6] (+Y) 91.6 90.8 92.5 0.05

AOCVOS [55] (+Y) 91.6 88.5 94.7 0.32

PCVOS [33] (+Y) 91.9 90.8 93.0 0.11

QDMN [25] (+Y) 92.0 90.7 93.2 0.13

HST-T† (+Y) 92.1 91.0 93.1 0.11

HST-T (+Y) 92.9 92.6 93.2 0.21

HST-S† (+Y) 92.2 91.2 93.1 0.15

HST-S (+Y) 93.0 92.2 93.8 0.28

HST-B† (+Y) 93.1 91.9 94.3 0.24

HST-B (+Y) 94.0 93.2 94.8 0.36

HST-L† (+Y) 93.7 92.8 94.5 0.29

HST-L (+Y) 94.2 93.4 95.0 0.51

weights and randomly initialized the other layers. Be-

cause the Video Transformer blocks take additional masks

as input, they cannot be simply pre-trained using video

datasets. Therefore, we initialized the Video Transformer

blocks by replicating the image Transformer block’s Ima-

geNet pre-trained weights along the temporal dimension.

Then, we pre-trained HST on the image datasets, includ-

ing MSRA10K, ECSSD, PASCAL-S, PASCAL VOC2012,

and COCO datasets [7, 13, 20, 24, 39]. For these image

datasets, we synthesized three consecutive frames by aug-

menting each image via random affine transformations, in-

cluding rotation, shearing, zooming, translation, and crop-

ping.

After the pre-training on the synthesized image dataset,

the main training was conducted using either DAVIS 2017

or YouTube-VOS 2019 training set, depending on the target

benchmark. During the main training, three frames were

randomly sampled from a video with a gradually increas-

ing maximum interval (from 0 to 25). During both the pre-

training and main training, we minimized the pixel-wise

cross-entropy loss with Adam optimizer [21], and the learn-

ing rate was set to 1e-5. We used an input size of 384 × 384

and set P = 1 (temporal) and M = 4 (spatial). Following

STM, we employed the soft aggregation when multiple tar-

Table 2: Comparison on the DAVIS 2017 validation and

test-dev set. (+Y) indicates YouTube-VOS is additionally

used for training.

Methods J&F J F
Validation 2017 Split

STM [32] (+Y) 81.8 79.2 84.3

SST [12] (+Y) 82.5 79.9 85.1

KMN [37] (+Y) 82.8 80.0 85.6

CFBI+ [59] (+Y) 82.9 80.1 85.7

AOCVOS [55] (+Y) 83.8 81.7 85.9

HMMN [38] (+Y) 84.7 81.9 87.5

AOT [58] 79.3 76.5 82.2

AOT [58] (+Y) 84.9 82.3 87.5

STCN [6] (+Y) 85.4 82.6 88.6

QDMN [25] (+Y) 85.6 82.5 88.6

PCVOS [33] (+Y) 86.1 83.0 89.2

HST-T (+Y) 83.6 80.9 86.2

HST-S (+Y) 84.0 80.7 87.3

HST-B 79.9 76.9 82.9

HST-B (+Y) 85.9 82.5 89.2
HST-L (+Y) 85.6 82.2 89.0

Testing 2017 Split

STM [32] (+Y) 72.2 69.3 75.2

CFBI [57] (+Y) 74.8 71.1 78.5

KMN [37] (+Y) 77.2 74.1 80.3

CFBI+ [59]] (+Y) 78.0 74.4 81.6

HMMN [38] (+Y) 78.6 74.7 82.5

STCN [6] (+Y) 77.8 74.3 81.3

AOCVOS [55] (+Y) 79.3 74.7 83.9

AOT [58] (+Y) 79.6 75.9 83.3

HST-T (+Y) 78.9 75.7 82.2

HST-S (+Y) 79.2 75.8 82.6

HST-B (+Y) 79.9 76.5 83.4

HST-L (+Y) 80.2 76.8 83.6

get objects exist in a video [32].

Inference. We used the first, previous, and intermediate

frames sampled at every eight frames as input for the video

Transformer. We used the same number of k = 128 for top-k
guided memory matching during the training and inference.

We measured the run-time of our and compared methods

using two NVIDIA RTX 3090 GPUs.

4.2. Comparisons

We compared our HST with state-of-the-art methods on

the DAVIS [35, 36] and YouTube-VOS [54] benchmarks.

For the DAVIS benchmark, 60 videos from the DAVIS 2017

training set were used for the main training, following the

standard protocol. In addition, we report our results on the

DAVIS benchmark using additional training videos from

Youtube-VOS for a fair comparison with several recent

methods. For the Youtube-VOS benchmark, 3471 videos

in the training set were used for training.

DAVIS is a densely annotated VOS dataset and the most
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Figure 3: Qualitative performance comparison of HST with HMMN [38], STCN [6], and AOT [58].

widely-used benchmark to evaluate VOS techniques. The

DAVIS dataset consists of two sets: (1) DAVIS 2016, which

is an object-level annotated dataset (single object); and (2)

DAVIS 2017, which is an instance-level annotated dataset

(multiple objects). The official metrics, i.e., region simi-

larity J and contour accuracy F , were measured for com-

parison. To evaluate HST, we used an input size of 480p

resolution. As shown in Table 1, HST-B outperforms the

second-best method by 2.0% J&F on the DAVIS 2016

validation set. Furthermore, additional experiments were

conducted using the first and previous frames as input of

the video Transformer to test the trade-off between the pro-

cessing time and segmentation accuracy. We also con-

ducted comparisons on the DAVIS 2017 validation and test-

dev sets, and the results are given in Table 2. Our HST-

B showed the competitive performance to PCVOS [33] on

the DAVIS 2017 validation set and achieved state-of-the-

art performance on the DAVIS 2017 testing set. Our HST-

B trained without using the YouTube-VOS training dataset

still showed improved performance over the other models

trained without using the YouTube-VOS training dataset.

YouTube-VOS is a large-scale benchmark for VOS. To

evaluate our HST on the YouTube-VOS benchmark, we

used an input size of 480p resolution. We measured the

region similarity (JS , JU ) and contour accuracy (FU ,

FU ) for 65 seen and 26 unseen object categories sepa-

rately. Table 3 shows the performance comparison of HST

with state-of-the-art methods on the YouTube-VOS 2018

and 2019 validation sets, demonstrating that HST-B sur-

passes the state-of-the-art methods in both seen and unseen

object categories. Figure 3 shows qualitative performance

comparison with HMMN [38], STCN [6], and AOT [58].

HMMN [38] failed in separating multiple occluded objects.

STCN [6] and AOT [58] produced incorrect results for in-

coming or outgoing objects in the scene. On the other hand,

HST predicted target objects accurately in these challenging

scenarios. More results are provided in the supplementary

material.

4.3. Ablation Experiments

We conducted ablation studies using HST-B on the

DAVIS 2017 dataset. More details about the models used

for the ablation studies are provided in the supplementary

material.

Pre-training. As shown in Table 4.1, the model pre-trained

on the image datasets performed favorably with 74.2 %
J&F . Due to the effectiveness of the pre-training, the fully

trained model exhibited 3.1 % higher J&F than the model

trained on the DAVIS 2017 training dataset only. Further-

more, it shows competitive performance without using syn-

thesized static datasets.

Memory management. As a default setting, HST uses the

first, previous, and intermediate frames sampled at every

eight frames as input for the video Transformer. Table 4.2
shows that HST performed reasonably well with 84.9 %
J&F when only the first and previous frames were used

as input. In environments where memory is scarce, it is ad-

vised to use only these two frames as input.

801



Table 3: Quantitative evaluation on the YouTube-VOS vali-

dation set

Seen Unseen

Methods J&F JS FS JU FU

Validation 2018 Split

STM [32] 79.4 79.7 84.2 72.8 80.9

KMN [37] 81.4 81.4 85.6 75.3 83.3

SST [12] 81.7 81.2 - 76.0 -

MaskVOS [47] 81.9 81.4 86.6 75.9 83.9

CFBI+ [59] 82.8 81.8 86.6 77.1 85.6

HMMN [38] 82.6 82.1 87.0 76.8 84.6

STCN [6] 83.0 81.9 86.5 77.9 85.7

QDMN [25] 83.8 82.7 87.5 78.4 86.4

AOCVOS [55] 84.0 83.2 87.8 79.3 87.3

AOT [58] 84.1 83.7 88.5 78.1 86.1

PCVOS [33] 84.6 83.0 88.0 79.6 87.9

HST-T 83.2 82.7 86.8 78.2 85.1

HST-S 83.9 83.4 87.0 78.4 86.8

HST-B 85.0 84.3 89.2 79.0 87.6

HST-L 85.1 84.4 89.1 79.2 87.8

Validation 2019 Split

SST [12] 81.8 80.9 - 76.6 -

CFBI+ [59] 82.6 81.7 86.2 77.1 85.2

HMMN [38] 82.6 82.1 87.0 77.3 85.0

STCN [6] 82.7 81.1 85.4 78.2 85.9

AOT [58] 84.1 83.5 88.1 78.4 86.3

AOCVOS [55] 84.1 82.7 87.1 80.0 87.8

PCVOS [33] 84.6 82.6 87.3 80.0 88.3

HST-T 83.5 82.9 87.4 78.2 85.5

HST-S 84.1 83.3 88.3 78.0 86.7

HST-B 84.9 83.6 88.5 79.5 88.1

HST-L 85.0 83.7 88.3 79.7 88.3

Hierarchical memory read. To show the effectiveness of

using multi-scale features for the memory read, we obtained

the result using the output of the memory read at the last

stage only, i.e., y4, as input for the decoder. As shown in

Table 4.3, the performance decreased significantly, demon-

strating the necessity of multi-scale features for precise

mask decoding. In addition, when our hierarchical top-k
read was replaced by naive dense matching, we obtained a

slightly better performance of 86.4 % J&F . However, the

dense matching at all stages required an average processing

time of 2.78 s per frame, where the top-k matching con-

sumed 0.42 s per frame.

Mask utilization. Our video Transformer takes given or

predicted masks as input in addition to video frames. To

better handle multiple object segmentation, we used the

common strategy [6,32,37,38] of including a binary object

mask of other objects as additional input. Table 4.4 shows

that the information on the other objects contributed to 1.8

% J&F improvement.

Table 4: Ablation studies for HST-B on the DAVIS 2017

validation set. DM: Dense matching

Ablation Method J&F J F
1. Effect of pre-training

Training

Pre. 74.2 70.4 76.3

Main 82.8 80.0 85.6

Full 85.9 82.5 89.2

2. Comparison of memory management strategies

Memory frames
First & prev. 84.9 81.6 88.2

+ Every 8 frames 85.9 82.5 89.2

3. Effect on hierarchical memory read

Memory read

Last stage only 83.5 80.3 86.7

All stages w/ top-k 85.9 82.5 89.2

All stages w/ DM 86.4 83.6 89.7

4. Effect on utilization of other object masks

Mask
w/o other object mask 84.1 81.2 86.9

w/ other object mask 85.9 82.5 89.2

5. Effect on spatiotemporal feature

Feature
Image feature only 83.0 79.9 86.1

Image and video features 85.9 82.5 89.2

Video Transformer. To demonstrate the effectiveness of

using both image and video Transformers for spatiotempo-

ral feature extraction, we built a model by applying only

image Transformer to the current and past frames for fea-

ture extraction. Table 4.5 shows that both image and video

Transformers are essential for extracting spatiotemporal

features, leading to 2.9 % J&F improvement.

5. Conclusions
In this paper, we presented a novel VOS framework

called HST that exploits image and video Transformers as

a means of spatiotemporal feature extraction from a video.

To take full advantage of image and video Transformers,

we used image and video features as a query and memory,

respectively, and matched them at multiple scales with ef-

ficient hierarchical memory read operations. HST showed

state-of-the-art performance in several benchmarks, includ-

ing the DAVIS 2016 and 2017 validation sets and YouTube-

VOS 2018 and 2019 validation datasets. Considering the

conciseness and technical advantages of HST, we hope our

work can motivate future VOS studies.
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