
Supplemental Material to “MSViT: Dynamic Mixed-Scale Tokenization for Vision
Transformers”

A. Additional qualitative results on ImageNet

Figure 9. Non-curated qualitative examples of scale selection masks output by the gating module of MSViT-S/{16, 32}. The model was
trained on 224px ImageNet images to choose between the coarse (32px,) and the ne (16px,) token scale. Best seen zoomed.

B. Additional results on Image classication
In this section we report additional results on the Ima-

geNet classication benchmark. First, in Figure 10, we plot
the average simulated runtimes of standard ViT-S with dif-
ferent number of tokens. While the exact trend depends on
the device due to dedicated optimizations, we verify that
reducing the number of tokens leads to concrete runtime
improvements.

(a) CPU (b) GPU (RTX 2080 Ti)
Figure 10. Average runtime in milliseconds of ViT-S for different
number of input tokens on two diferent devices, simulated and av-
eraged on 1000 random samples. The blue line is the cost of the
transformer only, while the orange line additionally includes the
cost of the patch embedding and MLP classier.

Then, in Table 3, we show an extended version of Table
1, with additional results for (i) MS-ViT-L, (ii) more com-
putational budgets and (iii) latency results averaged across
the images in the ImageNet validation set.

Finally, in Figure 11, we report the results of the full hy-
perparameter sweep on MSViT-S for different input image
sizes: As expected, both the gate sparsity target g∗ and the
gate loss weight λ can be increased to obtain sparser gates.
In addition, we observe that all MSViT points lie on the
same Pareto front which suggests the relative performance
of MSViT is robust to these hyperparameter choices (gate
loss weight, sparsity target and input image size).

C. Hyperparameters
C.1. VIT backbone

For ViT experiments, we netune ImageNet-21k pre-
trained checkpoints to ImageNet. We use the same netun-
ing setup as the one from the ofcial ViT repository [37],
except we train for 20 epochs instead of 8:

batch-size: 512
num-gradacc-steps: 1
data-augmentation: crop+fliplr
num-epochs: 20
optimizer: "SGD"
lr: 0.03
momentum: 0.9
gradient-clipping: 1.0
weight-decay: 0.0

DeiT-Small Avg # GMACs CPU time GPU time accuracy
backbone tokens (avg) (ms) (ms) top-1 top-5

DeiT-S/16 in=160 100 2.27 18.70 6.06 75.86 92.84
MSDeiT-S/16,32 in=224 94 2.20 18.01 6.00 75.90 92.68
MSDeiT-S/16,32 in=224 97 2.27 18.22 6.02 76.99 93.38

DeiT-S/16 in=192 144 3.32 24.04 6.26 77.79 93.96
MSDeiT-S/16,32 in=224 116 2.72 21.18 6.28 77.79 93.99
MSDeiT-S/16,32 in=224 142 3.32 24.24 6.20 78.76 94.32

DeiT-S/16 in=224 196 4.60 31.65 6.07 79.85 94.57
MSDeiT-S/16,32 in=224 173 4.08 27.70 6.19 79.38 94.38

ViT-Tiny Avg # GMACs CPU time GPU time accuracy
backbone tokens (avg) (ms) (ms) top-1 top-5

ViT-Ti/16 in=160 100 0.60 9.24 5.97 71.63 90.68
MSViT-Ti/16,32 in=224 95 0.60 8.99 5.98 72.57 91.32

ViT-Ti/16 in=192 144 0.89 11.56 6.03 74.24 92.22
MSViT-Ti/16,32 in=224 124 0.78 11.04 6.04 74.27 92.22
MSViT-Ti/16,32 in=224 138 0.88 11.49 6.00 74.93 92.54

ViT-Ti/16 in=224 196 1.25 13.26 5.98 76.00 93.26
MSViT-Ti/16,32 in=224 154 0.98 11.89 5.88 75.51 92.98

ViT-Small Avg # GMACs CPU time GPU time accuracy
backbone tokens (avg) (ms) (ms) top-1 top-5

ViT-S/16 in=128 64 1.44 15.35 5.94 75.48 93.08
MSViT-S/16,32 in=224 75 1.76 16.33 5.95 77.16 94.14

ViT-S/16 in=160 100 2.27 18.60 6.06 78.88 94.95
MSViT-S/16,32 in=224 91 2.13 17.64 5.97 78.88 95.02
MSViT-S/16,32 in=224 98 2.30 18.60 6.04 79.51 95.33

ViT-S/16 in=192 144 3.32 24.11 6.18 80.75 95.86
MSViT-S/16,32 in=224 120 2.82 21.71 6.22 80.74 95.92
MSViT-S/16,32 in=224 138 3.23 23.68 6.19 81.47 96.14

ViT-S/16 in=224 196 4.60 31.46 6.08 82.02 96.45
MSViT-S/16,32 in=224 187 4.43 29.30 6.25 82.02 96.44

ViT-S/16 in=288 324 7.97 53.79 6.18 83.34 96.93
MSViT-S/16,32 in=384 314 7.92 52.67 6.02 83.56 97.10
MSViT-S/16,32 in=384 286 7.16 47.53 6.09 83.34 96.99

ViT-S/16 in=320 400 10.11 68.20 6.25 83.85 97.10
MSViT-S/16,32 in=384 359 9.19 60.16 6.18 83.84 97.20
MSViT-S/16,32 in=384 382 9.80 66.12 6.21 83.93 97.18

ViT-S/16 in=384 576 15.49 104.58 6.26 84.20 97.32
MSViT-S/16,32 in=384 428 11.14 76.76 6.16 84.14 97.31

ViT-Large Avg # GMACs CPU time GPU time accuracy
backbone tokens (avg) (ms) (ms) top-1 top-5

ViT-L/16 in=160 100 31.08 185.44 12.74 81.70 96.14
MSViT-L/16,32 in=160 89 27.48 172.29 12.37 81.73 96.13
MSViT-L/16,32 in=192 84 25.93 169.63 12.46 81.67 96.14

ViT-L/16 in=192 144 44.9 233.27 14.49 82.91 96.61
MSViT-L/16,32 in=192 111 34.5 195.24 12.38 82.46 96.45

Table 3. Extended results for Table 1 with additional congura-
tions, and average latency per image on CPU and GPU (RTX 2080
Ti). Both the MACs and latencies are estimated with the deep-
speed library [38].

num-warmup-epochs: 0.50
lr-scheduler: cosine

C.2. DeiT backbone

For DeiT, we also follow standard available netuning
pipelines e.g. from [36, 22, 33]. In particular, the most
notable differences with the ViT netuning pipeline are:

• The data loader uses a different normalization and
bicubic resizing

• We use the AdamW optimizer with lr = 2e-5 (after
sweeping over the range lr ∈ {5e−4, 1e−4, 2e−5})

Figure 11. Full hyperparameter sweep for MSViT-S/16 experi-
ments (top-1 accuracy versus MACs). Each line corresponds to
a conguration of gate loss weight λ and input image size. Each
point on a line corresponds to a different gate sparsity target
g∗ ∈ {0.25, 0.5, 0.75}

• additional small optimization choices: no gradient
clipping, small weight decay and label smoothing with
a weight of 0.1

C.3. Gate Hyperparameters

For training the gate, we use the same optimizer and
learning rate as the model features. The only difference is
that we use a longer warmup period to account for the fact
that the gate is trained from scratch. For GBaS, we observe
that the temperature in the Relaxed Bernoulli and the vari-
ance of the hyperprior, as long as they do not take very ex-
treme values, do not strongly impact the nal learned gate,
but rather the training speed. Therefore, we x their val-
ues in all experiments and instead sweep over the gate loss
weight which also directly impacts the gate’s training speed.

num-gate-warmup-epochs: 6
relaxed_bernoulli_temperature: 0.3
hyperprior_variance: 0.1

Finally as mentioned in experiments, we sweep over
the gate target g∗ ∈ {05, 025, 01} and loss weight λ ∈
{1, 4, 20} to obtain models at various compute budgets.

D. Additional segmentation results
In this section, we report additional results for the seg-

mentation experiments. First, in Figure 12, we visualize
some masks output by a ViT-S/16 netuned on ImageNet
when directly applied on 512x512 ADE20K [60] images,
without extra netuning on ADE20k. As we can see, the
mixed-scale selection patterns transfer well from ImageNet
to ADE20K.

Finally, we report extended results in Table 4 (same re-
sults as Figure 4 (a) in the main text but with additional la-
tency results) and visualize some additional qualitative out-
puts in Figure 13.

Figure 12. Direct transfer of a gate trained on ViT-S/16 224px im-
ages for ImageNet to ADE20k for 512px images

Backbone g∗ # tokens MACs CPU time GPU time mIoU
avg x 1e10 ms ms single-scale

Seg-T/16 (512px) - 1024 1.04 113.68 26.5 38.1

MSSeg-T/16
0.5 655 0.56 86.12 25.6 37.9
0.25 565 0.46 75.96 25.0 37.3
0.1 525 0.42 69.13 24.3 36.8

Seg-S/16 (512px) - 1024 3.17 252.09 30.7 45.3

MSSeg-S/16
0.5 684 1.92 184.81 29.6 44.9
0.25 586 1.59 153.12 29.0 44.1
0.1 552 1.48 144.02 28.5 43.3

Table 4. Segmentation results from Figure 4 (a) in the main text
with extended timing results on (i) CPU and (ii)GPU (Tesla V100-
SXM2-32GB), both reported in milliseconds

E. Mixed-scale tokens for non-standard ViTs
In Section 4.2, we combine a pretrained mixed-scale gate

with different ViT backbones. In this section, we describe
how we implement these changes in more details.

E.1. Segmenter

The Segmenter architecture [18] is composed of a stan-
dard ViT backbone, followed by a small decoder (either lin-
ear, or a small transformer head) to generate the segmen-
tation map outputs. We rst replace the ViT backbone by
MSViT. We then simply need to recover the original spatial

Mixed-scale mask MSSeg-S/16,32 Seg-S/16

ADE val 00000199

ADE val 00000109

ADE val 00000503

ADE val 00000584

ADE val 00000107

ADE val 00000113
Figure 13. Non-curated qualitative results on the segmentation ex-
periments. We display the mixed-scale mask output by the gate
(left), the nal segmentation map output by our MSSeg-S/16,32
trained with target g∗ = 0.25 (middle) and the segmentation map
output by the corresponding backbone baseline Seg-S/16

resolution from the stream of mixed-scale tokens at the end
of the backbone: More specically, once the transformer
backbone has been executed, we replicate every coarse to-
ken 4 times, to compensate for the ne token it replaces.
We then feed this sequence of tokens to the decoder, with-
out making any changes to its original architecture.

E.2. Token pruning

Most SotA token pruning methods builds off the DeiT ar-
chitecture, and implement some form of token binary mask-
ing, similar to how we use masked attention (Eq. 15). Thus
adding mixed-scale tokenization to these models is straight-
forward: For instance, in DyViT, we simply use the binary
mask output by the mixed-scale gate as the initial ”prun-
ing policy” of the model (instead of the default initialization
which a mask of all ones). In EViT, the tokens are sorted by
decreasing class-attention and a xed ratio of the lower to-
kens is pruned in certain layers. We simply apply the same
sort-and-prune operation to the mixed-scale mask as the one
applied to the tokens and propagate them to the next layer.

E.3. Hierarchical Transformers

Unlike ViT, hierarchical transformers such as Swin inte-
grate multiple scale. We denote by sℓ the scale of the ℓ-th
block in Swin; where each block is a sequence of trans-
former layers, and in practice sℓ = 4× 2ℓ−1. The transition
from a block to the next is done with a Patch Merging oper-
ation: Groups of 4 neighboring tokens are concatenated to-
gether then linearly embedded to form a unique token. As a
result, as we transition through block, the number of tokens
decreases (i.e., the patch scale increases) and the number
of channels increases, similar to the usual CNN architec-
ture design. In addition, Swin implements local attention is
computed across windows of w × w tokens (w = 7).

Given a pretrained mixed-scale gate with coarse scale
Sc, we rst run it on the input image: This yields a binary
decision for each Sc × Sc coarse patch in the image. We
use this binary mask to guide the ow of tokens through the
Swin transformer: Every input token that falls in a ne scale
region follows the standard Swin paradigm. For the rest of
the tokens (coarse scale regions), we feed them to a simple
linear embedding, and reintegrate them to the ow of ne
tokens in the ℓ-th block such that sℓ = Sc.

In summary, the mixed-scale gate decides whether a to-
ken should be processed at a ne-grained level (early layers
of the Swin transformer with small receptive eld). The
gain in computational cost comes from (i) coarse tokens
skipping FFNs in the early layers, and (ii) due to the ab-
sence of coarse tokens in the early layers some local atten-
tion windows are empty, hence can be entirely skipped.

Finally, there is an interesting interaction between the
base patch scale s1, the attention window scale w = 7 and
the coarse scale of the gate (Sc = sℓ), as they all impact

the scale of the tokens. In our experiments, we consider
varying the parameter ℓ and show that it directly impacts
the MACs-accuracy trade-off.

F. Training dynamics of adaptive trimming

In Section 2.3 we introduce the adaptive trimming strat-
egy (AT) for reducing training overhead. In this section we
analyze how it impacts the gradients received by the gate.
For simplicity, let us consider a simple transformer with a
single attention layer and a class token at index 0.

F.1. Without Adaptive Trimming.

The full process of MSViT can be summarized as:

1. Obtain coarse level mask

∀j ∈ [1, NSc
], mj = GumbelSigmoid(gψ(xj)) (11)
mj = STE(mj) (12)

2. Deduce ne level mask

∀i ∈ [NSc + 1, NSc +NSf
], mi = 1−mC(i) (13)

3. Embed patches and add position embeddings

4. Masked attention

zi = eQ0K
T
i (14)

y0 =

N=NSc+NSf∑

i=1

miziN
p=1 mpzp

Vi (15)

where Q,K, V denotes the query, key and value embed-
dings of the tokens x′; and C is the mapping from ne to
coarse tokens.

5. Feed y0 to linear classication head

For simplicity, we will write the partition function as
Z(ψ) = 1∑N

p=1 mpzp
. Using the link between coarse and

ne tokens from Equation 13 we can decompose the equa-
tion in step 4 as follows:

y0 = Z(ψ)

N∑

i=1

miziVi (16)

y0 = Z(ψ)

NSc∑

j=1

mjzjVj +
N∑

i=NSc+1

(1−mC(i))ziVi

(17)

y0 = Z(ψ)

NSc∑

j=1

mj

zjVj −

N∑

i=NSc+1
C(i)=j

ziVi

Aj(ψ)

+
N∑

i=NSc+1

ziVi

B

(18)

Because of straight-through, we have ∂mj

∂ψ =
∂mj

∂ψ ,
therefore every token contributes to the gradient with re-
spect to the gate parameters, ∂y0

∂ψ , even if the token wass
masked with mj = 0 in the forward pass. In particular,
the ne and coarse tokens of each region directly interact
through Aj(ψ), where their attention value (wrt. the class
token) are compared to each other.

F.2. With Adaptive Trimming

With adaptive trimming, we reorder the tokens accord-
ing to their value of mi and trim the number of tokens to
the maximum sequence length in the batch in step 4. This
essentially mean that some terms will now be omitted from
both the forward and backward pass in Equation 15 and
in Equation 18. As a result, these terms also disappear
from the gradients of Z(ψ) and Aj(ψ). In particular, if the
coarse token j is active and all corresponding ne tokens
are trimmed, then:

∂Aj(ψ)

∂ψ
=

∂mj

∂ψ
zjVj (19)

In the opposite case (ne scale active and corresponding
coarse token is trimmed) then:

∂Aj(ψ)

∂ψ
= −∂mj

∂ψ

N∑

i=NSc+1
C(i)=j

ziVi (20)

In other words, in the masking scenario (Equation 18)
the transition from coarse to ne scale for a token is
smoothly captured in the straight-through gradients ∂mj

∂ψ .
In contrast, with adaptive trimming, ipping from coarse to
ne tokens may sometimes lead to a sudden change in gra-
dients from (19) to (20). Thus Adaptive trimming leads to
a noisier optimization process. However, as we will see in
the next section, this is not a signicant issue in practice.

Model train time # tokens GMACs Acc.
(ViT-S/16 backbone) [min] (average) [%]
ViT in = 224 29.4 196 4.60 82.02

M
ix
ed
-S
ca
le g∗ = 05, AT 31.8 147 3.43 81.53

g∗ = 05, full 36.0 155 3.62 81.71
g∗ = 01, AT 28.8 117 2.73 80.63
g∗ = 01, full 36.0 132 3.09 80.96

Table 5. Average training time per epoch (in minutes) for our
mixed-scale MSViT-S/16, with (AT) and without (full) adaptive
trimming during training. In practice, ATP leads to faster train-
ing time, and only a minor drop in accuracy for comparable MAC
count. We also report the original VIT backbone timings for ref-
erence.

F.3. Adaptive trimming in practice

In Table 5, we report a comparison of training times for
MSViT, with and without the adaptive token trimming (AT)
strategy introduced in Section 2.3. As expected, AT leads
to faster training times, in particular for lower values of the
gate sparsity target g∗. Furthermore, in practice we observe
that AT generally yields comparable trade-off (or only in-
curs a minor drop in accuracy for comparable MAC counts),
which is why we make it the default for all training runs in
our main experiments.

G. Additional ablation experiments
G.1. Benets of a dynamic gate

As described in Section 4.3.2, the learned dynamic gate
in MSViT is able to adapt the model’s computational cost
based on the input image content, in contrast to using a xed
mixed-scale pattern. This is illustrated in Figure 14: Here,
we generate several random geometric shifts of the valida-
tion set, and evaluate both a xed and learned gate model.
We then report in Figure 14 (b) their difference in accuracy
(color of the scatter plot) and in MAC counts (size of the
scatter plot). We observe that:

• (i) The learned gate model generally outperforms the
xed gate one and this is more pronounced when the
random transformation has a strong off-center shift; In
fact, in those cases, the prior of the xed gate that ob-
jects lie in the center of the image breaks.

• (ii) The xed scale selection pattern leads to computa-
tional waste when applied on these simple afne geo-
metric shifts that mimic more realistic ”in-the-wild”
image inputs. In fact the computational cost of the
xed gate model is constant; while the cost of the
learned gate model is signicantly reduced when we
have strong shifts, as they generally lead to more back-
ground regions present in the image, as visualized in
Figure 14 (a).

(a) Example gate outputs given random image zooms and shifts.

(b) Each point corresponds to a different cropping transform
applied to all images of the validation set, and both models have
similar starting performances (83.17 accuracy at 8.50GMACs
for L; 83.06 at 8.75GMACs for F). The colors encode accuracy
improvement of L compared to F (the bluer the better), and the
dot size encodes the efciency improvement (the smaller the
better) of the learned gate over the xed gate.
Figure 14. Performance of a learned gate model (L) versus a xed
radial masking pattern (F). We observe that in most scenarios L
provides better accuracy and automatically adapts its computa-
tional cost accordingly: For instance, highly zoomed-in images
tend to contain more background/at color patches, which are set
to coarse scale by the learned gate, leading to lower MACs.

G.2. Generalized Batch Shaping loss

In Figure 15, we report the counterpart of Figure 7 for
light croppings data augmentations. As mentioned in the
main text, in that setting, there is little to no shift in spatial
distribution between train and test time. As a result, all gate
losses manage to capture the prior that objects tend to lie
in the center of the image in ImageNet (see Figure 15 (a)).
Similarly, for GBaS, even without dedicated initialization
the learned priors also t the central locality insight (Figure
15 (b)). All losses perform similarly in that setting, and the
fast-converging L0 loss is even able to outperform BaS and
GBaS in Figure 6 (b).

G.3. Rescaling the position embeddings with lienar
interpolation

In Figure 16 we show that, when using the standard ViT
netuning pipeline with the linear interpolation of position
encodings leads to an interesting observation: For a low
number of tokens, ViT-S/32 on image size X (scenario A)
performs better than a ViT-S/16 model on image sizeX2

(a) Average (top row) and variance (bottom row) of the learned
scale selection masks across the validation set (A value above
0.5 means that the corresponding image patch will be kept at ne
scale) for different gate sparsity losses.

(b) Prior parameters θ learned with the GBaS loss with/without
ctr init (top/bottom). The rst column is initial values of θ.
Figure 15. Illustration of the masks learned by the model with light
crops data augmentation, leading to little to no shift between the
train and test distribution of the tokens input to the gate

(scenario B), despite them having the same number of to-
kens.

We then investigate whether this behavior also occurs in
MSViT. In Figure 17, we report results for the setting de-
scribed in the main paper: ViT-S/16 backbone at different
input image sizes, and MSViT-S/{16, 32} for different gate
loss objectives. In addition, we also report results on ViT-
S/32 and MSViT-S/{32, 64}, run on a subset of the search
space.

As we see from 0igure, the impact of patch size is in
fact the same as in ViT: In the low regime of the number
of tokens (around 95), MSViT-S/32, 64 ran on larger im-
ages starts to outperform ViT-S/16, 32. This also indicates
that the token embedding and resizing algorithm may im-
pact the model’s accuracy in for a low number of tokens,
and motivates further investigation of this behavior for vi-
sion transformers in general.

Figure 16. Comparison of the performance of ViT-S with patch
size 32 and patch size 16, trained for different input image sizes
using the linear interpolation rescaling trick of the position embed-
dings. While ViT-S/16 generally yields better trade-offs, the trend
starts to invert itself around the threshold of 100 tokens

Figure 17. Comparing the effect of patch scale versus input im-
age size: In terms of number of tokens, increasing the patch or
decreasing the input image size are equivalent; However, the ini-
tial token embeddings and resizing differ in these two settings; As
we can see from this plot, this can lead to large differences in the
low token regimes for the standard ViT backbone (∼ 130 tokens,
indicated by X), and we see the same shift starting to appear for
MSViT models around 90 tokens.

