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1. Implementation Details

Our code is implemented in PyTorch on four NVIDIA
RTX2080Ti GPUs. During classification training, we use
ViT-hybrid-B [3] as the backbone. The training images are
randomly resized and cropped to 384 × 384 and we use a
batch size of 4. The model is trained for 15 epochs using the
SGD optimizer with an initial learning rate of 0.01, weight
decay of 5e − 4, and Polynomial Learning Rate Policy. In
Equation 6, we set α = β = 100.

Evaluation Metric and Protocol For class localization
maps, we report the best mean Intersection-over-Union
(mIoU), i.e., the best match between the activation maps
and the segmentation ground truth under all background
thresholds. For semantic segmentation (in mIoU), we ob-
tain the PASCAL VOC val and MS COCO results by com-
paring the predictions with their ground truth, while we ob-
tain the PASCAL VOC test results from the PASCAL VOC
online evaluation server.

2. Spatial Transformation and Inversion

As discussed in the main paper Section 3.2, our consis-
tency regularization requires an inverse transformation f−1,
which restores the spatial ordering of the tokens within the
transformer. This is needed as the augmentation changes
the pixel orderings in the spatial domain, which in turn al-
ters the orderings of the patches, hence, tokens within the
transformer (Fig. 1). Restoring the order is therefore neces-
sary for us to match the corresponding patches before and
after the augmentation, so that we can compute losses.

Here, we present a toy example to demonstrate such an
effect. As shown in Fig. 1 (top), we have an input image
of resolution 4 × 4 with unique number for each pixel. We
then process it with a patch size of 2 × 2, with each patch
in a different color. Then, we flatten the patches into a 1-d
sequence of tokens as the input of the vision transformer. In
Fig. 1 (bottom), we horizontally flip the image. Likewise,
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Figure 1. Concept illustration of spatial transformation. The spa-
tial augmentation not only transforms patch orders but also the
content inside each patch. We propose transformation inversion to
invert the patches to the original order.

the augmented view is converted into patches that are flat-
tened as a 1-d sequence of tokens. By comparing the col-
ored blocks, a token-wise correspondence is easily drawn
and order is restored. We point out that internally, the em-
bedding of a token is still different than its corresponding
counterpart due to the augmentation applied in the pixel do-
main. But still, they shall share a similar activation signal as
they are obtained from the same entity — albeit flipped or
rotated — and our aim is to regularize such signals through
losses.

To compute the losses for regularization, we require
comparing elements inside the self-attention matrices of the
transformer, which means we need to restore the orderings
of the said elements in a similar philosophy as what shown
in Fig. 1. Though, this is far less trivial, as self-attention is
calculated among all tokens. Below, we provide detailed
derivations on how we obtain the inverse transformation
f−1 that restores such orderings.

2.1. Derivation of the Transformation Inversion

We consider the transformation inversion of the token
ordering in this section. By transformation inversion, we
ensure the augmented attention matrix has an equal spa-
tial ordering to the original attention matrix. Note that we
only consider the token ordering in this section and omit
the transformation that has been applied inside each patch



of the image as we only aim to restore the original spatial
information, not the embedding.

Notations and Lemmas First, we define a general opera-
tion vec(·) which converts an arbitrary 2-d vector (i.e., fea-
ture map) into a 1-d sequence

vec : Rl×m → Rlm×1, (1)

where l, m denote any shape. For an arbitrary H = [hij ] ∈
Rl×m, vec(·) yields its 1-d patched format, as

vec(H) =



h11

...
hl1

...
h1m

...
hlm


(2)

In our setting, hij represents the embedding derived from
an image patch.

Second, we define a commutation matrix Clm ∈
Rlm×lm, which fulfills

Clmvec(H) = vec
(
HT

)
. (3)

We can easily validate that CT
lm = C−1

lm = Clm [7]. There-
fore, Clm is an orthogonal matrix.

Finally, according to [6], we have that for matrices
An×p, Bp×q , and Cq×m, the theorem holds that

vec(ABC) =
(
CT ⊗A

)
vec(B), (4)

where ⊗ is Kronecker product.

Spatial Transformation Operation Given an input im-
age I ∈ RH×W (channel dimension omitted for simplicity),
we consider a spatial transformation operation (i.e., flipping
or rotation) as a mapping of each individual pixel (i, j) ∈ I .
Specifically, for flipping, we have three cases

horizontal flip: (i, j) → (i,W − j),

vertical flip: (i, j) → (H − i, j),

horizontal & vertical flip: (i, j) → (H − i,W − j),

which can be represented by permutation operations.
Likewise, for rotation, we have

90◦rotate: (i, j) → (W − j,H − i),

180◦rotate: (i, j) → (j,H − i),

270◦rotate: (i, j) → (W − j, I),

while each case can be further considered as a matrix trans-
pose followed by a flipping operation.

As such, we unify the above operations into matrix trans-
formations. Given the feature map X ∈ Rh×w of the said
image I obtained from e.g., ViT, where h × w = n (n
patches inside the transformer), we have

flip: X → PhXPw, (5)
rotation: X → PhX

TPw, (6)

where Ph ∈ Rh×h and Pw ∈ Rw×w are permutation matri-
ces in the x and y directions respectively.

Self-attention Matrices Here, we ask the question —
how will the self-attention matrices in the transformer
change according to a spatial transformation operation on
the image?

We assume Qs,Ks as the two projected feature maps
of the input image, but in the 2-d shapes before flatten-
ing. Per the transformer attention design [10], we denote
Qs = XWQ and Ks = XWK , where Qs,Ks are of di-
mension Rh×w×d with d being the feature dimension. Here,
WQ and WK project the embedded input image into two la-
tent spaces, then we use vec(·) to flatten Qs and Ks. The
self-attention matrix of the original image before transfor-
mation is then defined as

A = vec(Qs)(vec(Ks))T ∈ Rn×n, (7)

where we omit the class token for simplicity. Then, we write
out the matrix after the transformation. For flipping, the
augmented self-attention matrix is formulated as

A′ = (vec(PhQ
sPw))(vec(PhK

sPw))
T ∈ Rn×n, (8)

which, per Equation 4, can be further derived as

A′ = (vec(PhQ
sPw))(vec(PhK

sPw))
T

= (PT
w ⊗ Ph)vec(Q

s)((PT
w ⊗ Ph)vec(K

s))T

= (PT
w ⊗ Ph)vec(Q

s)vec(Ks)T (PT
w ⊗ Ph)

T

= (PT
w ⊗ Ph)A(PT

w ⊗ Ph)
T . (9)

For rotation, the augmented self-attention is formulated
as

A′ = (vec(Ph(Q
s)TPw))(vec(Ph(K

s)TPw))
T ∈ Rn×n.

(10)
Following the axiom of 3 where C ∈ Rn×n is an commu-
tation matrix, Equation 10 can be rewritten as

A′ = (vec(Ph(Q
s)TPw))(vec(Ph(K

s)TPw))
T

= (PT
w ⊗ Ph)Cvec(Qs)((PT

w ⊗ Ph)Cvec(Ks))T

= (PT
w ⊗ Ph)Cvec(Qs)vec(Ks)TCT (PT

w ⊗ Ph)
T

= (PT
w ⊗ Ph)CACT (PT

w ⊗ Ph)
T . (11)



Table 1. Ablation of different image augmentation methods. We
report mIoU of seeds on PASCAL VOC train set.

Augmentation mIoU
Baseline (no aug) 57.7
Resize 59.2
Rotation 61.1
Horizontal flip + resize 61.6
Horizontal flip + vertical flip 63.6
Horizontal flip + patch hiding 65.8
Horizontal flip + gray scale 63.8
Horizontal flip 67.3

Table 2. Ablation of different distance metrics for regularization
loss. We report mIoU of seeds on PASCAL VOC train set.

Loss mIoU
L2 62.5
Smooth L1 62.5
L1 67.3

Table 3. Computational comparison. The training memory and test
FPS are tested on an RTX2080Ti GPU with a batch size of 1.

Method Backbone Resolution Train memory(MB) Test FPS
PSA [2] ResNet38 384 3082 0.98
MCTformer [12] Deit-S 224 1500 7.10
Ours Deit-S 224 1580 3.61
Ours Vitb-hybrid-B 384 5260 2.33

Transformation Inversion At last, we obtain the formu-
lation to invert the transformation on the attention matrices.
Following Equation 9 and Equation 11, the transformation
inversion is in a unified form

f−1(A′) = CT (Pw ⊗ PT
h )A′(Pw ⊗ PT

h )
T
C, (12)

where f−1 is the inversion transformation. C ∈ Rn×n is
a commutation matrix for rotation and an identity matrix
when flipping. Note that such a formulation enables inver-
sion of a wide range of possible image transformations that
can be described with permutation matrices, though few
may be helpful augmentations. To this end, f−1(A′) and
A are spatially equivalent and we can directly calculate the
distance between the two attention matrices to apply ACR.

3. Analysis of different image augmentation

Several image augmentations are adopted in ACR to
transform the second view, we report the performance of
them in Table 1. As shown, we ablate several combina-
tions of image augmentations. It is observed that all image
augmentations achieve performance improvements over the
baseline, which validates the effectiveness of ACR. Second,
we found that horizontal flip on its own achieves the best
result (67.3% mIoU). In future work, we will further inves-
tigate how different augmentations affect the performances.

4. More qualitative results

We show more qualitative results of the class localiza-
tion maps provided by ACR. In Fig. 2, we show class lo-
calization maps of images with simple scenes. In Fig. 3, we
show that ACR also generates high-quality class localiza-
tion maps with multiple classes. In the bottom row of Fig. 3,
we show a failure case of an image containing a horse and
a rider. Competitive relationships between the class acti-
vation are not investigated in this paper, so when we have
multiple connected objects that have similar appearances or
belong to the co-occurring classes, the affinity refinement
may lead to over-activation. We will investigate this issue
in future work.

Pair-wise relationships, or affinity, between image re-
gions are inherently encoded in the attention matrix of the
vision transformer. The model is encouraged to capture
consistent pair-wise affinity by our region affinity regular-
ization. We display the class localization maps and learned
affinity matrices. in Fig. 4. The baseline model with classi-
fication loss only produces noisy localization maps, which
is consistent with other methods, such as [12, 9, 8], Fur-
ther, if we only apply activation consistency regulariza-
tion such as (ACT regu), model can correctly localize tar-
geted objects but fails to capture precise object shapes. As
shown, some particular tokens are still causing the affin-
ity matrices to become disorganized, which indicates that
simple activation consistency such SEAM [11] is not ad-
equate and further affinity consistency is necessary. Fi-
nally, our ACR can generate high-quality object localiza-
tion maps as the affinity regularization plays a key role in
ensuring consistent appearance of object features, which in
turn enhances segmentation performance In addition, We
show qualitative examples of the learned affinity in Fig. 5.
We select three positions of the image which are marked as
red crosses and show their related affinity. As shown, the
learned affinity highly corresponds to semantic entities and
shows accurate boundaries. For example, the background
(wall, sky, ground) and foreground objects are clearly sep-
arated. Such results indicate that our vision-transformer-
based ACR learns high-quality affinity and can effectively
refine the class localization maps by propagating related
pixels.

Finally, we show qualitative examples of segmentation
predictions in Fig. 6.

5. Analysis of Regularization Loss

Given two spatially equal attention matrices, we measure
the distance between them. In Table 2, we ablate different
types of distance evaluation methods and report the mIoU of
the class localization maps on the PASCAL VOC train set.
As shown, we empirically found that L1 distance achieves
the best result.



Image CAM MCTformer Ours* Ours

Figure 2. Qualitative examples of class localization maps of ACR. CAM: [14]. MCTformer: [12]. Ours*: our maps without affinity
refinement. Ours: our final class localization maps.



Image w/o aff w aff w/o aff w aff

Failure cases

Figure 3. Qualitative examples of our class localization maps with multiple classes. We show the results without and with affinity refine-
ment. In the bottom, we present a failure case.

6. Analysis of Efficiency
In Table. 3, we compare our method with CNN-based

PSA [2] and Transformer based MCTformer [12]. During
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Figure 4. Qualitative examples of the class localization maps and the learned affinity matrices. Baseline: the model is trained with only
classification. Act regu: the model is trained with only activation consistency regularization. ACR: the model is trained with our ACR
that contains both consistency regularization. The baseline model with classification loss only generates noisy localization. With our
activation regularization (Act regu), the model can correctly localize targeted objects but fails to capture precise boundaries. Finally, our
ACR can generate high-quality object localization maps, showing clearly the performance increase that arises from affinity consistency
regularization.. The affinity matrices are down-sampled for readability.

training, our memory usages are similar under the same
network and image size. Our inference speed is signif-

icantly faster than that of PSA. However, our inference
speed is slower than MCTformer due to the fact that MCT-



Figure 5. Qualitative examples of the learned affinity of ACR. Three source pixels are marked as red crosses. The region affinity related to
these three source pixels is demonstrated respectively. Each source pixel is highly correlated with its semantically matched regions.

former adopts multiple class tokens, whereas we maintain
the model structure with a single class token and calculate
gradients to generate class-wise localization.

7. Limitations and Future Research

We discuss the limitations and future research possibil-
ities of our method in this section. First, competitive re-
lationships between class activation are not investigated in
this paper, instead, our regularization is directly applied to
class-indifferent attention matrices. Thus, affinity refine-
ment may lead to over-activation when multiple connected
objects share similar appearances or belong to co-occurring
classes. In future work, we will investigate how to connect
the self-attention mechanism with the semantic relations be-

tween the classes so we can generate more class discrimina-
tive localization maps. Second, as discussed in the main pa-
per, our class localization maps are generally over-activated
as the FP is consistently higher than the FN. It indicates that
the incompleteness issue is effectively mitigated by ACR.
However, current pseudo generation methods [2, 1]are de-
signed for under-activated seeds, i.e., they require the seeds
to have a high precision rather than recall. It might be the
reason that our pseudo label improvement is not as signifi-
cant as our class localization maps. A compatible solution
for over-activation is expected in the future and it would
potentially improve the segmentation results of ACR even
further.



Image GT Ours Image GT Ours

Figure 6. Qualitative examples of the segmentation predictions



8. Per class results of PASCAL VOC and MS
COCO

We report the per class IoU of PASCAL VOC val set and
MS COCO val set in Table 4 and Table 5.
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Table 4. Per-class results on PASCAL VOC val set.
Class bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU
CPN [13] 89.9 75.1 32.9 87.8 60.9 69.5 87.7 79.5 89.0 28.0 80.9 34.8 83.4 79.7 74.7 66.9 56.5 82.7 44.9 73.1 45.7 67.8
Kweon et al. [4] 90.2 82.9 35.1 86.8 59.4 70.6 82.5 78.1 87.4 30.1 79.4 45.9 83.1 83.4 75.7 73.4 48.1 89.3 42.7 60.4 52.3 68.4
Ours 91.5 85.2 39.7 85.8 60.4 77.0 87.4 80.1 87.9 30.3 84.2 50.7 83.5 85.8 74.1 73.5 59.7 83.8 45.1 72.5 55.5 71.2

Table 5. Per-class results on MS COCO val set.
Class MCTformer [12] RIB [5] ours Class MCTformer [12] RIB [5] ours
background 82.4 82.0 82.7 wine glass 27.0 27.5 48.2
person 62.6 56.1 47.0 cup 29.0 27.4 42.6
bicycle 47.4 52.1 50.4 fork 13.9 15.9 12.6
car 47.2 43.6 44.6 knife 12.0 14.3 16.1
motorcycle 63.7 67.6 68.4 spoon 6.6 8.2 9.5
airplane 64.7 61.3 70.2 bowl 22.4 20.7 26.5
bus 64.5 68.5 71.1 banana 63.2 59.8 64.3
train 64.5 51.3 56.4 apple 44.4 48.5 48.5
truck 44.8 38.1 37.6 sandwich 39.7 36.9 51.0
boat 42.3 42.3 37.1 orange 63.0 62.5 63.1
traffic light 49.9 47.8 37.4 broccoli 51.2 45.4 53.8
fire hydrant 73.2 73.4 74.9 carrot 40.0 34.6 44.3
stop sign 76.6 76.3 65.2 hot dog 53.0 49.7 52.1
parking meter 64.4 68.3 50.8 pizza 62.2 58.9 79.3
bench 32.8 39.7 43.1 donut 55.7 53.1 65.5
bird 62.6 57.5 60.2 cake 47.9 40.7 52.6
cat 78.2 72.4 78.4 chair 22.8 20.6 18.7
dog 68.2 63.5 72.0 couch 35.0 36.8 39.9
horse 65.8 63.6 67.5 potted plant 13.5 17.0 22.5
sheep 70.1 69.1 70.4 bed 48.6 46.2 51.0
cow 68.3 68.3 71.4 dining table 12.9 11.6 19.6
elephant 81.6 79.5 81.2 toilet 63.1 63.9 65.7
bear 80.1 76.7 82.7 tv 47.9 39.7 50.7
zebra 83.0 80.2 82.1 laptop 49.5 48.2 54.6
giraffe 76.9 74.1 76.2 mouse 13.4 22.4 11.8
backpack 14.6 18.1 13.3 remote 41.9 38.0 37.4
umbrella 61.7 60.1 64.4 keyboard 49.8 50.9 53.5
handbag 4.5 8.6 8.2 cellphone 54.1 54.1 53.2
tie 25.2 28.6 27.1 microwave 38.0 45.2 46.7
suitcase 46.8 49.2 48.3 oven 29.9 35.9 32.7
frisbee 43.8 53.6 57.0 toaster 0.0 17.8 0.0
skis 12.8 9.7 14.1 sink 28.0 33.0 30.4
snowboard 31.4 29.4 23.7 refrigerator 40.1 46.0 32.9
sports ball 9.2 38.0 21.5 book 32.2 31.1 33.2
kite 26.3 37.1 47.1 clock 43.2 41.9 52.6
baseball bat 0.9 15.3 11.0 vase 22.6 27.5 31.4
baseball glove 0.7 8.1 7.1 scissors 32.9 41.0 42.4
skateboard 7.8 31.8 26.0 teddy bear 61.9 62.0 60.3
surfboard 46.5 29.2 38.6 hair drier 0.0 16.7 0.0
tennis racket 1.4 48.9 21.0 toothbrush 11.1 21.0 31.0
bottle 31.1 33.1 38.5 mIoU 42.0 43.8 45.0


