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Abstract

Self-supervised representation learning (SSL) in com-
puter vision aims to leverage the inherent structure and
relationships within data to learn meaningful representa-
tions without explicit human annotation, enabling a holis-
tic understanding of visual scenes. Robustness in vision
machine learning ensures reliable and consistent perfor-
mance, enhancing generalization, adaptability, and resis-
tance to noise, variations, and adversarial attacks. Self-
supervised representation learning paradigms, namely con-
trastive learning, knowledge distillation, mutual informa-
tion maximization, and clustering, have been considered to
have shown advances in invariant learning representations.
This work investigates the robustness of learned represen-
tations of SSL approaches focusing on distribution shifts
and image corruptions in computer vision. Detailed ex-
periments have been conducted to study the robustness of
SSL methods on distribution shifts and image corruptions.
The empirical analysis demonstrates a clear relationship
between the performance of learned representations within
SSL paradigms and the severity of distribution shifts and
corruptions. Notably, higher levels of shifts and corrup-
tions are found to significantly diminish the robustness of
the learned representations. These findings highlight the
critical impact of distribution shifts and image corruptions
on the performance and resilience of SSL methods, empha-
sizing the need for effective strategies to mitigate their ad-
verse effects. The study strongly advocates for future re-
search in the field of self-supervised representation learning
to prioritize the key aspects of safety and robustness in or-
der to ensure practical applicability. The source code and
results are available on GitHub. 1.

1https://github.com/prakashchhipa/Robsutness-Evaluation-of-Self-

supervised-Methods-Distribution-Shifts-and-Corruptions
**Work performed at Machine Learning Group, EISLAB,

Luleå Tekniska Universitet, Luleå, Sweden

1. Introduction

Safety and robustness are crucial in computer vision as

they ensure the accurate and reliable perception of the vi-

sual world, enabling applications such as autonomous driv-

ing [31], and surveillance systems to make informed and

trustworthy decisions, reduce environmental noise [22], ul-

timately enhancing overall human safety and well-being. In

recent years self-supervised representation learning (SSL)

methods [18] have garnered interest in computer vision ap-

plications. Its current state-of-the-art is prominent even

against supervised examples where invariant representa-

tion learning has been the core, as stated in [17]. SSL

is a well-explored representation learning approach, with

many studies on its performance in large datasets such as

ImageNet-2012 and also on multi-modality [41]. In addi-

tion, SSL has also been well-explored with other learning

approaches, including active learning [3], graphs [35], life-

long learning [36], and many more. Recent advances in

self-supervised representation learning can be broadly cate-

gorized into multiple paradigms, namely contrastive learn-

ing [9, 23], Knowledge Distillation [21, 7, 12], Mutual In-

formation Maximization [39, 2], and Clustering [5]. De-

spite these advancements, the robustness and safety as-

pects of SSL paradigms have not been extensively explored,

which hinders their applicability in real-world use cases.

This study is one of the early attempts highlighting the

above-stated research gap on a large-scale dataset [25] fo-

cusing on the distribution shifts and image corruptions.

Representation learning from self-supervised represen-

tation learning paradigms for computer vision can be cat-

egorized majorly as (i) Joint Embedding Architecture &

Method (JEAM) ([10], [20], [6], [40]), (ii) Prediction

Methods ([37], [33], [16]), and loosely (iii) Reconstruc-

tion Methods ([30], [19]). Specifically, JEAM can be di-

vided further with each subdivision providing many inter-

esting works; (i) Contrastive Methods (PIRL [32], Sim-

CLR [10], SimCLRv2 [11], MoCo [24]), (ii) Distillation

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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(BYOL [20], SimSiam [13]), (iii) Quantization (SwAV [6],

DeepCluster [4]), and (iv) Information Maximization (Bar-

low Twins [40], VICReg [1]). Robustness is critical in real-

life computer vision applications as there will be a shift in

distribution for the deployed models with time. Understand-

ing the behavior of existing models to the distribution shift

is a crucial consideration in developing newer, more robust

models.

Ericsson et al. [17] explore the impact of different aug-

mentation strategies on the transferability of self-supervised

representation learning models to downstream tasks. The

authors show that CNNs trained contrastively do learn in-

variances corresponding to the augmentations used, and

specializing CNNs to particular appearance/spatial aug-

mentations can lead to greater corresponding invariances.

Furthermore, learning invariances to synthetic transforms

does provide a degree of invariance to corresponding real-

world transforms. This work establishes the correspon-

dence between synthetic transforms and learning invari-

ances for knowledge transfer limited to [15] without fo-

cusing on robustness and distribution shift.

Another significant work by Jiang et al. [28] focuses

on improving the robustness of self-supervised pre-training

by learning representations that are consistent under both

data augmentations and adversarial perturbations. It lever-

ages contrastive learning to enhance adversarial robustness

via self-supervised pre-training. They discuss several op-

tions to inject adversarial perturbations to reduce adversar-

ial fragility. Through experiments in both supervised fine-

tuning and semi-supervised learning settings, they demon-

strate that the proposed adversarial contrastive learning can

lead to models that are both label-efficient and robust. The

paper does not specifically focus on corruption, but rather

on improving the model’s ability to handle adversarial at-

tacks. This work shows notable improvement in robustness

performance but remains limited to a small-scale CIFAR

dataset, subject to limited generalizability.

Research is needed to learn invariant SSL representa-

tions capable of handling distribution shifts and corruptions;

this study provides a ground in this direction by sharing

insights into the robustness performance of a large-scale

dataset. The identified research gap(s), raises several re-

search questions addressed in later sections. For the de-

tailed investigation, we considered the most popular SSL

paradigms, namely contrastive learning, knowledge distil-

lation, mutual information maximization, and clustering.

Next, we exhaustively evaluated the corruptions and their

severity levels present in ImageNet-C dataset [25] to under-

stand the resilience of each method. Further, compare the

robustness performance across multiple metrics, including

qualitative analysis. To the best of our knowledge, this is

one of the early works in this direction.

Q1: How do self-supervised representation learning

(SSL) paradigms (contrastive learning, knowledge distilla-
tion, mutual information maximization, clustering) perform
in terms of robustness when exposed to distribution shifts
and image corruptions? A1: Distribution shifts and image

corruptions have an effect on the robustness performance

of the well-known SSL paradigms. The empirical analysis

in this study shows that the error rates (averaged over all

distribution shifts and image corruptions) increase with an

increase in the severity levels of the distribution shifts and

image corruptions. (Figure 1, and Section 3.Q1).

Q2: To what extent can self-supervised representation
learning methods maintain their robustness in the presence
of distribution shifts, and what are the factors that limit their
ability to do so? A2: Extensive experiments reveal that SSL

methods sustain robustness performance when subjected to

lower levels of corruptions, and subsequently, the perfor-

mance reduces when subjected to higher levels of corrup-

tions. Higher corruptions may lead to massive distribu-

tion shifts, which may affect the robustness performance

of learned representations. (Figure 2, Table 3, and Sec-

tion 3.Q2).

Q3: What is the relationship between the robustness of
different SSL paradigms and common categories of corrup-
tions? A3: Generally, robustness performance decreases for

increased severity of corruptions; specifically, the weather

group’s robustness performance is poorer than that of other

groups. (Figure 5, and Section 3.Q3).

Q4: Do self-supervised representation learning methods
deviate from the observed trend of error increase for cer-
tain corruptions, and what factors contribute to their ro-
bustness in the face of these corruptions? A4: Yes; a few

corruptions, namely, snow, elastic transform, and saturate,

deviate from the observed trend supported by visual quality

analysis. (Table 4, and Section 3.Q4).

Q5: To what extent does the presence of corruptions shift
the focus of classifiers from overall representation to spe-
cific features? A5: GradCam [34] analysis reveals that there

is a significant shift in the attention maps when the image is

subjected to higher levels of corruption. (Figure 3&6, and

Section 3.Q5).

Q6: Do different backbones, such as Convolutional Neu-
ral Networks (CNNs) and Transformers, influence the be-
havior and robustness? A6. Yes; the self-attention mecha-

nism in transformer, in contrast to CNNs, does not embed

any visual inductive bias of spatial locality [27]. (Figure 4,

and Section 3.Q6).

2. Methodology
Comparative performance evaluation against robustness

is carried out in two steps. In the first step, self-supervised

representation learning method(s) are chosen from each

potential self-supervised representation learning approach

(based on JEAM), including contrastive learning, knowl-
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edge distillation, mutual information maximization, and

clustering. In the second step, evaluation measures are

chosen, indicating quantitative and qualitative compar-

isons on distribution shift and corrupted data samples from

ImageNet-C.

Reason for measuring robustness of learnt representa-
tions with corruptions and severity - This study focuses

specifically on robustness of representations where domain

shifts is simulated in controlled manner through corruption

and their varying severity level. Corruptions and pertur-

bations in ImageNet-C [25] are meticulously curated and

carefully designed to closely simulate natural phenomena

in vision, related to geometric distortions, visual noises, and

other explicit factors. Five severity levels further resembles

the increased difficulty level, aiding to study robustness at

scale. Corruptions across multiple severity levels, thereby

altering the original data distribution in a controlled man-

ner [25]. Each corruption severity level shifts the distribu-

tion progressively. The corruptions cause variations in tex-

ture, color, and spatial coherence, effectively expanding the

data manifold towards shift.

2.1. Self-supervised Representation Learning
Methods

Methods from different self-supervised representation

learning approaches are considered for analysis on the

ImageNet-C dataset. The self-supervised representation

learning techniques considered for this work are categorized

into four main categories based on their methodology.

Contrastive Learning: It is a self-supervised represen-

tation learning approach in computer vision and other ma-

chine learning domains. The principle behind contrastive

learning is to learn valuable representations by encouraging

similarity between semantically similar data points while

maintaining dissimilarity between unrelated or contrasting

data points. In computer vision, this approach helps in

learning features and representations from images without

relying on labeled data. Instead, it exploits the inherent

structure in the data to learn meaningful representations that

can be used for various downstream tasks. Specifically,

SimCLR method [9] minimizes the temperature-scaled loss

function. This contrastive loss penalizes the network when

positive pair similarity is low and negative pair similarity is

high.

Knowledge Distillation: Distillation-based self-

supervision is where student and teacher style encoders

are structured and share the learning weights with spe-

cific arrangements such as exponential moving averages.

Typically, similarity learning is performed by inducing

architectural dissimilarity, such as adding a prediction

MLP network on only one of the branches. In this work,

SimSiam [12], a self-distillation method, and BYOL [21]

& DINO (with ResNet encoder) [7] dual encoder style

knowledge distillation methods are employed.

Mutual Information Maximization: This principle is

used in self-supervised representation learning to learn

valuable and meaningful representations from data with-

out explicit labels. The principle is to maximize the mu-

tual information between different views or transformations

of the input data, assuming that the learned representations

should be invariant or robust to these transformations. Bar-

low Twins [39], and VICReg [2] are two self-supervised

representation learning methods employed for the work to

follow the principle of mutual information maximization to

learn visual representations by applying redundancy reduc-

tion.

Clustering: SwAV [5] combines contrastive learning

and clustering-based approaches to learning meaningful and

invariant features from images. The main idea behind

SwAV is to use a clustering mechanism to enforce consis-

tency between different views of the same image while pro-

moting diversity in the learned representations.

Robustness Evaluation Criteria: The error rate met-

rics, namely corruption error (CE), mean corruption er-

ror (mCE), clean error, average error, and average rel-

ative error, were introduced as a standardized measure

to benchmark the robustness of machine learning models

on Imagenet-C. The two-step evaluation is described by

Hendrycks et al. [25]. The same procedure has been fol-

lowed in this study.

2.2. Dataset and Experimental Setup

ImageNet-C dataset [25] contains 19 types of corrup-

tions with five severity levels, each algorithmically gener-

ated. The main objective is to analyze the performance

of different self-supervised representation learning methods

across these corruptions and severity levels. By conducting

detailed experiments, this research aims to gain insights into

how self-supervised representations handle various types of

corruptions. In this paper, we have performed detailed ex-

periments considering all the corruptions and severity lev-

els to gain a deeper understanding of how different self-

supervised representations work on different types of cor-

ruptions and present our findings in Section 3.

Table 1. Configuration used (refer [14, 7] for implementation de-

tails).
Barlow Twins BYOL SimSiam SimCLR DINO SWaV

Batch Size 2048 4096 256 4096 1024 256

Epochs 300 200 100 200 800 200

Linear-Eval% 71.8 71.8 68.3 66.9 75.3 70.5

Epoch 90 90 90 90 100 100

Batch Size 256 512 512 512 256 256

Experimental details for evaluating the robustness of

self-supervised representations are as follows. We extracted

the encoder from a ImageNet pre-trained self-supervised

representation learning model and added a classification

layer at the end of the network. This allows the model to
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Figure 1. Error rates vs. severity levels across ImageNet-C [25]

corruptions.

be fine-tuned on ImageNet 2012 dataset for a classification

task. Evaluations is performed on ImageNet-C dataset [25].

For this work, we have considered six of the state-of-the-

art SSL algorithms, and the configurations are shown in

Table 1. We first initialized the classifier layer randomly

and froze all the parameters of the pre-trained encoder.

Next, we trained the classifier using the labeled training set.

The models used were trained by mmsetup[14] except for

DINO, which came from its original repository [7]. ResNet-

50 was chosen across all different methods to keep the anal-

ysis uniform, and all experiments subsequently were con-

ducted using this architecture. The SSL models were tested

on ImageNet-C [25], and mCE [25] is used as a perfor-

mance measure. The results are shown in Table 2 and 3.

3. Can SSL methods endure shifts in data dis-
tribution and image corruptions?

The raised research questions are discussed in this sec-

tion.

Q1: How do self-supervised representation learning
(SSL) paradigms (contrastive learning, knowledge dis-
tillation, mutual information maximization, clustering)
perform in terms of robustness when exposed to distri-
bution shifts and image corruptions?

The average error rates against all corruptions (per sever-

ity level) of all the SSL methods are depicted in Figure 1.

The general trend is that SimCLR and SimSam have higher

error rates as compared to other methods. While learning

has reported good performance previously on ImageNet-

C [29], we noticed that SimCLR is not comparably robust

against these corruptions. A pattern observed (Figure 1)

is that, in general, Knowledge distillation methods seem

to outperform contrastive learning. Clustering outperforms

other methods indicating robust representations. From Fig-

ure 1, one important observation is that for corruptions with

lower severity levels, the six SSL methods form three sets

where SwaV and DINO perform best, followed by BYOL

and Barlow twins; finally, SimCLR and SimSiam have rel-

atively lower performance. However, at the highest severity

level, all the methods have similar and high error rates. This

is likely because most images in this group are heavily dis-

torted and challenging even for the human visual system to

comprehend. From Table 2, we observe that SwaV outper-

forms all the competing methods in terms of corruption er-

ror and mean corruption error; however, DINO has a better

robustness performance.

Q2: To what extent can self-supervised representa-
tion learning methods maintain their robustness in the
presence of distribution shifts, and what are the factors
that limit their ability to do so?

Table 3 presents a detailed analysis using mean corrup-

tion error mCE for each corruption. Here, we report the av-

erage mCE for each corruption in the ImageNet-C dataset.

One of the findings is that glass blur significantly impacts

the robustness of these models, specifically at higher sever-

ity levels. Most of these models have demonstrated good ro-

bustness to brightness-based corruptions. As corroborated

by Figure 2 for most corruptions, the model robustness suf-

fers with the increase in severity levels.

Q3: What is the relationship between the robustness
performance of different SSL paradigms and common
categories of corruptions?

As the severity levels of corruptions increase, all self-

supervised representation learning (SSL) methods demon-

strate a decline in their robustness, as shown in Fig-

ure 5. While the noise and blur groups have a similar

trend, whereas digital group shows comparatively strong re-

silience for intermediate severity level. SSL methods are

least robust against weather group.

Q4: Do self-supervised representation learning meth-
ods deviate from the observed trend of error increase for
certain corruptions, and what factors contribute to their
robustness in the face of these corruptions?

We observed (Figure 2) that for three corruptions,

namely, snow, saturate, and elastic transform (last row),

there is a deviation from the expected trend; the expected

trend is that the error increases with an increase in severity

level. However, SSL models are performing low at severity

level 2 than at severity level 3. Given the intriguing devi-

ations displayed by (snow, elastic, saturate) from their an-

ticipated behavior, we delved deeper into our inquiry, em-

ploying a renowned perceptual measure known as Structural

Similarity Index measure (SSIM) [38] to investigate further,

as one of the metrics popularly used by image quality re-

searchers for reference image-based quality assessment.

We computed the SSIM between the original image

(from ImageNet) and the corresponding corrupted image

(from ImageNet-C) for all test images and averaged at each

severity level (Table 4); this gives an estimate of the visual
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Table 2. Results for each method calculated over the corruption metric [25].

Barlow Twin BYOL SimCLR SimSam SWaV DINO

clean error 28.2 28.2 33.1 31.7 29.5 24.7
average error 73.8 73.8 75.99 75.8 70.5 71.5

average relative error 74.7 74.6 76.0 76.0 70.7 72.9

Figure 2. Model performance against specific corruptions by severity. For corruptions, namely, snow, saturate, and elastic (last row), SSL

models perform poorly at severity level 2 than at severity level 3.

Table 3. mCE for each corruption type against the baseline. The error rates in each column of corruption types are average values of all

severity levels.
Weather Noise Extra Digital Blur

mCE Snow Frost Fog Bright Gauss. Shot Impulse Speckle Gauss. Spatter Saturate Pixelate Contrast Elastic JPEG Zoom Defocus Motion Glass
barlow 73.8 84 78 87 46 73 75 83 70 73 69 47 66 85 72 62 86 79 80 88

byol 73.8 85 78 86 46 73 76 81 71 73 70 48 66 84 73 63 86 78 80 86

simclr 76.0 85 78 89 48 76 79 85 76 77 70 50 67 80 75 68 88 83 82 88

simsam 75.8 85 80 90 50 74 76 81 71 74 73 50 65 88 75 63 88 82 84 89

swav 70.5 80 73 79 41 71 73 82 68 70 65 44 67 73 71 60 83 77 77 85

dino 72.9 83 75 82 41 74 75 84 68 70 65 44 68 79 70 60 82 76 76 85

supervised [25] 76.7 78 75 66 57 80 82 83 76 74 76 58 77 71 85 77 80 75 78 89
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Figure 3. Glass blur on dogs; markers in the images show correct (green) and incorrect (red) classifications. In ImageNet, with many dog

breed classes, misclassification doesn’t necessarily indicate a bad model if the representation is adequate. In the twin dog example, with

low blur severity, both dogs have good activations for all models, suggesting good representations. However, at high blur severity, the

model struggles to classify, resulting in distorted activations and difficulty in distinguishing between the dogs, leading to poor results.

Figure 4. Comparison between different backbones, ResNet50 and ViT-s8 for DINO SSL method over ImageNet-C [25] corruptions.

Severity levels (left), corruptions (right).
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Figure 5. Group-wise comparison. (a) Noise (b) Blur (c) Weather (d) Digital (left to right).

quality.

Snow corruption occludes the object by adding whitish

pixels as snowflakes with motion blur. It has more visu-

ally challenging images at severity level 2 than other levels;

therefore, SSIM at level 2 is lower than the SSIM at other

severity levels. Similarly, for elastic transform, the SSIM at

level 2 is lower than the SSIM at other severity levels. At

low severity (levels 1 and 2), the affine transform is more

noticeable in some cases, causing artifacts, which can also

be seen in figure 6 on its elastic transform. The saturation
corruptions have very low saturation at low severity levels,

causing it to be a grayscale image. This might lead to some

classes not being accurately predicted, where color infor-

mation is crucial. In nutshell, only for snow, elastic and

saturate, increased severity level (2 to 4) by increasing re-

spective artifacts, does not reflect increased noise in image

examples which mitigates above stated behaviour from all

SSL methods.

Table 4. SSIM metric for snow, elastic and saturate-based corrup-

tions.
Severity Snow Elastic Saturate

1 0.218 0.276 0.288

2 0.179 0.237 0.283

3 0.194 0.315 0.273

4 0.186 0.312 0.234

5 0.189 0.305 0.210

Q5: To what extent does the presence of corruptions
shift the focus of classifiers from overall representation
to specific features?

To gain more insight into how different self-supervised

representation learning methods for classification task pick

a label, we have used gradcams [34] to compare the dif-

ferent methods qualitatively. Gradcams are used to explain

the model’s decision as they provide heatmaps on where in

the image the model is focusing. In Figure 6, we show the

grad cams of an image for all SSL methods under different

corruptions of varying severity levels.

The difference among Gradcams gives an understanding

of how the model behavior changes in the presence of a par-

ticular corruption. From Table 3, we noticed that glass blur

corruption had caused the highest misclassification for all

competing SSL methods; to understand how different meth-

ods respond to different severity of glass blur, we provide

the corresponding gradcams in Figure 3.

Q6: Do different backbones, such as Convolutional
Neural Networks (CNNs) and Transformers, influence
the behavior and robustness?

There has been analysis [26] on adversarial robustness

for transformer and CNN architectures but to specifically

analyze the robustness against corruptions and distribution

shifts, we chose the most robust SSL method from the

previous analysis (i.e., DINO), and compared the back-

bone ViT-s8 [8] transformer with standard CNN ResNet-50.

Undoubtedly, transformer architecture outperformed CNN

backbone across the severity levels and also for each image

corruption. A detailed trend is shown in Figure 4.

4. Conclusion
The primary objective of this investigation was to con-

duct an in-depth analysis of diverse paradigms employed in

current self-supervised representation learning paradigms,

focusing on their robustness characteristics when sub-

jected to varying corruptions present in the ImageNet-C

database. The aim was to gain a comprehensive under-

standing of how these self-supervised representation learn-

ing paradigms perform and behave in the face of diverse

corruptions, thereby contributing to the advancement of ro-

bust representation learning in the computer vision domain.

Through empirical analysis, we have presented various an-

alytical trends and demonstrated that self-supervised repre-

sentation learning methods exhibit decreased robustness as

distributional shifts intensify. Notably, our findings indicate

that the DINO method employing the distillation approach

and the SwAV method utilizing clustering exhibit relatively

higher levels of robustness compared to the other meth-

ods investigated in this study. While DINO is associated

with knowledge distillation, SwAV employs a contrastive

assignment quantization approach, indicating their dissim-

ilarity in methodology. These results suggest that multiple

SSL methods originating from diverse SSL paradigms dis-

play enhanced robustness when evaluated on ImageNet-C.

However, it is essential to view these empirical findings as

a starting point for further exploration rather than defini-

tive conclusions. The comparative study conducted in this

research serves to enhance the comprehension of the com-
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Figure 6. Random Corruptions on a Cobra; the markers in the images show correct and incorrect classifications. Cobra, a reptile with

multiple classes in ImageNet, may confuse classifiers. However, cobras are generally distinguishable from other reptiles due to their

distinctive neckband. At severity level 2 of elastic transform, there are artifacts causing a distorted doublet, making it a challenging case.

Overall, models perform well with good representation. The classifier in these examples shows a bias toward the neckband, while the

original un-cropped image emphasizes the edges for classification by DINO and SwaV. However, due to corruptions, the focus shifts more

towards the neckband.

puter vision community regarding the strengths and limita-

tions of various self-supervised representation learning ap-

proaches. Furthermore, it facilitates researchers in devel-

oping robust representations in future endeavors. A signif-

icant finding from our analysis is that the SwaV method,

which employs a clustering approach, exhibits higher ro-

bustness compared to popular methods such as SimCLR

and Barlow Twins. This result offers valuable insights for

future research directions aimed at further improving self-

supervised representation learning methodologies. Consid-

ering the findings of this study, it becomes imperative to ad-

dress the challenges associated with the performance degra-

dation of self-supervised representation learning methods

under distribution shifts and image corruptions. By pri-

oritizing safety and robustness, researchers can contribute

to the development of more reliable and trustworthy self-

supervised representation learning techniques that can ef-

fectively handle real-world scenarios and enhance the prac-

tical utility of these methods. In this work, we dedicate to

the methodical revelation of empirical evidence, rather than

hypothesizing. Our endeavor remains steadfast in illuminat-

ing numerous enigmas through a rigorous examination. We

firmly hold the conviction that this pioneering work shall

pave the way for future inquiries, enabling the formulation

and evaluation of cogent hypotheses.
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