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Abstract

The rising popularity of deep neural networks (DNNs)
in computer vision has raised concerns about their robust-
ness in the real world. Recent works in this field have
well-demonstrated the vulnerability of these networks to
carefully crafted adversarial attacks which yield out-of-
distribution (OOD) samples. Interestingly, the majority of
the existing literature focuses on adversarial attacks crafted
for the digital domain only. Physical adversarial attacks
are easier to deploy in the real world and yield higher at-
tack success than digital perturbations. The prime limita-
tion of such a dearth of studies handling physical out-of-
distribution images is the lack of benchmark datasets. To
overcome this limitation, this research proposes a novel out-
of-distribution dataset using adversarial patches of differ-
ent variations to advance the robustness of deep networks
against such stealthy out-of-distribution images. We have
also conducted extensive experiments both under seen and
unseen patch settings and observed that unseen adversarial
patches are hard to defend. By conducting this study and
delving into the complexities of defending against patch at-
tacks, we believe it will serve as inspiration for future re-
searchers to incorporate physical OOD attacks into their
defense strategies.

1. Introduction

While CNNs show tremendous success, their vulnera-

bility against out-of-distribution (OOD) samples is a major

concern. One popular form of getting an out-of-distribution

sample is the addition of an adversarial pattern whether it

is an imperceptible perturbation or visible patches [8,9,20].

Adversarial attacks can be classified into three broad cate-

gories based on the amount of perturbation: (i) impercep-

tible adversarial perturbations [34], (ii) universal perturba-

tions [27], and (iii) physical adversarial patches [13, 22].

While novel adversarial attacks ensure that the DNNs are

secure from any possible vulnerability, the defense algo-

Figure 1. Distribution shift among different adversarial attacks.

The first row is imperceptible adversarial perturbation noise, the

second is the universal perturbation vectors, and the third is the

physical adversarial attacks.

rithms tackling them independently might be a severe con-

cern [1,6,7]. It is seen that both imperceptible and universal

adversarial perturbations have limitations in their transfer-

ability and applicability to the physical world, especially

when compared to adversarial patch attacks. However, de-

spite the real-world effectiveness of adversarial patch at-

tacks, the majority of adversarial defense algorithms pri-

marily focus on countering imperceptible adversarial per-

turbations (disturbing a very small number of pixels to in-

duce misclassification). It leaves a gap in developing a true
defense algorithm that can counter the wide variety of ad-
versaries that exist in the real world.

We assert that ignoring the impact of adversarial patch

attacks can be dangerous, especially when aiming to de-

ploy these state-of-the-art DNNs in the unconstrained phys-

ical world. Figure 1 shows the adversarial noises, which

when incorporated into the images yield a broad spectrum

of out-of-distribution examples. The reason is that imper-

ceptible and universal perturbations do not occlude any re-
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gion of the images; however, the adversarial patches can

occlude a small or significant portion of an image, depend-

ing on its size. We want to mention that while several

benchmark studies are proposed in the literature to tackle

the issue of adversarial defense, no work has included ad-

versarial patch attacks. For example, Hendrycks and Diet-

terich [21] showcase the impact of several common corrup-

tions, such as Gaussian noise, blur, and fog on deep neu-

ral networks (DNNs), but no defense has been proposed in

this study. Dong et al. [17] proposed a benchmark study to

tackle only the imperceptible adversarial perturbations. Re-

cently, Agarwal et al. [2, 4] have performed several bench-

mark studies to counter adversarial perturbations and com-

mon corruptions; however, still, the OOD examples ob-

tained physical patches are missing from the literature. It

is also to be noted that several defense works also exist that

can effectively detect imperceptible adversarial attacks in

several generalized settings such as unseen datasets, unseen

perturbation, and unseen threat model [1, 5, 6]. The evalua-

tion of these defenses for physical patch adversaries is still

an open-research direction.

As discussed, no studies have benchmarked the defense
against adversarial patch attacks; therefore, in this re-
search, we have performed the study by creating patch at-
tack datasets. The OOD patch detection is performed us-

ing several deep image classification networks, including

the network architecture search (NAS) method [40] and the

vision transformer [19]. Neural Architecture Search (NAS)

automates the process of designing optimal neural network

architectures. Instead of relying on manual design, NAS

employs algorithms to search and discover architectures

that maximize performance for specific tasks. On the other

hand, Vision Transformers (ViTs) are a recent breakthrough

in computer vision. ViTs adopt the Transformer architec-

ture, originally designed for natural language processing,

and apply it directly to images. The prime reason for con-

ducting a benchmark study on adversarial patches can also

be understood from the distribution shift among the attacks

and out-of-distribution handling limitations of the DNNs.

We assert that the presence of the dataset and benchmark

evaluation can help advance the research in this direction

and make comparisons with new novel algorithms. In brief,

the contributions of this research are:

• A novel adversarial patch attack dataset has been de-

veloped. The dataset contains images of multiple vari-

ations of patches. The presence of different style

patches will ensure that the defense algorithms are not

biased;

• A benchmark evaluation has also been conducted. For

that, several real-world evaluations and protocols are

developed to handle seen patches and unseen patches.

A defined protocol can help make fair comparisons in

Figure 2. Samples of ten adversarial patches (arranged in an order,

i.e., patch 0 is top left and patch 9 is bottom right) along with their

target labels that are used to generate the proposed OOD datasets.

future works, which is often missing in imperceptible

adversarial detection literature.

2. Related Work
The adversarial attacks on DNNs using crafted imper-

ceptible perturbations are first introduced by Szegedy et

al. [34]. They found an imperceptible adversarial pertur-

bation can help in generating effective out-of-distribution

samples which can trigger the misclassification of a deep

neural network. Since then numerous methods to gener-

ate imperceptible adversarial perturbations have been pro-

posed [25]. Surprisingly, the attacks are effective in fool-

ing the deep neural networks working in different domains

such as image classification [12, 24], geoscience [10, 38],

segmentation and autonomous driving [28, 30].

While these imperceptible perturbations are found effec-

tive in fooling deep neural networks and are applicable in

various vision tasks, some limitations halt their deployment

in the real world. A few such critical limitations are trans-

ferability to unseen deep neural networks [36] and ineffec-

tiveness in the physical world. To tackle the limitations of

imperceptible adversarial patterns, an “adversarial patch at-

tack” is introduced which contains malicious information

which is visible but can result in stealthy out-of-distribution

images that have higher physical world practicality [35,37].

Adversarial patch attack on image classifiers is first pro-

posed by Brown et al. [11], presenting a universal and tar-

geted attack on real-world physical object detectors. An-

other approach to reducing the suspiciousness of adversarial

patches to human eyes involved the creation of an adversar-

ial QR patch [14]. Similar to the digital adversarial pertur-

bations, adversarial patch-enhanced out-of-distribution im-

ages are effective in several domains such as point clouds

[18], biometrics recognition [23,33], and traffic sign recog-

nition [39]. From the above review, it is observed that

several adversarial patch generation algorithms have been

proposed; however, one prime limitation of the literature

is the inexistence of a benchmark out-of-distribution image

dataset containing adversarial patch examples. The limita-
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Figure 3. Samples of the different OOD adversarial patch images

developed as part of our dataset. It can be seen that these patches

can be blended with the image content and hence increase the com-

plexity of its detection, especially when the detection network has

not seen them in the training.

tion impacts the development of defense algorithms that can

protect the integrity of deep networks against stealthy out-

of-distribution adversarial patch images. We assert that this

research is a first step towards that goal which presents a

benchmark study in defending deep neural networks from

out-of-distribution physical world adversaries.

3. Proposed Out-of-Distribution Dataset

Given the limited research in the area of detecting phys-

ical out-of-distribution images consisting of adversarial

patches, this study aims to address the gap by introducing

two novel adversarial patch datasets. These datasets have

been curated using images of well-known datasets, namely

ImageNet [16] and COCO (Common Objects in Context)

[26]. We have used 2000 randomly selected images from

the ImageNet dataset and treated them as the real subset of

the proposed dataset. For the patched subset, on another

2000 randomly selected real images, ten different adversar-

ial patches [29] as shown in Figure 2 are applied. Each

of these patches is designed to be targeted toward a spe-

cific class, resulting in a diverse range of target classes for

misclassification. Hence these patches not only have varia-

tions in texture and style but can also misclassify the images

into different categories. ‘Thus, we have generated a large-
scale adversarial patch dataset containing 20, 000 patched
images along with additional 2000 real images using the
subset of ImageNet’.

To extensively benchmark and understand the robustness

of adversarial patch OOD examples detection, we have also

utilized the COCO dataset. Similar to ImageNet, 4000 im-

ages are randomly selected from the dataset, out of which

2000 images are kept as real images, and on the remain-

ing 2000 images each of the adversarial patches has been

applied. In total, the proposed dataset contains 40,000
(20,000 of ImageNet and 20,000 of COCO) adversar-
ial patched images, and 4,000 real images. Figure 3

Figure 4. Schematic diagram of the adversarial patch detection net-

work.

shows some of the samples from the proposed dataset re-

flecting the challenge in detecting the adversarial attack not

only due to significant style change of the patches but also
their blending nature with the complex image regions.

4. Benchmarking Adversarial Patch Detection
Results and Analysis

Architecture and Experiments: This research aims to

overcome the limitation of the existing adversarial defense

literature and benchmark state-of-the-art (SOTA) image

classifiers for physical OOD examples detection. Hence-

forth, we have used several CNN-based architectures and

vision transformers which varied in terms of basic architec-

ture, the number of layers, the connection between layers,

and their formation. The selected classifiers are as follows:

XceptionNet [15], MobileNetv2 [31], NASMobileNet [40],

VGG16 [32], and Vision Transformer [19]. The reason for

using these architectures is that they are heavily popular for

image classification. Further, NAS-style architectures and

ViTs have not been explored comprehensively for adver-

sarial patch detection. Therefore, benchmarking their ro-

bustness can pave the way to incorporate the adversarial

nature of the images while crafting network architecture.

Figure 4 shows the schematic diagram of the physical out-

of-distribution adversarial patch detection framework.

These networks are fine-tuned by keeping approximately

60 percent of the network pre-trained on ImageNet and

training the rest 40 percent of the network using the Ima-

geNet patch subset. On top of that, two dense layers are

added to extract features along with the classification layer

to perform binary classification (real vs. patch). We split

the ImageNet patch OOD subset into train and test sets in

the ratio of 3:2 and trained all the models using the training

set. Thus, each model has been trained on 1200 patched im-

ages of one patch class at a time and 1200 real images. In

total, we have trained five different models on each of the

ten patches and then tested each of these models on seen and

unseen real and patch images of the ImageNet (seen OOD

dataset) and COCO (unseen OOD dataset).

Results and Analysis: As described above, we have per-

formed a comprehensive set of experiments in seen patches

and unseen patches settings to effectively evaluate the per-
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Table 1. Adversarial patch detection accuracy of the different architectures on ImageNet subset. The results are reported in terms of mean

and standard deviation (SD), where the trained on one patch is tested on all the patches. Here X, NAS, and M represent Xception, NASNet,

and MobileNet, respectively. The best mean and SD value is highlighted and underlined across each network, respectively.

Models Matrices Patch 0 Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6 Patch 7 Patch 8 Patch 9

X Mean 75.04 75.41 77.28 76.22 80.81 71.36 70.55 79.39 79.83 74.61

SD 10.60 03.73 07.11 09.59 06.95 08.92 03.65 10.33 11.55 11.92

VGG16 Mean 71.06 75.77 69.39 65.10 80.35 74.89 74.35 68.68 70.78 73.04

SD 16.20 14.91 18.16 18.39 16.04 16.63 14.93 19.88 19.72 17.25

M Mean 85.38 84.05 68.76 73.94 84.27 77.65 83.04 76.45 82.83 79.50

SD 09.46 04.06 00.67 00.68 04.39 04.65 04.45 17.62 10.00 12.39

NAS Mean 59.34 57.73 59.27 60.45 59.34 55.15 59.90 65.83 62.08 58.63

SD 01.66 00.44 00.68 01.37 01.00 00.44 01.09 04.62 01.84 02.67

ViT Mean 72.88 75.36 77.28 65.05 76.46 74.98 66.62 72.76 69.06 70.73

SD 15.31 14.58 16.73 16.84 17.04 14.99 15.04 20.26 20.84 20.11

Table 2. Adversarial patch detection accuracy of the different architectures on COCO subset where the networks are trained on the ImageNet

OOD subset. The results are reported in terms of mean and standard deviation (SD), where the trained on one patch is tested on all the

patches. The best mean and SD value is highlighted and underlined across each network, respectively.

Models Metric Patch 0 Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6 Patch 7 Patch 8 Patch 9

X Mean 73.39 75.32 76.51 75.25 79.69 70.93 70.94 77.41 78.94 73.39

SD 10.66 03.58 07.63 09.52 06.72 09.41 03.67 09.97 11.53 11.96

VGG16 Mean 70.36 74.12 70.01 66.11 79.61 74.84 73.23 67.63 70.10 72.63

SD 16.31 15.47 18.58 18.47 15.64 17.07 15.83 19.87 19.30 17.21

M Mean 83.46 83.29 68.67 73.96 84.86 77.40 82.42 76.50 81.82 79.46

SD 10.17 03.91 00.77 00.82 04.81 05.29 04.53 17.46 09.47 11.98

NAS Mean 57.83 56.15 55.87 58.10 57.39 54.28 56.46 62.79 58.18 57.18

SD 01.66 03.44 00.75 01.11 00.87 00.31 00.67 03.81 01.61 02.12

ViT Mean 72.78 74.98 77.46 64.09 76.47 75.16 66.32 73.08 69.36 70.98

SD 15.23 15.14 16.80 17.15 17.34 15.02 15.50 19.86 20.83 19.61

formance and robustness of the image classifiers for ad-

versarial patch detection. The analysis of the experiments

can be broadly performed based on the following factors:

(i) robustness of the classification model and (ii) effective-

ness of the training patch. The brief experimental results

on ImageNet and COCO datasets in terms of average clas-

sification accuracy are given in Tables 1 and 2, respec-

tively. It can be seen that the ViT model which is pre-

trained on the large-scale dataset, is shown state-of-the-art

performance for OOD examples detection. Interestingly,

the VGG model shows comparable performance to ViT and

is not pre-trained on large-scale datasets on which ViT is

trained. On the other other hand, the NASMobileNet ar-

chitecture shows the lowest OOD examples detection per-

formance on both datasets. However, it is to be noted that

the standard deviation of the performance of NASNet is the

lowest among all the networks. From the results of both

datasets, it is interesting to note that, for pre-defined net-

work structures such as VGG and XceptionNet, patch 4 is

found the most robust (unseen dataset and patch) architec-

ture to detect OOD adversaries. Whereas ViT found patch-2

as the most effective and NASMobileNet found patch 7 as

the most effective patch detector both under seen and un-

seen patch evaluation settings. Out of all the networks, Mo-

bileNet archived the highest accuracy when trained on patch

0 (Table 1) and patch 4 under unseen dataset setting (Table

2). However, the performance of MobileNet is inconsistent

when different types of patches are used for training. It can

also be analyzed from the heatmaps (Figure 5) where the

MobileNet shows the best performance majority of the time

when it is trained on the individual patches of both datasets.

Tables 3 and 4 provide the detailed performance of

each network and how they have performed when they are

trained on a specific patch and evaluated on the same and

unseen patches. Here the analysis can be broken into gen-

eralized conditions: (i) seen patch detection on the same

training-testing dataset and (ii) unseen patch detection on

the same training-testing dataset. The diagonal elements

of these tables represent the performance of the models on

seen patches. As expected, the models perform best on

the seen patches but are found vulnerable against unseen

patches. Out of all the networks, ViT and VGG show high

performance in detecting the patches which are seen at the

time of training. As mentioned that the biggest real-world

challenge for a defense algorithm is that at the time of test-

ing, out-of-distribution attack (patch) images come for clas-

sification. Henceforth, the desired goal for an ideal defense

algorithm is the robustness in handling these unseen attack
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Table 3. Adversarial patch detection accuracy of the different architectures on ImageNet subset under seen and unseen patch detection

scenarios. Seen settings results are highlighted and the best unseen-test patch performance is underlined.
Train →
Test ↓

Patch 0 Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6 Patch 7 Patch 8 Patch 9

Xception

Patch 0 87.12 72.06 82.56 83.00 82.19 61.06 64.25 75.38 83.25 75.25

Patch 1 64.81 81.19 76.50 72.87 73.62 79.19 73.81 72.37 68.88 67.06

Patch 2 85.75 78.87 88.31 88.50 86.19 68.37 72.00 80.44 84.56 76.81

Patch 3 79.56 73.75 84.31 89.81 78.94 73.69 71.13 70.19 72.19 59.25

Patch 4 84.00 76.69 83.31 81.19 89.00 69.94 70.50 86.69 89.69 81.81

Patch 5 58.38 78.00 68.88 73.06 69.13 86.12 73.81 60.75 59.25 57.06

Patch 6 60.31 78.62 71.94 77.06 72.31 83.44 76.25 75.75 69.00 65.38

Patch 7 71.56 70.31 70.56 63.19 84.44 64.44 68.75 92.31 89.63 85.75

Patch 8 79.75 71.25 77.81 71.75 87.44 62.44 66.50 91.12 92.81 87.44

Patch 9 79.12 73.37 68.62 61.75 84.81 64.94 68.50 88.94 89.06 90.31
VGG16

Patch 0 98.00 71.00 86.12 79.37 89.63 69.38 60.06 61.44 70.44 73.31

Patch 1 54.50 96.81 59.75 56.63 61.62 92.69 91.44 54.75 53.81 63.56

Patch 2 89.63 85.56 97.94 93.94 95.44 63.44 67.81 52.94 63.63 65.69

Patch 3 83.50 87.06 95.56 98.44 74.31 91.69 88.38 50.38 50.38 51.44

Patch 4 71.69 63.25 76.81 57.88 95.75 61.50 63.56 67.31 76.38 72.75

Patch 5 52.50 82.31 53.06 56.19 57.19 95.06 88.38 52.13 51.06 55.31

Patch 6 51.94 89.44 53.12 56.00 58.31 93.69 95.63 58.13 52.56 60.25

Patch 7 59.75 53.37 50.75 50.13 84.75 55.06 59.94 97.87 97.00 94.69

Patch 8 74.19 55.31 59.75 50.75 94.38 55.37 57.50 97.44 98.12 96.13

Patch 9 74.94 73.62 61.06 51.63 92.12 71.00 70.75 94.38 94.38 97.31
MobileNet

Patch 0 92.25 73.12 69.00 74.00 83.06 68.56 71.81 63.81 81.44 68.50

Patch 1 79.37 86.81 68.94 74.12 85.06 82.06 86.44 70.81 82.56 82.44

Patch 2 92.81 84.81 69.13 74.44 86.87 76.50 84.50 72.62 86.94 80.56

Patch 3 89.88 84.87 69.13 74.44 85.62 80.75 86.19 65.75 82.50 71.56

Patch 4 93.25 86.12 69.06 74.31 87.06 78.56 84.06 92.56 90.50 90.38

Patch 5 66.94 82.63 67.19 72.19 74.31 82.94 85.37 52.56 61.44 59.50

Patch 6 71.81 83.88 67.87 73.56 78.87 82.44 87.06 56.19 69.94 65.69

Patch 7 88.19 85.87 69.06 74.25 87.12 73.19 81.81 96.56 90.94 91.81

Patch 8 92.44 85.56 69.13 74.31 87.31 74.62 82.00 97.06 90.94 92.31

Patch 9 86.81 86.87 69.06 73.81 87.37 76.88 81.19 96.56 91.06 92.25
NASMobileNet

Patch 0 60.94 57.38 59.75 61.62 59.13 55.31 59.00 65.25 61.81 59.87

Patch 1 58.00 58.50 59.00 60.31 58.69 55.56 60.56 63.69 61.12 57.81

Patch 2 60.50 58.06 60.12 62.06 59.94 55.62 60.81 67.94 63.19 59.50

Patch 3 59.87 58.38 59.56 62.31 59.31 55.19 61.44 62.69 61.44 54.81

Patch 4 60.37 57.38 59.75 61.00 60.31 55.37 59.62 67.94 63.06 60.00

Patch 5 56.50 57.50 57.88 58.38 57.81 55.62 59.62 58.56 58.63 55.25

Patch 6 56.63 57.25 58.38 59.19 57.69 54.75 60.56 59.62 59.81 55.19

Patch 7 59.87 57.75 59.31 60.12 60.25 54.31 60.12 71.25 64.06 61.00

Patch 8 60.31 57.69 59.56 60.81 60.19 54.87 59.69 70.63 63.94 61.31

Patch 9 60.37 57.44 59.38 58.69 60.12 54.87 57.56 70.75 63.69 61.56
ViT

Patch 0 98.25 57.63 90.19 60.75 72.62 68.69 51.56 68.00 60.25 60.12

Patch 1 56.56 97.50 73.81 67.62 58.06 93.19 86.19 57.38 51.31 58.56

Patch 2 86.81 79.81 98.81 92.12 84.31 72.56 62.50 57.75 56.50 56.31

Patch 3 73.12 89.44 97.50 98.75 61.81 80.00 72.25 54.19 50.94 51.69

Patch 4 86.31 70.25 92.50 63.19 98.44 77.50 59.87 92.31 85.37 90.25

Patch 5 53.81 81.44 58.00 52.75 58.06 96.19 70.00 52.19 50.69 51.63

Patch 6 53.12 87.94 57.88 54.81 55.94 89.44 96.50 55.25 50.19 54.62

Patch 7 71.94 58.06 60.00 52.19 89.44 56.00 54.00 98.44 94.69 87.63

Patch 8 80.19 56.06 80.37 53.81 96.69 54.37 50.63 98.31 99.25 97.62

Patch 9 68.75 75.50 63.75 54.56 89.25 61.87 62.75 93.81 91.50 98.94
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Table 4. Adversarial patch detection accuracy on COCO subset under seen and unseen patch detection scenarios. Here the evaluation has

been performed under ‘duly’ generalized settings, including where the dataset and patches for testing are also unknown to the adversarial

detection training models. Seen settings results are highlighted and the best unseen-test patch performance is underlined.
Train →
Test ↓

Patch 0 Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6 Patch 7 Patch 8 Patch 9

Xception

Patch 0 87.44 73.87 82.88 83.50 83.00 62.12 66.62 76.25 84.31 75.44

Patch 1 64.31 80.75 77.56 73.75 73.50 79.69 74.94 70.88 69.81 65.81

Patch 2 84.19 78.44 87.88 87.19 84.44 70.06 71.81 79.31 83.94 74.81

Patch 3 76.75 71.13 82.69 88.25 75.88 72.75 69.13 67.25 70.50 58.44

Patch 4 82.63 76.81 83.44 79.50 87.50 69.25 71.13 84.44 89.38 81.81

Patch 5 56.75 77.81 67.56 72.94 69.19 86.69 74.62 60.00 58.25 56.88

Patch 6 58.88 78.56 68.31 73.81 70.63 82.63 76.81 71.50 66.81 61.69

Patch 7 69.25 70.81 70.25 63.44 83.13 62.06 70.38 90.19 87.44 84.06

Patch 8 77.50 71.63 77.00 70.56 85.87 59.44 65.81 88.44 91.44 85.37

Patch 9 76.19 73.37 67.56 59.56 83.75 64.63 68.12 85.87 87.56 89.56
VGG16

Patch 0 97.94 69.50 88.63 82.19 89.63 69.00 59.25 59.69 69.19 73.44

Patch 1 53.44 96.06 61.69 58.44 63.25 93.00 90.75 54.62 53.87 64.88

Patch 2 88.38 83.44 98.06 94.00 94.44 62.88 66.44 52.00 63.44 64.63

Patch 3 82.56 86.75 96.63 98.94 72.94 93.37 89.13 50.13 49.94 50.88

Patch 4 70.88 62.25 77.06 60.81 95.13 62.12 62.81 64.94 76.31 73.06

Patch 5 52.25 81.38 52.75 57.81 55.81 95.88 88.75 52.25 50.88 54.56

Patch 6 51.50 88.50 52.63 56.81 58.81 93.37 95.38 55.56 51.88 58.88

Patch 7 57.94 50.63 50.25 49.88 81.69 54.12 57.00 97.62 95.44 93.69

Patch 8 75.31 53.37 61.37 50.69 94.13 55.87 55.50 96.88 97.69 95.88

Patch 9 73.44 69.31 61.06 51.50 90.25 68.81 67.25 92.62 92.31 96.44
MobileNet

Patch 0 91.87 72.62 68.75 73.69 84.62 67.25 72.12 63.38 80.81 69.56

Patch 1 76.44 85.50 68.88 74.12 85.25 82.25 85.37 71.69 82.06 82.44

Patch 2 90.62 84.69 69.13 74.62 87.25 76.63 84.00 71.25 85.31 79.62

Patch 3 88.50 84.62 69.13 74.62 87.06 80.69 86.19 66.69 81.06 71.25

Patch 4 92.69 85.37 69.13 74.37 88.00 78.94 83.94 91.94 89.31 90.00

Patch 5 64.94 81.75 66.69 71.94 73.50 83.63 86.00 53.12 61.56 59.19

Patch 6 68.06 83.56 68.00 73.44 79.25 82.50 86.75 56.50 69.56 67.37

Patch 7 85.94 84.50 68.94 74.44 87.94 71.94 79.00 96.81 89.56 91.56

Patch 8 91.31 85.06 69.06 74.56 87.94 73.31 80.56 97.44 89.50 91.62

Patch 9 84.25 85.25 68.94 73.81 87.75 76.81 80.31 96.19 89.44 91.94
NASMobileNet

Patch 0 59.62 55.87 56.50 59.25 57.25 54.31 55.94 61.94 58.19 57.94

Patch 1 56.50 56.63 55.50 57.94 56.31 54.44 57.13 59.87 56.69 56.25

Patch 2 59.75 56.69 56.81 59.44 58.06 54.37 57.56 64.31 59.19 57.81

Patch 3 57.63 55.94 56.44 59.56 57.63 54.44 56.88 60.00 57.63 53.75

Patch 4 58.19 56.19 56.31 58.25 57.88 54.44 55.94 65.00 58.75 58.63

Patch 5 55.31 56.19 54.62 56.56 55.94 54.69 55.87 57.56 55.31 54.87

Patch 6 55.31 56.50 54.62 58.25 56.38 54.50 57.00 58.00 56.50 54.75

Patch 7 58.25 56.00 56.00 57.25 58.06 53.69 56.19 67.56 59.81 59.13

Patch 8 58.19 55.81 56.12 58.13 58.25 53.81 56.63 66.81 59.94 59.06

Patch 9 59.56 55.75 55.81 56.44 58.19 54.12 55.50 66.94 59.87 59.69
ViT

Patch 0 98.12 56.56 90.44 62.19 71.94 70.31 52.06 67.37 61.75 59.81

Patch 1 56.38 97.87 74.37 66.50 58.13 94.31 86.81 58.13 51.50 60.06

Patch 2 86.12 80.37 98.19 93.06 86.62 74.31 61.50 58.31 56.06 57.13

Patch 3 72.69 88.69 97.44 99.25 60.19 78.69 71.75 54.25 50.94 51.75

Patch 4 86.12 69.19 93.37 62.81 98.69 76.75 60.37 91.44 86.06 89.94

Patch 5 54.69 83.25 58.56 53.31 58.38 96.50 71.88 53.62 51.13 53.12

Patch 6 53.00 87.69 57.56 54.56 55.75 88.69 96.69 56.56 50.38 55.12

Patch 7 71.06 57.25 60.00 51.69 88.13 56.19 52.38 98.44 94.44 86.50

Patch 8 81.63 54.81 81.63 53.12 96.75 53.87 50.19 98.50 99.31 97.69

Patch 9 68.00 74.19 63.13 54.50 90.13 62.00 59.62 94.19 92.12 98.75
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Figure 5. Average and standard deviation performance of each

model when trained on individual adversarial patches of datasets

(ImageNet: top and COCO: bottom). Here the average accuracies

are from red to blue where red being the high effectiveness of a

model and blue representing the ineffectiveness of a model in de-

tecting patches.

distributions. In such real-world defense challenges, the
MobileNet outperforms the other networks by a significant
margin. In terms of the performance of individual patches,

it is observed that when the models are trained on patches

0 and 3, they are found most resilient in handling patch 2.

Similarly, when the models are trained on patch 9, they are

not only effective in handling patch 9 but can also detect

patch 8. Patch 6 trained models are effective in handling

patch 1.

Figure 6 and Figure 7 illustrates the robustness of each

classifier when trained and tested on both seen and un-

seen attack patches of ImageNet and COCO dataset, re-

spectively. The classifiers observed significant drops in per-

formance when attempting to classify adversarial patches

that were not seen during training. This decline in perfor-

mance can be attributed to two main factors: first, the shift

in style texture distribution among the patches, and second,

the challenging blending of these patches with complex im-

age regions.

An interesting finding is that if we only consider the per-

centage drop in accuracy, we can see that NASMobilenet

Figure 6. Average adversarial patch attack detection performance

on the ImageNet subset under seen and unseen patches evaluation

setting. The results reflect that when unseen patches come for clas-

sification, the performance of the networks drops drastically.

Figure 7. Average adversarial patch attack detection performance

on the COCO subset under seen and unseen patches evaluation set-

ting. The results reflect that when unseen patches come for classi-

fication, the performance of the networks drops drastically.

demonstrates the highest level of generalizability across

different patches. Although, it is also found to have the

lowest network capacity, referring to its performance in

seen patches training and testing conditions. For instance,

NASMobileNet’s performance drops by 3.1% in the un-

seen patches setting compared to the seen patches setting.

Nevertheless, it still lags behind other architectures by at

least 28.4% in the seen evaluation setting. Despite these

challenges, NASMobileNet presents promising prospects

for the development of a robust adversarial patch detection

classifier. This could be achieved by intelligently incorpo-

rating adversarial patch information during the architecture

search process, thereby enhancing its ability to detect at-

tacks effectively.

5. Conclusion
The vulnerability of different convolutional neural net-

works, including vision transformers [3], to adversarial at-

tacks is a significant concern when considering their real-

world deployment. Out of several adversarial perturbations,
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an adversarial patch is one of the most complex and highly

effective physical world attacks, yet there has been lim-

ited focus on developing defenses against it. To address

this gap, we have created a comprehensive dataset contain-

ing 44, 000 images, comprising both real and adversarially

patched examples. These adversarial patch examples can be

seen as out-of-distribution (OOD) examples due to having

significantly different distribution than the images on which

the networks are trained. Using this dataset, we conducted

an extensive benchmark study to understand whether the

current image classification models are sufficient enough

to detect these OOD samples. Our experimental analysis

revealed that the image classifiers are effective in detect-

ing the adversarial patch attack; however, the catch they

must be seen during the training of the detector. The chal-

lenge is exacerbated when dealing with images from out-of-

distribution settings, meaning datasets that were not seen

or considered during training, testing, and evaluation. In

the future, we aim to expand the dataset and develop a

sophisticated and robust architecture for detecting out-of-

distribution adversaries.
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