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Abstract

Source-free domain adaptation (SFDA) aims to adapt a
well-trained source model to an unlabelled target domain
without accessing the source dataset, making it applica-
ble in a variety of real-world scenarios. Existing SFDA
methods ONLY assess their adapted models on the target
training set, neglecting the data from unseen but identi-
cally distributed testing sets. This oversight leads to overfit-
ting issues and constrains the model’s generalization abil-
ity. In this paper, we propose a consistency regularization
framework to develop a more generalizable SFDA method,
which simultaneously boosts model performance on both
target training and testing datasets. Our method leverages
soft pseudo-labels generated from weakly augmented im-
ages to supervise strongly augmented images, facilitating
the model training process and enhancing the generaliza-
tion ability of the adapted model. To leverage more po-
tentially useful supervision, we present a sampling-based
pseudo-label selection strategy, taking samples with severer
domain shift into consideration. Moreover, global-oriented
calibration methods are introduced to exploit global class
distribution and feature cluster information, further improv-
ing the adaptation process. Extensive experiments demon-
strate our method achieves state-of-the-art performance on
several SFDA benchmarks, and exhibits robustness on un-
seen testing datasets.

1. Introduction
Deep neural networks achieve impressive success on var-

ious tasks [18, 9, 7, 25] while suffering from performance

degradation when applied to data with a different distribu-

tion, which is called domain shift [45]. Unsupervised Do-
main Adaptation (UDA) approaches provide a promising

solution to address this issue by learning an adaptive model

jointly with labeled images (source domain) and unlabeled

images with shifted distribution (target domain). Most ex-

isting approaches [35, 12, 40, 50] focus on inter-domain

Source-only model After adaptation
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Class A testing set sample Previous work Ours

Figure 1. (Top left) Accuracy (%) comparison with existing meth-

ods [27, 51, 53] on target training and testing data of VisDA-2017

dataset [34]. (Top right) Training curve. Our results are in red,

while SHOT [27] is in blue. (Bottom) Diagram of adaptation ef-

fect comparison. Existing SFDA methods only evaluate and im-

prove their performance on target training data, which shows a per-

formance degradation on unseen but identically distributed data.

Our approaches construct a generalizable model, boosting the per-

formance both on training and testing data.

feature alignment by leveraging both domain data distribu-

tion, which implies an availability to source domain data

when performing an adaptation strategy. However, con-

sidering real-world scenarios, source datasets storage costs

and privacy issues may limit the accessibility to source data.

Source datasets for pretraining are always on a large scale,

which makes it infeasible to deploy traditional UDA meth-

ods to portable devices like mobile phones, though source

model size is reasonable [27]. Meanwhile, source data

might be privacy sensitive and related to copyright restric-

tions, like medical images and commercial data.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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To this end, recently a new setting of UDA which al-

leviates the need to access source data, called Source-free
Domain Adaptation (SFDA), has drawn increasing research

interest. SHOT [27] performs a source hypothesis trans-

ferring by fixing the classifier and adopting information

maximization loss, NRC [51] and G-SFDA [53] encour-

age similar prediction among nearest neighbors, and SFDA-

DE [8] aligns surrogate features from estimated source dis-

tribution to target features. These existing paradigms have

shown promising results under a transductive learning man-

ner, where the models are trained and tested on the same

dataset, which often leads to overfitting problems [19].

However, considering the real-world application, it’s im-

practical to collect all target data for model training. So

the primary object of SFDA is to perform better on unseen

target domain data, instead of only being effective on the

training set. Thus, it is essential to propose an overfitting-

robust model with enhanced generalization ability.

Shown in the top row of Fig. 1, models trained with pre-

vious works are suffering from performance degradation

when handling unseen but identically distributed images,

i.e., the testing data. As illustrated in the bottom part, we

argue that the reason for previous works who perform well

on training set but fail to classify testing samples, is that

they only consider existing target samples and construct an

unsmooth model manifold [3]. In this case, overfitting is-

sues easily occur during the transductive learning process,

especially since there’s no external supervision signal un-

der the SFDA setting. Although neighborhood-based meth-

ods [51, 53] show some insights to constrain the local con-

sistency by nearest neighbors, model manifold smoothness

still cannot be guaranteed due to potentially spare feature

space and limited target samples.

To address the above issues, in this paper, we propose

a consistency regularization framework to realize a gener-

alizable SFDA. (1) To avoid overfitting and promote the

model’s generalization ability, we enforce consistent pre-

dictions between target data and its perturbation form de-

rived by image augmentation. It’s implemented by gen-

erating soft pseudo-labels with model outputs of weakly

augmented images, and supervising the strongly augmented

ones. With this, we could construct a smooth model man-

ifold which is beneficial to learn a transferable model and

avoid overfitting issues. (2) We argue that pseudo-label se-

lection is crucial for avoiding error accumulation because

no explicit supervision is provided under the SFDA setting.

Different from previous thresholding methods who may

omit valuable intrinsic information with a rough thresh-

old, we present a sampling-based pseudo-label selection

method, filtering samples with probability associated with

their prediction confidence metric, which leverages poten-

tially useful samples. (3) We also introduce global infor-

mation to calibrate the point-wise operations. We leverage

class prediction distribution to apply class-wise weighting,

preventing class imbalance issues without introducing any

separate class balance loss. To identify the noisy outliers,

feature cluster information is integrated by calculating class

prototypes and selecting reliable training samples.

Our contributions can be summarized as follows:

• We propose the consistency regularization framework

under the SFDA setting for the first time, generating a

robust and generalizable model. It effectively avoids

overfitting issues and boosts performance both on tar-

get training and testing sets.

• To advance the effect of consistency regularization,

we propose the sampling-based pseudo-label selection

strategy to leverage more potential samples and the

global-oriented calibration techniques to constrain and

enhance the adaptation process.

• Massive experiments show that our proposed method

outperforms existing approaches on DA benchmarks,

especially with a large margin on target testing set.

2. Related Work
Unsupervised Domain Adaptation. UDA attempts to

learn an adaptive model jointly with labeled images (source

domain) and unlabeled images (target domain) [45], which

can erase the burden of labeling target domain data.

These years UDA has achieved great success on different

tasks [50, 6, 59]. Most common existing UDA approaches

are trying to align feature distribution between source and

target domain, for instance, Maximum Mean Discrepancy

(MMD) [13] based methods [35, 28] align feature embed-

ding in reproducing kernel Hilbert space, which can reduce

the distance of representations from each domain. Holding

the same point, DANN [12] achieve this alignment through

an adversarial training approach, by fooling a newly added

domain classifier for extracting domain-invariant feature

representation. More recently, SRDC [40] proposes to di-

rectly uncover the intrinsic target discrimination via dis-

criminative clustering of target data, FixBi [32] performs

bidirectional matching and self-penalization on intermedi-

ate domains generated by fixed ratio-based mixup. The

success of these paradigms depends on the assumption of

simultaneous access to source and target data, which is hard

to guarantee in real-world scenarios.

Source-free Domain Adaptation. Considering the privacy

and copyright restrictions when adapting models across do-

mains, a new setting of domain adaptation, SFDA, is pro-

posed and eliminates the requirement to source data during

the adaptation procedure [27, 51, 8, 41, 24]. SHOT [27]

freezes the source model classifier module (hypothesis) and

exploits both information maximization and self-supervised

pseudo-labeling to achieve feature alignment. A2Net [46]

develops an adversarial network to seek a target-specific
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classifier that advances the target hard samples’ recognition.

Based on the observation that target data still form clear

clusters with the source model, NRC [51] and G-SFDA [53]

encourage label consistency towards nearest neighbors in

feature space. BUFR [10] focuses on measurement shifts

between domains and applies a bottom-up source feature

restoration technique to boost target feature representation.

DaC [58] divides the target data into source-like and target-

specific samples, to learn global class clustering with for-

mer and learn intrinsic local structures with later. The

methods mentioned above provide some insights to achieve

SFDA, however, they only consider and adapt samples in

the target domain in a transductive manner, which could

lead to an unsmooth manifold and raise overfitting issues.

Consistency Regularization. Consistency regularization

is extensively investigated in the semi-supervised learning

area, and the key point is similar inputs should share con-

sistent predictions, which can enhance the network’s feature

representation. Mean Teacher [42] averages model weights

using EMA over training steps and enforce consistency be-

tween student and teacher models, UDA [47] proves the

importance of data augmentation and provides a new effec-

tive way to noise unlabeled examples. FixMatch [39] pro-

poses a new framework to achieve consistency regulariza-

tion by generating pseudo-labels from weakly-augmented

images and using them to supervise the outputs of strongly-

augmented ones. These approaches are under SSL setting,

which need labeled samples to guide the model training pro-

cess and can’t satisfy the SFDA scenarios.

3. Method
In this section, we formalize the definition of source-free

domain adaptation and our methodology to tackle it. Firstly

we introduce notations used in SFDA, then present our ba-

sic consistency regularization framework aiming to develop

a more robust and generalizable model. For further boosting

the performance, a sampling-based pseudo-label selection

strategy is proposed and analyzed in detail. Lastly, we lever-

age global information to avoid degradation by performing

global-oriented calibration methods.

3.1. Preliminaries

For the vanilla UDA classification task, we are given a

source dataset Ds = (xs
i , y

s
i )

ns

i=1 with ns labeled training

samples and a target dataset Dt = xt
i
nt

i=1 with nt unlabeled

samples, where xi
s ∈ Xs, x

i
t ∈ Xt and Xs holds different

underlying marginal distribution with Xt as domain shift

exists. Under the close-set [36] setting, source and target

domain share the same label set C = {1, 2, · · · ,K} under

the K-way classification task, and y ∈ R
K is the one-hot

label. SFDA considers the inaccessibility to source data

problem in the adaptation phase, so only a source model

h = f ◦ g pre-trained on Ds and a target dataset Dt with-

out any label is provided when applying adaptation. Simi-

lar to existing works, the source model can be divided into

two components: feature extractor f who generates features

zi = f(xi) from input images and classifier g who provides

final prediction pi = p(xi) = δ(g(zi)) given z where δ is

the softmax function.

3.2. Consistency Regularization

Existing paradigms consider SFDA as merely a transduc-

tive learning process, in which they train and test models on

the same set of samples, ignoring the robustness and gen-

eralization ability. However, in real-world applications, it’s

almost impossible to collect every target domain sample for

applying adaptation, so we attempt to develop a generaliz-

able model which can achieve high performance on unseen

but identically distributed target data.

Manifold smoothness assumption, which is mostly con-

sidered in the semi-supervised learning (SSL) area [21,

42, 31, 47, 39], describes that a model’s output shouldn’t

change when realistic perturbations are occurred in data

points [54], to construct a more reliable feature represen-

tation. We argue that SFDA, similar to SSL which mainly

exploits potentially beneficial supervision signals from un-

labeled data, should also satisfy this assumption to keep

model consistency for a better understanding of target struc-

ture and robustness of unseen identically distributed data.

We introduce consistency regularization terms to gen-

erate a smooth manifold. To realize perturbations on data

points, strong augmentations A are applied to input images,

simulating the noisy form of the original image. Model

prediction of a strong augmented image is p′i = p(x′
i) =

δ (h (A (xi))). As p′i and pi are derived from the same se-

mantic information, it’s obvious that they should share con-

sistent results, which means Dist(pi, p
′
i) is small.

Many SSL methods [21, 42, 47] attempt to minimize this

distance with massive implementations, as an auxiliary task

to labeled sample loss. Since no label information is avail-

able, these discrepancy minimization methods are insuffi-

cient to develop a target adaptive model under the SFDA

setting. We hold that with less noise and transformation, pi
could provide supervision signals to p′i as it has a more ac-

curate prediction result. Formally, we generate soft pseudo-

label p̂k(xi) from model predictions:

p̂k(xi) =
exp(hk(xi)/T )∑K
k=0 exp(hk(xi)/T )

(1)

where subscript k denotes the kth class output, and T <
1 is Softmax temperature. This operation can be regarded

as a sharpening [1] to the original class probability output,

which makes prediction closer to one-hot and provides more

clear supervision. We argue that soft pseudo-labels could

be more robust for noisy samples than one-hot labels which
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Figure 2. Framework of our proposed SFDA method. We leverage consistency regularization to boost model generalization ability, mean-

while, sampling-based pseudo-label selection strategy and global-oriented calibration module further strengthen the adaptation process.

may enlarge wrong learning signals, especially when there’s

no external constraint under the SFDA setting.

As mentioned above, aligning p′i to p̂i enhances the pre-

diction consistency and provides supervision for domain

adaptation. We apply cross-entropy loss here to accomplish

alignment for sample xi:

L(i)
cr = H(p̂i, p

′
i) = −

K∑
k=1

p̂k(xi) log(pk(A(xi))) (2)

where pk(xi) denotes the probability output of the kth class.

Besides construct consistency regularization, strong aug-

mentation could also be regarded as an expansion of target

data space, which is an effective approach to avoid over-

fitting issues and promotes the model’s generalization abil-

ity. Notice that our implementation shares some similarities

with FixMatch [39], however, 1) FixMatch applies consis-

tency regularization to mine unlabeled samples aiming for

setting up a new model, but we are trying to adapt the pre-

trained model to unlabeled data, 2) with labeled samples,

Fixmatch generate vanilla one-hot pseudo-label, which is

different from our approach, and 3) as discussed in Sec-

tion 3.3, FixMatch needs labeled samples as anchors during

the learning process, which is impractical for SFDA.

3.3. Sampling-based pseudo-label selection

One of the biggest challenges of SFDA is there’s no ex-

plicit supervision signal when performing adaptation. It

means error accumulation easily occur and causes degra-

dation issue: if initially a sample was wrongly recognized

as class k and continually involved in self-training, it will

hardly be classified correctly thereafter, even if it’s just

close to class boundaries at the beginning due to domain

shift. This fact implies that vanilla pseudo-labeling meth-

ods [22, 48, 55] who leverage all pseudo-labels are sub-

optimal. Meanwhile, some works [39, 56, 23, 17] introduce

threshold to select “reliable” pseudo-labels. However, these

methods need a carefully designed threshold, and too low

takes no effect while too high omits useful information.

We provide insight into how to select pseudo-label and

extract more potentially useful supervision by a sampling-

based method. Consider an image input xi and its cor-

responding prediction vector pi, if pi is close to one-hot,

which means the model has high confidence to classify this

sample, and the pseudo-label is more likely to be right. But

at the same time, samples with relatively low confidence

shouldn’t be regarded wrong and abandoned, because they

still carry some useful information. Only guided by “right”

pseudo-labels, the model would tend to be biased and fi-

nally obtain sub-optimal results. We argue that condition-

ally adding relatively low-confidence samples to the self-

training process could leverage more underlying distribu-

tion information and boost performance.

Formally, we sample pseudo-labels from the target

dataset for training with a certain probability ξ related to

its prediction confidence:

ξi = P (xi is selected) = M(max
k

pk(xi)) (3)

where k = 1, 2, · · · , C and M denotes a mapping func-

tion with a range of [0, 1]. As M is a monotonically non-

decreasing function, we can guarantee that high-confident

samples are more considered during adaptation, and be-

sides, low-confident samples aren’t ignored. With the sam-

pling strategy, hard samples caused by domain shift could

also provide feature structure information for adaptation.

Implementing a probability sampling strategy often re-

quires a relatively long training procedure and more sam-

ples to converge. But as an approximation, we can substi-

tute sampling results with the expectation of each sample’s

consistency regularization loss, accelerating model conver-

gence. Specifically, consistency regularization loss under

sampling strategy with expectation approximation is:

L̂cr = Exi∈DtL̂(i)
cr =

1

nt

nt∑
i=1

ξi ·H(p̂i, p
′
i) (4)

where ξi denotes the sampling probability in Eq. (3). Ap-

plying expectation instead of sampling results could helps
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the model perform better on small datasets because it intro-

duces less random noise and makes the network less biased

due to insufficient data points.

3.4. Global-oriented calibration

Since consistency regularization only leverages predic-

tions of single input, global distribution information is

under-considered, which is crucial to avoid degradation is-

sues and form a compact feature representation.

Firstly, similar to previous works [27, 51, 53], SFDA

paradigms easily suffer from degeneration problems where

the model predicts all data to one or several specific classes,

which greatly suppresses adaptation performance. Exist-

ing works [27, 51, 53] usually introduce an additional

loss term, called diversity loss, to manually constrain class

balance for tackling this local minimum issue, termed as

Ldiv =
∑

k KL(pk,
1
C ) where pk = Exi∈Dt

(pk(xi)) is

the mean probability output of class k. Although it shows

some effect in avoiding trivial solution issues, it relies on

a basic assumption that samples are uniformly distributed

among different classes, which always fails on datasets

[34, 43, 36, 16, 15] and real-world scenarios.

We present a class-wise weighting method to allevi-

ate model degeneration without introducing any additional

loss term, and can fit the class-imbalance situation better.

Classes with fewer samples (minority) may encounter sev-

erer domain shifts, or just because they lack samples intrin-

sically. So instead of roughly constraining them to have the

same amount of samples, we weigh their supervision sig-

nals with their current learning status. Formally, We denote

the number of samples classified to class k as αk:

αc =

nt∑

i=1

�(max
k

pk(xi) > τ) · �(argmax
k

pk(xi) = c) (5)

where � is the indicator function and τ is the selection

threshold. [αc] shows the class-wise distribution in the cur-

rent training stage. With it we can derive loss weight for

samples from class c:

wdiv(c) = T
(

αc

maxc αc

)
(6)

where T is a monotonically decreasing mapping function.

It’s shown that minority class samples will obtain higher

training weights and get promoted. Unlike previous works,

our weighting method is adaptive for class imbalance: the

majority of classes hold more samples but with low weight,

producing a close scale of supervision signal to less but

highly weighted samples. It can alleviate the negative im-

pact of avoiding degeneration in previous works, which

tends to compromise the accuracy of the majority classes.

Moreover, only considering single input is hard to recog-

nize outliers, especially where domain shift exists. Clusters

in feature space can provide distribution information inside

each class and identify potentially wrongly classified sam-

ples [2, 57]. For all data instances classified to class c, we

can compute the average feature representation of them, de-

noted as prototype ηc:

ηc =

∑
xi∈Dt

zi · �(argmax pi = c)∑
xi∈Dt

�(argmax pi = c)
(7)

If an image’s feature is closer to ηA but classified as class

B where A �= B, we can indicate that it may be a latent

outlier, and it’s inadvisable to generate a supervision signal

from it. Because once its initial prediction is slightly wrong,

the error would accumulate during the self-training process

and harm the final result. Based on this, we can leverage

the inconsistency of feature prototype assignment and di-

rect prediction, further modify the point-wise consistency

regularization loss weight:

w
(i)
proto = �(argmin

c
dist(zi, ηc) = argmax pi) (8)

where dist(zi, ηc) is the distance between sample feature

and prototype. Eq. (8) can discard unreliable samples with

disagreement of these two different semantics. With the

prototype-based denoise adjustment, a more accurate set

of samples is selected for the self-straining process. Note

that this correction is performed in real-time, some initially

abandoned samples may get rectified and be involved in

adaptation, providing more supervision signals.

4. Experiments
Datasets We conduct experiments on three datasets: Office-
Home [43] is an object recognition benchmark for domain

adaptation, which consists of 12 adaptation tasks with four

domains, sharing 65 classes and a total of around 15,500 im-

ages. VisDA-2017 [34] is a synthetic-to-real object recog-

nition dataset. It has 12 classes with two domains: the

synthetic (source) domain contains 152K simulated images,

and the real (target) domain consists of 55k real-world im-

ages. In addition, VisDA-2017 also provides 72k target

domain test images, on which we evaluate model gener-

alization ability. DomainNet [33] is a large-scale multi-

source domain adaptation benchmark with 6 domains and

345 classes, which contains ∼0.6 million images. Follow-

ing [58, 37], we perform SFDA with selected four domains

and 126 classes, and also evaluate testing set accuracy with

their data split, shown in supplementary material.

Since consistency regularization with strong image aug-

mentation adds noises to samples, it can be regarded as a

more challenging learning setting and require more data to

converge, so sample-insufficient datasets like Office-31 [36]

are not chosen for evaluation.

Implementation details. To achieve fair comparisons with

existing methods, we adopt ResNet-50 [18] for Office-

Home, ResNet-101 for VisDA-2017, and ResNet-34 for
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Table 1. Accuracy (%) on VisDA-2017 (ResNet101-based methods). SF means source-free. We highlight the best and second-best results.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

MCC [20] × 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

STAR [30] × 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7

RWOT [49] × 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0

SE [11] × 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3

SHOT [27] � 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

DIPE [44] � 95.2 87.6 78.8 55.9 93.9 95.0 84.1 81.7 92.1 88.9 85.4 58.0 83.1

A2Net [46] � 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3

G-SFDA [53] � 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4

NRC [51] � 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9

SFDA-DE [8] � 95.3 91.2 77.5 72.1 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5

DaC [58] � 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3

Ours � 97.4 91.8 87.6 78.1 96.6 99.3 90.6 87.2 95.6 94.6 88.9 57.3 88.7

DomainNet as the backbone. Consistent with SHOT [27]

and other previous works [46, 51], we add two fully con-

nected layers with weight normalization [38] after ResNet

backbone. For model training, we adopt SGD with mo-

mentum 0.9, weight decay 1e-3, and learning rate scheduler

γ = γ0 · (1 + 10 · p)−0.75 where p is the training progress

changing from 0 to 1 and γ0 is the initial learning rate. Our

source model building-up process is identical to SHOT for a

fair comparison. In the adaptation phase, we set γ0 = 4e-4,

τ = 0.8 and batch size of 64 for all experiments, while

our strong image augmentation is from RandAugment [4].

For VisDA-2017, we set sharpen temperature T to 0.5 and

epoch to 30, which are 0.1 and 60 for Office-Home and Do-

mainNet due to the different number of classes. Consider-

ing simplification, we plainly set the sampling probability

mapping function as M(x) = x and the class-wise weight-

ing mapping function as T (x) = 1 − log(x). Noting that

x > 0 should be guaranteed for T , we replace αc = 0 with

the smallest non-zero αc′ in Eq. (6). Our final adaptation

loss is formulated as L = Exi∈Dt

[
wdivwprotoL̂cr

]
. For

maintaining memory bank, we simply follow the common

practice [51, 53] by saving and updating predictions and

features. All experiments are run on NVIDIA 3090 GPU.

4.1. Results

We evaluate our proposed method and show comparison

results with existing UDA and SFDA methods. Tables 1,

3 and 4 provide classification accuracy after adaptation on

VisDA-2017, DomainNet and Office-Home datasets respec-

tively. As shown in the tables, our method achieves state-of-

the-art performance among existing methods, even includ-

ing UDA paradigms which under the easier setting. More-

over, on large-scale datasets like VisDA-2017 and Domain-

Net, our results significantly surpass the second-best one

and achieve the best class-wise accuracy in most classes,

indicating a general improvement for SFDA task.

In Table 2, we evaluate the generalization ability of our

Table 2. Accuracy (%) and its drop between target training and

testing data on VisDA-2017 dataset. † means these results from

VisDA2017 Classification Challenge [34] leaderboard, which are

under easier vanilla UDA setting and may use stronger backbone

causing unfair comparisons.

Method SF Target Test Drop

BUPT† × - 85.4 -

IISC SML† × - 86.4 -

NLE† × - 87.7 -

SHOT [27] � 82.9 73.2 9.7(11.7%↓)

G-SFDA [53] � 85.4 81.8 3.6(4.2%↓)

NRC [51] � 85.9 82.0 3.9(4.5%↓)

DaC [58] � 87.3 84.2 3.1(3.6%↓)

Ours � 88.7 87.8 0.9(1.0%↓)

adaptive model. We reproduce previous works with open-

source code and test them on VisDA-2017 target domain

testing data mentioned above, and evaluate the performance

drop between the target training and testing data. Re-

sults demonstrate that our consistency regularization-based

paradigm shows high accuracy both in training and test-

ing data, avoiding a giant performance degradation on test-

ing data like what appeared in previous works. It proves

that we successfully construct a smooth manifold and avoid

overfitting issues, which is essential for model generaliza-

tion and real-world SFDA applications. Note that UDA

methods compared in Table 2 are from VisDA2017 Classi-

fication Challenge [34] with no constraint for model back-

bone, so unfair comparisons may exist, like challenge win-

ner team “GF ColourLab UEA” [11] (not included in the

table) choosing ResNet-152 as a backbone.

For the Office-Home dataset, as shown in Table 4,

we achieve comparable results to previous state-of-the-art

works. Consistent with what we discussed above, the use

of strong image augmentations produces a harder optimiza-

tion process, which calls for more training data to converge
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Table 3. Accuracy (%) on DomainNet (ResNet34-based methods). SF means source-free. We highlight the best and second-best results.

Method SF Rw→Cl Rw→Pt Pt→Cl Cl→Sk Sk→Pt Rw→Sk Pt→Rw Avg.

MME [37] × 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4

CDAN [29] × 65.0 64.9 63.7 53.1 63.4 54.5 73.2 62.5

VDA [20] × 63.5 65.7 62.6 52.7 53.6 62.0 74.9 62.1

GVB [5] × 68.2 69.0 63.2 56.6 63.1 62.2 73.8 65.2

BAIT [52] � 64.7 65.4 62.1 57.1 61.8 56.7 73.2 63.0

SHOT [27] � 67.1 65.1 67.2 60.4 63.0 56.3 76.4 65.1

G-SFDA [53] � 63.4 67.5 62.5 55.3 60.8 58.3 75.2 63.3

NRC [51] � 67.5 68.0 67.8 57.6 59.3 58.7 74.3 64.7

DaC [58] � 70.0 68.8 70.9 62.4 66.8 60.3 78.6 68.3

Ours � 72.2 69.4 72.1 63.2 66.7 63.4 77.3 69.2

Table 4. Accuracy (%) on Office-Home (ResNet50-based methods). SF means source-free. We highlight the best and second-best results.

Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

GVB-GD [5] × 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

RSDA [14] × 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9

TSA [26] × 57.6 75.8 80.7 64.3 76.3 75.1 66.7 55.7 81.2 75.7 61.9 83.8 71.2

SRDC [40] × 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

FixBi [32] × 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

SHOT [27] � 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

G-SFDA [53] � 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3

NRC [51] � 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2

DIPE [44] � 56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5

A2Net [46] � 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8

SFDA-DE [8] � 59.7 79.5 82.4 69.7 78.6 79.2 66.1 57.2 82.6 73.9 60.8 85.5 72.9
DaC [58] � 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8

Ours � 58.6 80.2 82.9 69.8 78.6 79.0 67.8 55.7 82.3 73.6 60.1 84.9 72.8

and boost model performance. With only 60 images per

class on average, our method doesn’t provide such signifi-

cant improvement as that on large-scale datasets.

4.2. Analysis

Ablation study. We conduct ablation studies of our pro-

posed modules in Table 5. Three class-wise accuracy shown

here is carefully selected: class “car” owns the largest

amount of samples while class “knife” and “truck” suffer

from a more serious domain shift. Results in the first row

are source-only model accuracy without adaptation. Row

2 and 3 show that a sampling-based pseudo-label selection

strategy can significantly boost the consistency regulariza-

tion learning paradigm because it identify noisy pseudo-

labels and leverages potentially useful information. How-

ever, the accuracy of class “truck” decreases to 0% due to

the degradation issues mentioned above. Class balancing

constraint by class-wise weighting module solves this prob-

lem properly, making sure that classes with severe domain

shifts are correctly recognized. Lastly, the prototype cali-

bration module can further enhance the adaptation effect by

recognizing and filtering outliers.

Consistency regularization for boosting generalization
ability. Fig. 3 demonstrates the effect of our proposed con-

sistency regularization on boosting model generalization

Table 5. Ablation study results of our proposed modules on

VisDA-2017 dataset. Three typical class-wise and all classes’

average accuracies are shown. (C.R.=Consistency Regulariza-

tion, S.S.=Sampling-based pseudo-label Selection, C.W.=Class-

wise Weighting, P.C.=Prototype Calibration)

C.R. S.S. C.W. P.C. car knife truck Avg.

75.7 4.4 7.9 46.6

� 62.9 54.5 17.8 68.0

� � 89.4 97.6 0 84.9

� � � 90.0 98.2 0 85.5

� � � 65.3 98.9 60.7 88.0

� � � � 78.1 99.3 57.3 88.7

ability. As shown in Fig. 3a, removing the consistency regu-

larization module and applying vanilla self-training, which

has no strong data augmentation, will remarkably reduce

the model’s final accuracy, especially on the target testing

set. This is because the self-training approach fails to con-

struct a smooth manifold on target domain data represen-

tations. According to Fig. 3b, soft pseudo-labels are also

essential to model generalization ability, because hard one-

hot pseudo-labels may enlarge noise signals and cause error

accumulation since there’s no external supervision signal.

Sampling-based pseudo-label selection. We implement a
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Table 6. Comparisons between our class-wise weighting method

and vanilla class balancing loss, where β is the loss weight. Best

results inside each method are in bold font. Our approach achieves

higher accuracy and shows less sensitivity to hyper-parameter.

Method VisDA Ar→Cl Ar→Rw

Ldiv (β = 1) 78.6 56.4 80.0

Ldiv (β = 0.5) 82.9 57.7 81.8
Ldiv (β = 0.1) 87.8 54.8 80.2

Ldiv (β = 0.05) 88.1 54.3 79.5

Ldiv (β = 0.01) 88.0 54.1 78.5

Ours (τ = 0.9) 88.6 57.7 82.8

Ours (τ = 0.8) 88.7 58.6 82.9

Ours (τ = 0.6) 88.6 58.3 83.0
Ours (τ = 0.3) 88.6 57.7 82.8

Ours (τ = 0.1) 88.6 57.3 82.8

vanilla thresholding method to select pseudo-label with var-

ious thresholds and compare them with our non-parametric

sampling-based approach in Fig. 4. While it’s hard for

thresholding to achieve high accuracy on all datasets at the

same time, our proposed sampling-based method is free

from adjusting any hyper-parameter and performs better for

its consideration of more potentially useful samples. As

shown in Fig. 4b, because limited samples are provided

on the Office-Home dataset, our expectation approximation

strategy further boosts the sampling-based selection effect.

Note that on the VisDA-2017 dataset, the vanilla sampling

way achieves the same results with expectation approxima-

tion due to efficient training samples.

Class-wise weighting for class balancing. As what we dis-

cussed about Table 5, class-wise weighting can effectively

balance class distribution and avoid trivial solution prob-

lems, and we further investigate the difference to widely

used class balancing loss [27, 51, 53] Ldiv (see Section 3.4),

shown in Table 6. Different from the high sensitivity to loss

weight β settings of Ldiv , our method is robust to differ-

ent hyper-parameter settings and outperforms Ldiv-based

methods without introducing any additional loss. Mean-

while, our method could achieve the best results while

τ keeps consistent across tasks, where the Ldiv approach

needs to fine-tune their hyper-parameters in a large range.

Prototype calibration denoise effect. Fig. 5 demonstrates

the effectiveness of prototypes in pseudo-label denoising.

Fig. 5a shows that with prototype calibration, pseudo-labels

could achieve relatively high accuracy at the beginning

stage of adaptation. As what we discussed in Section 3.4,

prototype calibration won’t abandon potentially useful in-

formation due to its real-time property, and Fig. 5b shows

how the ratio of selected pseudo-labels varies along the

training stage. It illustrates that during the adaptation pro-

cess, an increasing number of pseudo-labels are selected,

which means sample predictions are getting more consis-

tent with cluster relation results in the feature space.

(a) (b)
Figure 3. Accuracy on target training (real line) and testing set

(dashed line). Results of our proposed consistency regularization

(CR) with soft pseudo-label are in Red, while blue lines indicate:

(a) applying vanilla self-training instead of CR; (b) realizing CR

with hard one-hot pseudo-labels.

(a) (b)
Figure 4. Comparisons between our sampling-based pseudo-label

selection and thresholding way with different thresholds on (a)

VisDA-2017 (b) Ar→Cl task of Office-Home. EA denotes the

expectation approximation in Eq. (4).

(a) (b)
Figure 5. (a) Pseudo-label accuracy with and without prototype

calibration on Ar→Pr. (b) Ratio of selected pseudo-labels along

the adaptation process on Ar→Cl.

5. Conclusions

In this paper, based on the observation that previous

SFDA works suffer from handling unseen but identically

distributed data, we introduce a consistency regularization

framework to achieve SFDA and boost model’s generaliza-

tion ability for the first time. By leveraging data augmen-

tation and soft pseudo-label, our method can significantly

improve the model performance both on target training and

testing sets. In addition, sampling-based pseudo-label se-

lection strategy and global-oriented calibration modules are

proposed to further enhance the adaptation effect. Experi-

ments demonstrate the effectiveness of our method.
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