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Abstract

The task of semantic segmentation requires a model to
assign semantic labels to each pixel of an image. How-
ever, the performance of such models degrades when de-
ployed in an unseen domain with different data distribu-
tions compared to the training domain. We present a
new augmentation-driven approach to domain generaliza-
tion for semantic segmentation using a re-parameterized vi-
sion transformer (ReVT) with weight averaging of multiple
models after training. We evaluate our approach on sev-
eral benchmark datasets and achieve state-of-the-art mIoU
performance of 47.3% (prior art: 46.3%) for small mod-
els and of 50.1% (prior art: 47.8%) for midsized models
on commonly used benchmark datasets. At the same time,
our method requires fewer parameters and reaches a higher
frame rate than the best prior art. It is also easy to im-
plement and, unlike network ensembles, does not add any
computational complexity during inference.1

1. Introduction
Many methods for machine perception, e.g., for semantic

segmentation, employ deep neural networks (DNNs) [11].

Due to the high labeling cost for semantic segmentation

data, more and more synthetic data are used for training

these DNNs. After training on the labeled (source) domain

they should operate as robustly as possible in similar, but

unseen (target) domains. However, this is often not the

case since the data of the target domain differ from those

of the training domain, leading to a so-called domain gap.

There are many methods to deal with this domain gap that

either require samples from the target domain during train-

ing [2, 3, 35], or alter the target data or the network param-

eters during inference [18, 19, 38]. An approach that does

not have these drawbacks is domain generalization (DG).

The aim of domain generalization is to train a network in

a way that it generalizes well to unseen domains without

1Code is available at https://github.com/ifnspaml/ReVT
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Figure 1. High-level overview of the generalization method. The

set of all M base models trained on individual augmentations am

is denoted by M = {1, ...,m, ...,M}. For the re-parameterized

vision transformer (ReVT), any decoder m′ ∈ M can be used.

any adaptation steps. Although neural networks that em-

ploy vision transformer encoders currently achieve the best

performance in segmentation tasks, modern DG methods

are mostly presented with ResNet-based models, such as

DeepLabv3+ [4] and FCN [23]. Due to its strong perfor-

mance with a comparable or smaller number of parameters,

we employ the transformer-based SegFormer [42] as the

baseline for our domain generalization method.

A training or post-processing method that has proven

itself in many applications is re-parameterization. Here,

either individual layers, e.g., convolutional layers, or en-

tire models trained with potentially different augmentations

can be averaged to improve performance and generaliza-

tion of the final model. The averaging can be performed

either during training [15, 36] or after training [40, 41].

As sketched in Figure 1, in our work we advantageously

combine the strengths of selected image augmentations

[13, 39, 42] with the re-parameterization and show that this

method leads to a significantly better generalization capa-

bility for transformer-based models. We also show that

the method does not improve the performance of the com-

monly used ResNet-based models when trained with stan-

dard stochastic gradient descent (SGD), but that this can be

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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overcome by the use of the AdamW optimizer [24].

As shown in Figure 1, first, M base models are trained,

with pre-trained encoders but different random decoder

seeding, and potentially with dissimilar augmentations am.

Afterwards, the encoder networks can be averaged into one

new encoder (re-parameterization), which extracts better

generalizing features. This encoder can then be combined

with any of the previously trained decoders and be used di-

rectly for segmentation.

Our contribution with this work is fourfold. First,

we propose a re-parameterized vision transformer ReVT
for domain-generalized semantic segmentation, resulting

from M augmentation-individual base models. We achieve

higher mIoU on unseen domains compared to methods that

employ ResNet-based models, while requiring fewer pa-

rameters and achieving higher frame rates than the best

prior art. Second, we analyze the effect of different network

architectures, network parts, layer types, and optimizers on

the re-parameterization. Third, we report on two more real

datasets as common in the field and also going beyond cus-

toms in the field, we follow a stringent divison of data splits

into training, development, and test set. Finally, we set a

new state-of-the-art benchmark on the synthetic-to-real do-

main generalization task for semantic segmentation.

2. Related Work
In this section, we discuss related works for our single-

source domain generalization method. We start with the

task of domain generalization, followed by related work on

image augmentation and model re-parameterization.

2.1. Domain Generalization (DG)

In domain generalization for semantic segmentation, a

model is trained on a set of labeled data from a specific

(source) domain DS and then evaluated on new data from

unseen (target) domains DT. The goal is to train a model

that can generalize well to different domains and accurately

segment new images. Following Qiao et al. [31], we dis-

tinguish between domain generalization and single-source
domain generalization. The main difference between these

two is that in the former, the model can be exposed to mul-

tiple domains during training, e.g., multiple labeled source

domains or additional auxiliary domains. A dataset often

used as an auxilliary domain is ImageNet [9], which is used

to learn the style of real images [14,44]. In the single-source
domain generalization task, the model is trained solely on

one single domain.

Muandet et al. [25] proposed a so-called domain-

invariant component analysis (DICA) minimizing the dis-

similarity across domains during training. Liet al. [21]

learn a domain-agnostic model on multiple domains via

low-rank parameterized CNNs. Zhang et al. [47] employ

meta-learning for domain generalization and an adaptation

of batch norm statistics in the target domain, and there-

fore present no pure DG method. Li et al. [22] propose

an episodic training with a simple approach of aggregat-

ing data from multiple source domains for training. Yue

et al. [44] first randomize the images with the style from

real domains and then also enforce pyramid consistency be-

tween different styles. Their approach is not single-source

domain, but requires an auxiliary domain for the style trans-

fer. Huang et al. [14] follow a similar approach, but pro-

posed to perform the domain randomization in the fre-

quency domain of the images. Pan et al. [28] proposed a

new instance-batch normalization (IBN) that is more robust

w.r.t. appearance changes such as color shifts or brightness

changes. Choi et al. [5] proposed an advanced loss that uses

instance selective whitening. Peng et al. [30] proposed a

network that includes semantic-aware normalization (SAN)

as well as semantic-aware whitening (SAW). WildNet [20]

employs feature stylization with styles from an auxiliary do-

main and enforces semantic consistency between the seg-

mentation masks of stylized and original images and also

between the segmentation masks of stylized images and the

labels. Other than previous methods, that either perform

checkpoint selection2 [14, 44] or hyperparameter tuning on

evaluation data (official validation sets) of the target do-

mains, we follow a stringent approach with distinct devel-

opment sets for method design and hyperparameter tuning

and perform no checkpoint selection (cf. Section 4.3). We

also evaluate our approach on additional real domains, some

of which represent strong domain shifts (cf. Section 4.1),

and have not been explored by previous approaches.

2.2. Image Augmentation

Image augmentation techniques [8,12,13,27,45,46] aim

at improving the performance of DNNs by increasing the

variability of the training data. They reduce the risk of

overfitting, e.g., to synthetic textures [17], and can improve

the generalization capability of the model. Some recent

augmentation methods mix full images [46], parts of im-

ages [45], specific class pixels [27], or combine the pre-

viously mentioned augmentation strategies with other im-

age transformations [12, 13]. We propose to use a num-

ber of M so-called base models with individual augmenta-

tions am drawn from PixMix [13], bilateral filtering [39],

and the baseline augmentations from the SegFormer
method [42].

2.3. Model Re-Parameterization

The stochastic weight averaging (SWA) [15] method av-

erages the network weights of the model during the train-

ing process with stochastic gradient descent (SGD) using

a cyclical or constant learning rate. Similarly, Sämann et

2cf. https://github.com/jxhuang0508/FSDR/issues/
2#issuecomment-910089417
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Figure 2. Training setup of base model m and notations. Dotted

lines indicate skip connections.

al. [36] also employ the model averaging during training. A

related method was also investigated by Kamp et al. [16] as

an efficient decentralized learning protocol.

In contrast to methods that employ the re-

parameterization during the training process [15, 36, 37],

we adopt the re-parameterization approach by Wortsman

et al. [41] that the authors dubbed “model soups” and

performed the averaging of the model weights after var-

ious training processes. Note that it is also possible to

re-parameterize specific layers and alter the architecture

after re-parameterization, e.g., with RepVGG [10]. Wang et

al. [40] analyzed these re-parameterization strategies for

convolutional layers in different networks and proposed an

advanced planned re-parameterized model.

3. Proposed Method

In this section, we will describe the mathematical no-

tations and our new re-parameterized vision transformer

(ReVT) training, including augmentations.

3.1. Mathematical Notations

A high-level overview of the employed training setup is

given in Figure 2. During training in the labeled source

domain DS, an image x̃ is subject to augmentation meth-

ods and then denoted as x ∈ G
H×W×C , where G de-

notes the set of integer gray values, H and W the image

height and width in pixels, and C = 3 the number of color

channels. The augmented images x are then transformed

by the segmentation network F with network parameters

θ to obtain an output tensor y = F(x;θ) = (yi,s) ∈
I
H×W×S that contains a pixel-wise posterior probability

yi,s = P(s|i,x) for all classes s ∈ S at each pixel index

i ∈ I = {1, 2, ..., H ·W}, with I = [0, 1]. The segmenta-

tion network consists of an encoder z = E(x;θE) and a de-

coder (segmentation head) y = D(z;θD), with the param-

eters θE and θD, respectively, resulting in y = F(x;θ) =
D(E(x;θE);θD). The number of parameters in a param-

eter tensor is denoted as |θ|. Different parameter tensors

θm for the same architecture are marked by a subscript

m ∈ M, where M = {1, 2, ...,M} is the respective index

set and M is the total number of models. The set of classes

S = {1, 2, ..., S} contains the same S classes for source do-

main training and target domain inference (closed set). To

Resize (720×1280)

Random Crop
(500×500, �=0.75)

Bilateral Filter

Random Flip (p=0.5)

PhotoAug

PixMix∗

Normalize

x̃

x

all augmentations

all augmentations

only for 5○, 6○

all augmentations

all augmentations

only for 1○, 5○

only for 4○, 6○

Figure 3. Image augmentation pipeline from Figures 1 and 2

employed during training. Use of blocks for augmentations a©
noted at the side (cf. Section 4.2).

obtain the final classification map m = (mi) ∈ SH×W , we

compute mi = argmaxs∈S yi,s.

3.2. Re-Parameterized Vision Transformer (ReVT)

To the best of our knowledge we are the first to introduce

vision transformer re-parameterization to domain general-

ization for semantic segmentation. In particular, each of the

base models has seen an individual augmentation strategy

in training. An illustrated overview of our proposed single-

source domain generalization method for semantic segmen-

tation is given in Figure 1. First, M segmentation net-

works of the same architecture are trained using ImageNet-

pretrained encoders and different random decoder seeds and

potentially also different augmentation strategies.

Image augmentation: The base model-individual aug-

mentation steps employed during training are an important

component of our method. We have illustrated the image

augmentation pipeline in Figure 3. The baseline augmenta-

tion pipeline consists of resizing, random cropping, random

flipping (Random Flip), photometric augmentation (Pho-

toAug), followed by a normalization to zero mean and unit

variance. The bilateral filter [39] can be inserted before the

random flipping (Figure 3, upper gray box). While Pho-

toAug is our default, it can optionally be replaced by the

PixMix [13] algorithm (Figure 3, lower gray box). The

original PixMix algorithm applies randomly selected aug-

mentations. We employ the baseline augmentations (Ran-

dom Flip + PhotoAug) here, which is why we refer to our

PixMix variant as PixMix*. All non-self-explanatory aug-

mentations are explained in more detail in Supplement Sec-

tion A. As a result of either different random seeding or

augmentation, the network parameters will differ after train-

ing (Figure 1, left side).

Re-parameterized vision transformer (ReVT): After
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Table 1. Employed datasets. The synthetic datasets GTA5 [32]

and SYNTHIA [33] are used as (single) source domains (DS).

We employ various real-world datasets as target domains (DT) to

show the generalization capability of the proposed method.

Dataset
Name

# Images in
Dfull Dtrain Ddev Dtest∗

GTA5 [32] 24,966 12,403 6,382 -

SYNTHIA [33] (SYN) 9,400 6,580 2,820 -

Cityscapes [7] (CS) - - 500 500

Mapillary Vistas [26] (MV) - - - 2,000

BDD100k [43] (BDD) - - - 1,000

ACDC [34] - - - 406

KITTI [1] (KIT) - - - 200

the training, the model weights θm, m ∈ M, can be av-

eraged resulting in θ�. The new averaged model weights

θ� could be used during inference. Different to the method

described by Sämann et al. [36], we only re-parameterize
the encoder weights

θE
� =

1

M

∑

m∈M
θE
m , (1)

resulting in our proposed ReVT as

yReVT = (yReVTi,s ) = D(EReVT(x;θE
� );θ

D
m′) , (2)

with an arbitrarily chosen decoder m′ ∈ M.

4. Experimental Setup
In the following, we introduce the employed datasets and

network architectures. Afterwards, we explain the train-

ing and evaluation settings, as well as the evaluation met-

rics. All architectures, procedures, and metrics are imple-

mented using PyTorch [29] and the MMSegmentation
toolbox [6].

4.1. Datasets

In our experiments we evaluate multiple established do-

main generalization benchmarks for semantic segmenta-

tion. The definition of the individual splits and their re-

spective number of images is shown in Table 1. As our syn-

thetic domains we employ GTA5 [32] and SYNTHIA [33].

We employ the three commonly used real-world datasets

Cityscapes [7], BDD100k [43], and Mapillary Vistas [26] as

target domains. Different to other publications, we also em-

ploy the ACDC [34] and the KITTI [1] datasets to provide

more evidence of domain generalization on real domains.

Particularly the ACDC dataset offers considerable benefit,

since it includes images from four adverse conditions (fog,

nighttime, rain, and snow), which are not present in the syn-

thetic data. In DG benchmarks, there is no common practice

Table 2. Models and corresponding number of parameters for

the full segmentation networks employed in this paper.

Segmentation
Network Encoder |θ|

(·106)

DeepLabv3+ [4]
ResNet50 43.7
ResNet101 62.7

SegFormer [42]

MiT-B2 27.4
MiT-B3 47.2
MiT-B5 84.7

on choosing which part of the synthetic dataset to use for

training. Some publications use the entire GTA5 or SYN-

THIA dataset for training [14, 44]. Other publications use

the official training split of GTA5 and define their own train-

ing split for SYNTHIA [5,20]. We follow Choi et al. [5] and

employ their training and development split for SYNTHIA,

and the official GTA5 training and validation set for train-

ing and development, respectively. Most DG methods base

their design decisions on the official validation sets of the

target domains and do not report test results. Since this ap-

proach is not rigorous, we follow an approach from domain

adaptation [2] and sample 500 random images from the (un-

used) Cityscapes training set to be used as our development

set, see Table 1. To allow comparison, we use the official

validation sets of the real domains as test sets. To avoid

confusion with the official (partly unpublished) test sets, we

name our test sets “test∗”.

4.2. Network Architectures

For our experiments we employ two different network

architectures that use an encoder-decoder structure, as illus-

trated in Figure 2. The employed segmentation networks

and the corresponding number of parameters are listed in

Table 2. First, we use a SegFormer [42] architecture

with multiple skip connections from early layers to the de-

coder (SegFormer head). Second, a DeepLabv3+ [4]

with only one skip connection from an early layer to the de-

coder is investigated. To ensure comparability with other

reference methods, we will also perform experiments with

several encoder sizes. If only SegFormer is mentioned

and no additional information is given, this shall refer to

the use of an MiT-B5 encoder. If only DeepLabv3+
is mentioned and no additional information is given, this

shall refer to the use of a ResNet-101 encoder. For the

re-parameterization of the models several encoders are re-

quired. As can be seen in Figure 1, the M models that

are used in this process will be referred to as base models
(not to be confused with baseline models, which are simply

the standard SegFormer or DeepLabv3+ models), each

with a potentially different image augmentation. The dif-

ferent image augmentations am for each base model m are

4379



Table 3. Performance (mIoU (%)), when different network parts
are used in the re-parameterization. Training was performed on

the GTA5 (DS =DGTA5
train ) training set. Evaluation is performed

on the Cityscapes development set (DT=DCS
dev). Reported is the

mean mIoU of { 1©, 1©, 1©} models. For the re-parameterization,

the mean is computed with one averaged encoder and the three as-

sociated decoders m ∈ {1, 2, 3}. Best results in bold face, second-

best underlined.

Segmentation
Network

Method:
Re-Parameterization ...

mIoU (%)
on DCS

dev

SegFormer
(MiT-B5)

... not done (Baseline) 44.3

... in encoder only 47.5

... in decoder only 31.5

... in full network 34.2

DeepLabv3+
(ResNet-101)

... not done (Baseline) 34.7

... in encoder only 31.9

... in decoder only 1.9

... in full network 1.9

identified by 1©, 2©, etc. If the same image augmentations is

used multiple times, e.g., a1=a2=a3= 1©, then the M=3
base models were just trained with a different random seed.

We then denote the used augmentations by { 1©, 1©, 1©}.

4.3. Training, Evaluation, and Metrics

The hyperparameters for the image augmentation, train-

ing and evaluation (inference) procedures are provided in

Supplement Section B.

Unlike other methods [14, 44], we do not use the

test∗ sets (official validation sets) of the individual target

domains for hyperparameter tuning or selection of training

checkpoints. We train all our models for a fixed number

of iterations and evaluate the checkpoint from the last

iteration. We want to emphasize that we firmly believe

that this is closer to a realistic deployment if a domain

generalization method. To evaluate the methods, we

employ the standard mean intersection over union (mIoU)

of 19 segmentation classes [7, 32, 34]. Hyperparameter

tuning is only based on our (self-defined) development

sets Ddev, see Table 1. Specifically, we employ the mIoU

mean on our out-of-domain (OOD) development sets for

our design decisions on the proposed ReVT. To compare

our method to other reference methods, we also report an

mIoU over multiple domains. We follow Lee et al. [20]

and Choi et al. [5] and evaluate the benchmark (BM) mean

mIoU over the following benchmark set of data splits:

{DGTA5
dev ,DSYN

dev ,DCS
test∗,DBDD

test∗ ,DMV
test∗}. We report the

model size |θ| and the frame rate in frames per second

(fps), as measured on an NVIDIA A100 GPU.

Table 4. Performance (mIoU (%)) for different optimizer setups,

i.e., optimizer, learning rate, weight decay, etc. We investigate the

effect of the standard SegFormer optimizer setup (gray rows)

and Deeplabv3+ optimizer setup (yellow rows) as shown in the

Supplement Section B, Table 9. Training was performed on the

full synthetic GTA5 (DS = DGTA5
train ) dataset. Evaluation is per-

formed on the Cityscapes development set (DT = DCS
dev). Re-

ported is the mean mIoU of { 1©, 1©, 1©} models. Best results in

bold face.

Network
Optimizer

setup
following ...

mIoU (%) on DCS
dev

(cf. Table 9) Baseline re-parameterized

SegFormer
SegFormer 44.3 47.5
DeepLabv3+ 46.2 46.9

DeepLabv3+
SegFormer 35.3 38.5
DeepLabv3+ 34.7 31.9

5. Evaluation and Discussion
In this section, we will first investigate the basics of

re-parameterization w.r.t. re-parameterized network parts,

layers, and the number of base models. Afterwards, we

evaluate different base model augmentations and optimizer

methods during training to design our final ReVT. Finally,

we compare our models to prior art DG methods.

5.1. Basic Investigations on Re-Parameterization

For the following experiments on basics of network re-

parameterization, we only employ base models that were

trained with the baseline image augmentation 1©. If not

stated otherwise, the experiments are performed with M=3
base models ({ 1©, 1©, 1©}). Reported is always the mIoU on

the Cityscapes development set (DT=DCS
dev).

Re-parameterized network parts: In Table 3 we inves-

tigate the effect of the re-parameterization, when applied to

different network parts. We compare baseline models (no

re-parameterization) and re-parameterization of the encoder

only, the decoder only, and the full network. We show re-

sults for the SegFormer as well as for DeepLabv3+. It

can be seen, that the encoder-only re-parameterization is the

only setup which improves 3.2% absolute (abs.) over the

baseline results from 44.3% to 47.5%. We also see that the

DeepLabv3+ does not profit at all from any form of re-

parameterization, actually, the performance even degrades

from 34.7% to 31.9%. Therefore, in the remainder of the

paper, we will use the re-parameterization for the vision

transformer SegFormer to obtain the ReVT. We will also

refer to the encoder-only re-parameterization simply as re-

parameterization. In the following experiment we will fur-

ther investigate why the DeepLabv3+ did not profit from
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Table 5. Performance (mIoU (%)) of the SegFormer, when

certain enocoder block or layer types are used in the re-
parameterization. Training was performed on the full synthetic

GTA5 (DS = DGTA5
train ) dataset. Evaluation is performed on the

Cityscapes development set (DT = DCS
dev). Reported is the

mean mIoU ± the standard deviation of { 1©, 1©, 1©} models. For

the re-parameterization, the mean ± standard deviation is com-

puted with one averaged encoder and the three associated decoders

m ∈ {1, 2, 3}. Best results in bold face, second-best underlined.

Method:
Re-Parameterization ...

mIoU (%)
on DCS

dev

... not done (Baseline SegFormer) 44.3± 1.9

... in all blocks/layers 47.5± 0.1

... in patch embedding blocks only 44.7± 1.7

... in attention blocks only 45.4± 1.1

... in Mix-FFN blocks only 47.0± 0.6

... in convolutional layers only 45.1± 1.5

... in fully connected layers only 46.8± 0.6

re-parameterization and how this effect can be avoided.

Optimizer choice: In Table 4 we investigate the perfor-

mance differences of baseline models and re-parameterized

models when trained with different optimizer setups. The

optimizer setup comprises all settings regarding the train-

ing process. We give a detailed list in Supplement Sec-

tion B in Table 9. We test the effect of the standard opti-

mizer setup for the SegFormer (AdamW, gray rows) and

DeepLabv3+ (SGD, yellow rows). It can be seen that

the SegFormer baseline is stronger when trained with the

DeepLabv3+ setup (46.2% vs. 44.3%), but the gain from

re-parameterization becomes significantly smaller (0.7%
abs. improvement vs. 3.2% abs. improvement). For the

DeepLabv3+, the SegFormer optimizer setup is the

much better choice, because on the one hand the baseline

has a better performance (35.3% vs. 34.7%), and on the

other hand, it shows significant improvement (3.2% abs.)

instead of deterioration (−2.8% abs.). For more analysis,

see Supplement Section C.

Re-parameterized blocks/layer types: In Table 5 we

investigate the performance of re-parameterization of dif-

ferent block and layer types within the SegFormer en-

coder. For each row, only the stated blocks or layers are

re-parameterized, the rest of the models is kept the same for

all m ∈ M. The location of the specific blocks and lay-

ers is depicted in Supplement Section F. It can be seen in

Table 5 that the method works best when all parameters of

the encoder are used in the re-parameterization. The selec-

tion of specific blocks or layers does not bring any advan-

tage. However, all independently evaluated layer / block

types yield an improvement over the baseline.

Number of base models: In Figure 4 we show the per-

formance of the re-parameterization vs. various ensembling

2 3 4 5 6 7
44

45

46

47
Re-Parameterization (ReVT)
Encoder Ensemble (avg.)
Network Ensemble (mult.)
Network Ensemble (avg.)
Baseline

M

m
Io
U

o
n
DC

S
d
e
v
(%

)

Figure 4. Performance (mIoU (%)) of the re-parameterization
vs. network/encoder ensembles for different numbers M of base

models. The training of the base models (SegFormer) was per-

formed on the GTA5 (DS = DGTA5
train ) dataset. The evaluation is

performed on the Cityscapes development set (DT=DCS
dev). The

baseline mean is calculated from eight different models 1©, and

the re-parameterization from M models 1©.

techniques for a different number M of models. For the

ReVT (green), the mIoU is computed with an averaged en-

coder and all associated M decoders. For the encoder en-

semble (blue), the feature maps z from the encoders are av-

eraged and then processed by all associated M decoders.

For the network ensemble, the M output posteriors are aver-

aged (orange) or multiplied (red). For M > 2, all methods

consistently outperform the baseline (dashed line). In our

case, three base models (M=3) provide the best results for

the re-parameterization as well as for the network ensem-

ble. The encoder ensemble on the other hand profits from

a larger number of base models and yields the best perfor-

mance for M =7. The re-parameterization outperforms all

ensembling techniques for all values of M by at least 1.5%
abs. and for M=3 by at least 2.0% abs. It also comes with

an M -fold lower computational complexity in inference.

5.2. ReVT Method Design

In Table 6 we evaluate various augmentation methods a©
(see also Figure 3 and Supplement Section A) to identify

strong base models. In the lower part of the table we report

some (M=3) combinations {a1, a2, a3} of these base mod-

els by our re-parameterization. The gray columns indicate

our development sets (Ddev), where the light grey column is

DGTA5
dev . Since we train on DGTA5

train , we select our models on

the (dark gray) OOD mean mIoU of DSYN
dev and DCS

dev. We

select those base models for further evaluation in the ReVT
that performed best, or second-, or third-ranked on the out-

of-domain DSYN
dev and DCS

dev development sets (OOD mean).

It can be seen that base models 4©, 6©, and 5© yield the

best-, second-, third-ranked performance (41.0%, 40.7%,

and 40.0%) on DCS
dev as well as DSYN

dev (out-of-domain data),
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Table 6. Performance (mIoU (%)) of the SegFormer model (with an MiT-B5 encoder) using different domain generalization methods.

Training was performed on the synthetic GTA5 (DS =DGTA5
train ) dataset. Evaluation is performed on the Cityscapes, GTA5, and SYN-

THIA development sets (gray columns) and on the test∗ data of various real-world target datasets (DT=Dtest∗). Reported is the mean

mIoU ± the standard deviation of M = 3 models with various image augmentations. For the ReVT, the mean ± standard deviation is

computed with one averaged encoder and the three associated decoders m ∈ {1, 2, 3}. Best results in bold face, second-best underlined.

Method
performed:

mIoU (%) on

DGTA5
dev DSYN

dev DCS
dev

OOD
mean DCS

test∗ DBDD
test∗ DMV

test∗
test∗
mean

..
.

d
u

ri
n

g
tr

ai
n

in
g Baseline 1© 68.2±0.0 33.8±0.7 44.3±1.9 39.1±5.4 45.3±1.9 43.3±1.3 46.8±0.9 45.2±2.0

−PhotoAug 2© 68.5±0.1 32.3±0.4 42.0±1.1 37.2±4.9 42.5±1.5 42.3±0.7 45.5±0.9 43.4±1.8

−PhotoAug, −Rand. Flip 3© 69.0±0.3 33.0±0.5 42.8±0.8 37.9±4.9 42.3±1.3 41.1±0.8 46.4±0.9 43.3±2.5

+PixMix* [13] 4© 65.1±0.2 35.4±1.1 46.5±0.3 41.0±5.6 46.9±0.8 46.1±1.0 51.2±0.3 48.1±2.4

+Bilateral Filter (BF) [39] 5© 68.0±0.1 34.3±0.6 45.7±0.3 40.0±5.7 46.8±0.5 44.2±1.1 49.4±1.0 46.8±2.3

+PixMix* [13] +BF [39] 6© 64.3±0.1 35.2±0.3 46.2±0.7 40.7±5.5 47.5±0.8 46.7±0.1 51.5±0.4 48.6±2.2

..
.a

ft
er

tr
ai

n
in

g

ReVT { 1©, 1©, 1©} 68.6±0.2 35.5±0.4 47.5±0.1 41.5±6.0 49.3±0.1 45.3±0.5 49.3±0.2 48.0±1.9

ReVT { 2©, 2©, 2©} 69.1±0.1 34.1±0.3 44.4±0.5 39.3±5.2 44.9±0.5 44.1±0.4 47.6±0.4 45.5±1.6

ReVT { 3©, 3©, 3©} 69.7±0.1 35.0±0.4 46.0±0.3 40.5±5.5 45.7±0.2 43.5±0.3 48.8±0.2 46.0±2.2

ReVT { 4©, 4©, 4©} 65.7±0.1 36.2±0.0 48.6±0.3 42.4±6.2 48.8±0.3 47.5±0.2 53.2±0.3 49.8±2.5

ReVT { 5©, 5©, 5©} 68.5±0.1 35.9±0.0 47.3±0.2 41.6±5.7 48.6±0.3 45.9±0.2 51.2±0.1 48.6±2.2

ReVT { 6©, 6©, 6©} 64.9±0.0 36.1±0.2 48.0±0.2 42.1±6.0 49.7±0.2 48.5±0.4 53.5±0.1 50.5±2.1

ReVT { 4©, 5©, 6©} 66.4±0.7 36.9±0.2 47.9±0.5 42.4±5.5 49.5±0.4 48.1±0.2 53.1±0.2 50.2±2.1

ReVT { 1©, 4©, 6©} 66.4±0.7 37.3±0.9 48.6±0.8 42.9±5.7 50.0±0.5 48.0±0.3 52.8±0.2 50.2±2.0

whereas the base models 3© and 2© yield the best and

second-ranked performance (69.0% and 68.5%) on DGTA5
dev

(in-domain data). This is to be expected, as the image aug-

mentation makes it harder to learn in the source domain,

but forces the base models to generalize slightly, as can be

seen in the improved OOD performance of the base mod-

els 4©, 5©, and 6©. In the following, we will report the

performance for three different ReVTs. First, the ReVT
{ 1©, 4©, 6©} combines the baseline base model with the two

best performing augmentation methods, which leads to the

best mean OOD performance (42.9%). Second, the ReVT
{ 4©, 5©, 6©} combines the best-, second-, and third-ranked

augmentation methods. Third, the ReVT { 4©, 4©, 4©} com-

bines three base models with the single best augmentation

method. The later two achieve the second-ranked perfor-

mance on the OOD data (42.4%).

In the lower part of Table 6 it can be seen that the best

test∗ performance can be achieved with a ReVT { 6©, 6©, 6©}

leading to a test∗ mean performance of 50.5%. Our best dev

set ReVT { 1©, 4©, 6©} achieves 50.2% as test∗ mean.

5.3. Comparison to Prior Art DG Methods

In Table 7 we compare our method (ReVT) to prior art

methods for domain generalization. We sort methods with

respect to their encoder model (Enc.) and give the num-

ber of parameters of the full network in the third column.

We also indicate whether the methods are trained with only

one source domain, or if real auxiliary domains are em-

ployed and also report the inference frame rate. Methods

are grouped to emphasize that w.r.t. the number of parame-

ters |θ| and w.r.t. the frame rate, the MiT-B2-based ReVT
is competitive to ResNet-50-based methods (group 1),

the MiT-B3-based ReVT is competitive to ResNet-101-

based methods (group 2), while the MiT-B5-based ReVT
builds an own group. Not all methods report the mIoU

values for all datasets. In addition to the commonly used

datasets, we also evaluate on ACDC [34] and KITTI [1] to

provide more evidence of domain generalization on real do-

mains.

It can be seen that we exceed the performance of prior
work that is comparable in network size. In group 1, our

ReVT with the MiT-B2 encoder achieves a benchmark

mIoU (BM mean) of 47.29%, excelling the best prior work

(WildNet with ResNet-50, 46.33%), while having fewer

parameters (27.4 M vs. 43.7 M parameters) and a higher

framerate (12 fps vs. 7.9 fps). In group 2, the ReVT with

the MiT-B3 achieves a BM mean performance of 50.12%,

which is 2.31% abs. higher than the best prior work (Wild-

Net with ResNet-101, 47.81%), while having fewer pa-

rameters (47.2 M vs. 62.7 M) and a higher frame rate (10.7
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Table 7. Performance (mIoU (%)) of various domain generalization methods employing different segmentation networks, sorted into three

performance groups. Training was performed on the synthetic GTA5 (DS=DGTA5
train ) dataset. The results marked with ◦ are cited from [20]

and with ∗ are cited from the respective paper. All results without any identifier are simulated. Evaluation is performed on the SYNTHIA
and GTA5 development sets and on the test∗ data of various real-world target datasets (DT =Dtest∗). BM means benchmark. For our

simulations we report mean values over three runs with different seeding. Best performance per group in bold face, second best underlined.

E
nc

. Method |θ|
(·106)

Single
Source

Frame
Rate
[fps]

mIoU (%) on
DCS

test∗ DBDD
test∗ DMV

test∗ DSYN
dev DGTA5

dev DACDC
test∗ DKIT

test∗
BM

mean

G
ro

up
1

R
e
s
N
e
t
-
5
0

Baseline◦ 43.7 � 7.9 35.16 29.71 31.29 27.97 71.17 - - 39.06

IBN-Net◦ [28] 43.6 � 8.4 36.52 34.18 38.74 30.41 70.78 - - 42.12

RobustNet◦ [5] 43.6 � 8.5 38.78 35.64 40.38 28.97 70.16 - - 42.78

DRPC* [44] 49.6 � 8.3 37.42 32.14 34.12 - - - - -

SAN+SAW* [30] 25.6 � 8.1 39.75 37.34 41.86 30.79 - - - -

WildNet◦ [20] 43.6 � 7.9 44.62 38.42 46.09 31.34 71.20 - - 46.33

M
i
T
-
B
2

Baseline 27.4 � 12.0 41.73 38.77 44.15 31.20 65.95 30.20 44.34 44.36

Ours: ReVT { 4©, 4©, 4©} 27.4 � 12.0 45.06 40.44 49.46 33.29 62.57 36.62 48.94 46.16

Ours: ReVT { 4©, 5©, 6©} 27.4 � 12.0 45.55 43.43 49.91 33.16 63.58 36.66 49.27 47.13

Ours: ReVT { 1©, 4©, 6©} 27.4 � 12.0 46.27 43.29 49.84 33.29 63.74 36.01 50.13 47.29

G
ro

up
2

R
e
s
N
e
t
-
1
0
1

Baseline◦ 62.7 � 5.1 35.73 34.06 33.42 29.06 71.79 - - 40.81

IBN-Net◦ [28] 62.6 � 6.0 37.68 36.64 36.75 30.84 70.39 - - 42.46

RobustNet◦ [5] 62.6 � 6.0 37.26 38.66 38.09 30.17 70.53 - - 42.94

DRPC* [44] 68.6 � 5.3 42.53 38.72 38.05 - - - - -

FSDR* [14] 68.6 � 5.3 44.80 41.20 43.40 - - - - -

SAN+SAW* [30] 44.6 � 5.3 45.33 41.18 40.77 31.84 - - - -

WildNet◦ [20] 62.6 � 5.1 45.79 41.73 47.08 32.51 71.91 - - 47.81

M
i
T
-
B
3

Baseline 47.2 � 10.7 43.92 42.96 46.36 32.57 67.59 34.44 45.18 46.68

Ours: ReVT { 4©, 4©, 4©} 47.2 � 10.7 46.19 46.04 51.39 34.31 64.00 39.16 48.23 48.39

Ours: ReVT { 4©, 5©, 6©} 47.2 � 10.7 47.95 48.26 52.59 36.80 64.70 40.96 49.84 50.06

Ours: ReVT { 1©, 4©, 6©} 47.2 � 10.7 48.33 48.17 52.28 36.67 65.14 41.38 49.74 50.12

G
ro

up
3

M
i
T
-
B
5

Baseline 84.7 � 9.7 45.31 43.32 46.85 33.81 68.17 36.22 46.16 47.49

Ours: ReVT { 4©, 4©, 4©} 84.7 � 9.7 48.81 47.52 53.21 36.18 65.67 39.19 45.86 50.28

Ours: ReVT { 4©, 5©, 6©} 84.7 � 9.7 49.55 48.11 53.06 36.86 66.38 40.36 46.88 50.79

Ours: ReVT { 1©, 4©, 6©} 84.7 � 9.7 49.96 48.01 52.76 37.27 66.40 41.15 50.39 50.88

fps vs. 5 fps). In both groups, our method performs slightly

worse in the source domain (GTA5), which is included in

the BM mean, which, however, has little relevance for prac-

tical real-world applications.

It should also be noted, that our method does not em-
ploy any real auxiliary domains for image stylization such
as WildNet [20], DRPC [44] and FSDR [14]. It can also be

seen that our largest ReVTwith an MiT-B5 encoder (group

3) achieves the overall highest performance of all evaluated

models with a BM mean mIoU of 50.88%, still having a

higher frame rate than ResNet-50-based WildNet [20],

which achieves only a BM mean of 46.33%.

The higher mIoU values on the additional target domains

(ACDC and KITTI) further indicate the excellent general-

ization capability of the ReVTs.

6. Conclusions

In this work we show how to improve the domain gen-
eralization capabilities of a vision transformer for semantic
segmentation with a simple but effective augmentation and
re-parameterization method (ReVT). We show the effect
of different image augmentations and optimizer methods
on the re-parameterization. Our method is smaller and
computationally more efficient than network and encoder
ensembles and also achieves state-of-the-art performance
in the synthetic-to-real domain generalization task for
semantic segmentation, exceeding prior art. In contrast to
some prior art, our ReVT does not require an additional real
auxiliary domain during training. We achieve a top mean
mIoU of 50.88%, when using the largest model and also
improve on the best prior art by 0.96% and 2.31% absolute
using models with fewer parameters and a higher frame rate.
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