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Abstract

In multi-source-free domain adaptation (MSFDA), it is
important to effectively fuse latent features from multiple
source models to improve adaptation performance on target
domain. Existing works weightedly sum source-model fea-
tures for fusion, which cannot fully leverage the discrimina-
tivity of features due to misaligned semantics, and is not ap-
plicable to source models with non-identical feature dimen-
sionalities. To mitigate these issues, we propose the idea of
misalignment-free relation aggregation (MFRA): instead of
directly summing the features, we aggregate the similarity
relationships between target samples in each source-model
feature space. Specifically, for each source model, we first
compute the similarities between the target sample of inter-
est and all the other target samples. The resulting similar-
ities are then summed along the source models to produce
the aggregated similarity. To leverage the aggregated simi-
larity in adaptation, a peer-supervised contrastive learning
and an adversarial training scheme are designed to transfer
discriminative information among models. The method not
only effectively preserves discriminativity from each source
model after summation, but also is applicable to source
models with non-identical feature dimensionalities. The
proposed method achieves accuracies higher or compara-
ble to existing MSFDA methods on various cross-domain
object recognition tasks. Further studies are also conducted
to verify the effectiveness of aggregating inter-sample rela-
tionships, as well as the applicability of proposed method
under non-identical source-model feature dimensionalities.

1. Introduction

Recently, works in source-free domain adaptation

(SFDA) have developed several methods to tackle the is-

sue of domain shift [24], which depicts the degradation in

performance when applying Deep Learning models trained

on one environment (source domain) to a different envi-

ronment (target domain). Compared to traditional domain

adaptation (DA) methods, which usually require both la-

beled source data and unlabeled target data during adap-

tation, SFDA methods only require the model trained on

the labeled source data, which is called ”source model”,

and the unlabeled target data during adaptation. This makes

SFDA advantageous when applying to some real-world ap-

plications where labeled source data are inaccessible during

adaptation due to privacy or storage issues.

While most of the SFDA works focus on adapting with

single source model [20, 19, 22, 35, 32, 36, 33, 8], in some

real-world applications, multiple source models, each was

trained on a different source domain, can be available for

adaptation. Trained on data from different source domains,

each source model consists of different strength in recog-

nizing target data. When collaborating these strength from

multiple source models, it is usually able to achieve bet-

ter performance than using only one of them. The variant

of the setting is called multi-source-free domain adaptation

(MSFDA).

To achieve collaboration among the source models, re-

cent works in MSFDA combine the output logits or cate-

gory probabilities of the source models to construct a late-

fusion ensemble model [1, 9]. The ensemble model is

then regarded as a single model and is trained with Infor-

mation Maximization and Self-supervised Pseudo-Labeling

[20, 22], which shows promising performance in single-

source SFDA. To find reliable pseudo-labels for the target

data, fused latent features are usually computed by com-

bining features from multiple source models. Pseudo-labels

are then inferred from the fused features via k-means-like

method [1] or nearby confident samples [9].

Regarding fusing the features from multiple source mod-

els, simple weighted sum of the features is usually em-

ployed [1, 9]. However, the method raises two issues: First,

it ignores the fact that the same entry of different source-

model features can represent different semantic concepts.

As the example in the upper row of Figure 1, for recogniz-

ing a cat, the i-th entry of the feature from the first source

model may represent the concept of “eyes”, while the same

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Comparing different fusion methods. Upper Row : Existing works weightedly sum fk(xi)’s, the features of target sample xi

extracted by k-th source model. Since the meanings of each entry (for example, extracting a specific part of the cat.) are not aligned,

the fused feature ffuse(xi) is not guaranteed to preserve original meanings after summation, which can hurt the feature discriminativity.

Lower Row : Instead of summing features, we propose to sum the “inter-sample” relationships computed within each source model

(for example, the cosine similarity φ(, ) of the feature pairs). Since the meanings of each entries are aligned across the source models

(for example, the j-th entry always indicates the similarity between xi and xj .), feature discriminativity can be better preserved after

summation.

entry from the second source model may represent the con-

cept of “tails”. As we will show in the experiments, without

the awareness of this misalignment, summing features from

the source models could prevent us from fully leveraging

the discriminativity within each of them, which we assume

is due to possible destruction of the originally meaningful

feature entries. Second, the method is only applicable when

the dimensionalities of all features to be summed are the

same, which limits its application to source models with

diverse network architectures, which may then consist of

non-identical feature dimensionalities. Another way to fuse

source-model features is through concatenation of all fea-

tures. This ensure all the information to be kept in the fused

features. However, the dimensionality of the fused features

will increase linearly with the number of the source mod-

els being used, which results in excessive overhead when

computing with the fused features.

To mitigate the issues above, we gain our inspiration

from recent advances of contrastive learning [15, 5, 3, 4,

6, 14, 2], where the training loss is usually computed with

the similarity measure between features in the same feature

space. Inspired by this concept, we proposed the idea of

misalignment-free relation aggregation (MFRA) : instead of

directly summing or concatenating source-model features,

we aggregate the inter-sample relationships computed in the

feature space of each source model. Specifically, within

each source model, we first compute the cosine similari-

ties of features between the target sample of interest and

all the other target samples. The resulting similarities are

then summed along the source models to produce the aggre-

gated similarity. During adaptation, we train the ensemble

of source models with Information Maximization and Self-

supervised Pseudo-Labeling as existing MSFDA methods.

In addition, we design a peer-supervised contrastive learn-

ing scheme to regularize features of each source model,

with the supervision from the aggregated similarity, i.e., the

supervision with the help of their “peer” models. Further-

more, to encode categorical information into features, we

design an adversarial training scheme between the class pre-

dictions of the ensemble and the predictions inferred with

the aggregated similarity. As the example in the lower

row of Figure 1, since the similarities are computed within

each source model and each the entry contains the same

meaning across different source models, summing these

similarities can better preserve discriminativity from each

source model. Moreover, since cosine similarity produces

scalar measure regardless of the dimensionality of the fea-

ture pairs, the method is also applicable to source models

with non-identical feature dimensionalities.

We now summarize our contributions in this work:

• We propose the idea of misalignment-free relation ag-

gregation (MFRA), which fuses information from mul-

tiple source models without feature misalignment, and

can still be applied under non-identical dimensionali-

ties of source-model features.

• We propose an effective framework to achieve adapta-

tion in the setting of MSFDA via MFRA. The frame-

work successfully transfers fused information among

multiple source models in both feature and output

spaces for better recognition of the target data.

• We evaluate the proposed method on various cross-

domain object recognition tasks. The results show
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higher or comparable performance comparing to ex-

isting MSFDA methods.

2. Related Works
2.1. Multi-Source-Free Domain Adaptation

Given multiple source models, each was trained on a

different source domain, and the unlabeled target data,

MSFDA aims to combine the strength of multiple source

models to achieve adaptation to target domain. One of the

simple strategies to tackle MSFDA is to treat each source

model and the target dataset as an individual pair of single-

source SFDA. As an example, in the works of Source Hy-

pothesis Transfer (SHOT) [20, 22], the proposed SFDA al-

gorithm is applied to adapt each pair, the predictions from

each pair are then averaged to produce the final prediction.

However, this method neglects the possible collaboration

between source models, which can be further improve the

performance.

Instead of treating each source model individually,

Ahmed et al. [1] introduced trainable model weights, one

scalar for each source model, to weightedly sum the logits

of the source models as the final predictions. The ensemble

model is trained with self-supervised pseudo-labeling and

information maximization as proposed in SHOT [20]. On

the other hand, Dong et al. [9] also finetuned the ensem-

ble source model, and proposed confident-anchor-induced

pseudo label generator, which aims to infer reliable pseudo-

labels by searching the nearest confident sample. However,

regarding fusing the latent features from multiple source

models, simple weighted sum of the features is employed in

both works. Such method ignores the fact that the same en-

try of different source-model features can represent differ-

ent semantic concepts, and can only apply when the features

to be summed are identical in dimensionality. On the con-

trary, our work propose to aggregate the inter-sample rela-

tionships computed within the feature spaces of each source

model, which not only keeps the same entry of the summing

relationships aligned in semantic concepts, but also can be

applied when the source models come with non-identical

feature dimensionalities.

2.2. Contrastive Learning

In recent advances of self-supervised learning, con-

trastive learning achieves outstanding performance in ex-

tracting discrminative features without ground-truth labels

from human labor. [15, 5, 3, 4, 6, 14, 2]. Generally speak-

ing, contrastive learning extracts discrminative features by

pulling features of the sample and the similar counterpart

(positive samples) together, while pushing away the dissim-

ilar ones (negative samples). To achieve this, a training loss

is usually designed with the similarity measure between fea-

tures in the same feature space. Our methods of MFRA is

inspired by this concept, and we propose to aggregate the

inter-sample relationships from multiple source-model fea-

ture space to fuse the discrminativity without misalignment.

In addition, finding reliable positive sample is one of the

important keys to learn discrminative features in contrastive

learning. In most of the self-supervised contrastive learning

works, positive sample is defined as the sample itself but

with a different data augmentation. Nearest-neighbor con-

trastive learning (NNCL) [10] extends the idea by defining

reliable positive sample as the nearest neighbor of the sam-

ple of interest. On the other hand, supervised contrastive

learning [17] uses ground-truth labels to define reliable pos-

itive sample as the samples having the same ground-truth

label as the sample of interest. In comparison, our method

conducts contrastive learning to regularize the features of

each source model, with the positive sample selected by the

aggregated similarity. In other words, the proposed method

enables each model to leverage supervision from its “peer”

models to help regularize its own feature space.

3. Proposed Method
In this section, we first explain the problem setting of

MSFDA considered in this paper, then describe the underly-

ing algorithm of the proposed method. The overall pipeline

of the proposed method is summarized in Figure 2. Each

part of the pipeline will be introduced in Section 3.2 to 3.6.

3.1. Problem Setting

In the problem setting of MSFDA, a set of source models

MS = {MS1
, ...,MSK

} is given. Each source model MSk

is a Deep Neural Network well-trained on the labeled data

from the k-th source domain. For explanation purpose, we

represent each source model MSk
as a feature extractor FSk

(parameterized by θFSk
) followed by a classifier CSk

(pa-

rameterized by θCSk
), that is, MSk

(x) = (CSk
◦ FSk

)(x).
In addition to the source models, an unlabeled target dataset

D = {xi}ni=1 of size n is given. xi represents the i-th target

sample in D. The goal is to successfully infer correct class

labels of target data in D by adapting models in MS to the

target domain. In this work, we consider the Close-Set DA,

where the predicted categories are identical between source

and target domains.

3.2. Inferring Source-model Weights

To tackle the setting of MSFDA, we start off by inferring

the model weights, which indicates the confidence to each

source models. With the observation that the class predic-

tions with smaller entropy tends to be more accurate [18],

we use the entropy of the class predictions to compute the

model weights:

αk =
exp(−1

n

∑
i H(pSik

)/γ)
∑

k exp(
−1
n

∑
i H(pSik

)/γ)
(1)
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Figure 2. The overall pipeline of the proposed method. Feature extractors FS and classifiers CS are initalized with parameters from the

source models, each was trained with different source data. Given a target data xi, the logits output by each source classifiers are weightedly

summed with model weights α to produce the final prediction pSi . We adapt the ensemble model via Source Hypothesis Transfer [20],

with the pseudo-labeling method improved by a neighbor-based strategy (orange block). Additionally, inter-sample similarities qki are

computed within each source model. The similarities are then weighted summed into aggregated similarity qi and used to estimate the

neighbor-aggregated prediction pAi . To transfer discriminativity and class semantics between source models, peer-supervised contrastive

learning (blue block) is applied to each qki and adversarial training (red block) is applied between pSi and pAi .

, where H(p) is the entropy of the prediction p. γ is the

hyper-parameter for scaling. If not explicitly mentioned,

we set γ = 0.5 in the experiments.

For computing the final prediction pSi of the ensemble

model, we follow [1] by summing logits from each source

model weighted by the model weights :

hSi
=

∑

k

αk ∗ hSki
(2)

, where hSki
is the output logit of source model MSk

for

sample xi. The final prediction is then computed as pSi =
σ(hSi

), where σ(.) is the softmax function.

3.3. Source Hypothesis Transfer with Neighbor-
based Pseudo-Labeling

Next, we apply Source Hypothesis Transfer (SHOT) [20]

to adapt the ensemble model as in the existing works [1, 9]:

we freeze the source classifiers CSk
’s and apply Information

Maximization and Self-supervised Pseudo-Labeling [20] to

adapt the feature extractors FSk
’s to the target data. The

loss function is summarized as follows :

LSHOT = −MI(xi, pSi
) + β ∗ p̂i,ŷi

∗ LCE(pSi
, ŷi) (3)

MI(x, p) measures the mutual information between

data x and class prediction p, and is computed by

Exi∈D[H(pSi)]−H(Exi∈D[pSi ]). LCE(p, y) computes the

cross-entropy loss between class prediction p and the corre-

sponding label y. Here we modify the loss term to further

consider p̂i,ŷi
, the probability of class ŷi. Following the set-

ting in [1], we set the hyper-parameter β=0.3.

Though existing methods usually infer the pseudo la-

bels ŷi via centroid-based methods [1, 9], in order to bet-

ter capture the local feature structure of each source model,

we modify the pseudo-labeling method to a neighbor-based

strategy, which is an extension of the method designed for

traditional DA [21] to MSFDA. Specifically, let Nik be the

set of m-nearest-neighbors of xi under a distance measure

Distf in the feature space constructed by FSk
, the class

prediction p̂i for xi can be computed by :

p̂i =
∑

k

αk

|Nik|
∑

xi∈Nik

pSik
(4)

The pseudo-label ŷi is then inferred as the most probable

class of p̂i, i.e., ŷi = argmaxc p̂i. We use cosine distance

as Distf , and set m = 5 as suggested in [21].

3.4. Peer-Supervised Contrastive Learning

In addition to exploiting training signals from the class

predictions, we also would like to regularize the training

by leveraging discriminativity that resides in the latent fea-

tures of multiple source models. As described in Section

1, summing source-model features could be affected by the

misalignment of semantic concepts, thus the discriminativ-

ity cannot be fully leveraged.

To better preserve and leverage discriminativity from

multiple source models, instead of summing source-model
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features directly, we propose to aggregate the inter-sample

relationships of features. Since the relationships can be

computed within each source-model feature space, and

the meanings of each entry of the relationships is aligned

across the source models, the discriminativity can be

better preserved and leveraged. Specifically, for each

source model MSk
, we construct a memory bank Uk =

[f̂k(x1), ..., f̂k(xn)], where f̂k(xi) represents the “cached”

l2-normalized feature of target sample xi extracted from

FSk
in previous iterations. We then compute the similari-

ties qki between the l2-normalized feature fk(xi) and the

features in memory bank Uk as follows:

qki,j
=

exp(f̂k(xj)
T fk(xi)/τ)∑

j �=i exp(f̂k(xj)T fk(xi)/τ)
(5)

where τ is the temperature parameter and we set τ = 0.07
as suggested in previous work [31]. Next, we aggregate

qki ’s from each source model weighted by model weights

α.

qi,j =
∑

k

αk ∗ qki,j
(6)

To transfer discriminative information among models, we

use aggregated similarity qi to infer the nearest neighbor

of sample xi, denoted as xînn
. We then conduct the peer-

supervised contrastive learning on each aggregating similar-

ity qki , with xînn
being selected as positive via aggregated

similarity qi, i.e., the help from the “peer” models, and the

other samples as negatives :

LPSC =
∑

k

− log(qki,̂inn
) (7)

, where înn = argmaxj(qi,j).

3.5. Adversarial Training with Neighbor-
Aggregated Prediction

In order to leverage the learned features for classifica-

tion, we also would like to encode the categorical infor-

mation into the adapted features. To achieve this, we first

compute a neighbor-aggregated prediction pAi based on the

aggregated similarity qi :

pAi
= σ(

n∑

j=1

(Hj ∗ qi,j)) (8)

where σ(.) is the softmax function. H is the memory

bank that caches the fused logits (hSi in Equation 2) com-

puted in previous iterations. We then conduct adversarial

training between the final prediction pSi
and the neighbor-

aggregated prediction pAi
:

LADV = Exi∈D[LMCE(pSi , Grad rev(pAi
))] (9)

Here Grad rev(.) represents the gradient reversal oper-

ation. For the purpose of mitigating the effect of gra-

dient vanishing and exploding during adversarial training

[12], we use the modified cross-entropy LMCE(pi, qi) =∑
c qi,c log(1 − pi,c) for the adversarial loss LADV . Intu-

itively, pSi
maximizes LADV to corrupt the class semantics.

On the other hand, pAi minimizes LADV to try to recover

the class semantics by leveraging information from neigh-

boring samples but not themselves, thus making the target

samples cluster more.

3.6. Overall Objective

Finally, we summarize the overall training objective

for the entire pipeline by combining the losses introduced

above :

θ̂FS
= argmin

θFS

LSHOT + λ(LPSC + LADV ) (10)

, where θFS
are the trainable parameters for the set of fea-

ture extractors {FS1
, ..., FSK

}. λ is the balance hyper-

parameter and we set λ = 0.1 for all the experiments.

4. Experiment Results

4.1. Setups

To evaluate the proposed method, we conduct exper-

iments on 4 benchmark datasets for cross-domain object

recognition tasks : 1) Office31 [25]: A small-scale bench-

mark dataset with 31 object classes from 3 domains : im-

ages from amazon.com (A), images taken in office environ-

ment with webcams (W) and DSLR cameras (D). 2) Office-
Caltech [11]: A small-scale benchmark dataset which is

built by extracting 10 overlapping object classes of two

datasets : Office31 [25] and Caltech256 [13]. The dataset

consists of images from 4 domains : the 3 domains as in

Office31 (A, W, D), and real-world images from the Cal-

tech256 dataset (C). 3) Office-Home [29]: A medium-scale

benchmark dataset with images of 65 object classes from

4 domains : artistic images (A), clipart images (C), prod-

uct images (P), and real-world images (R). 4) DomainNet
dataset [23]: A large-scale benchmark dataset with 345 ob-

ject classes from 6 domains : clipart images (Cl), infograph

images (In), painting images (Pa), quickdraw images (Qu),

real-world images (Re), and sketch images (Sk). To ease the

effect of noisy labels from some of the classes, we select the

subset of 126 classes suggested in [26] for the 6 domains.

For each dataset, each of the domain takes turns to be the

target domain, while the rest of the domains in the dataset

being the source domains.1

1Due to limited page length, we present the results on DomainNet

dataset in the supplementary material.
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Table 1. Accuracies (%) of object recognition on Office31 dataset.

Method Source-free r→A r→D r→W Average

LtC-MSDA [30] � 68.6 99.4 97.7 88.6

M3SDA-β [23] � 69.4 99.6 99.3 89.5

SImpAl [28] � 70.6 99.2 97.4 89.0

Source Ensemble � 65.9 97.3 95.5 86.2

SHOT [20] � 75.0 97.8 94.9 89.3

DECISION [1] � 75.4 99.6 98.4 91.1

CAiDA [9] � 75.8 99.8 98.9 91.6
Ours � 76.4 99.7 98.3 91.5

Table 2. Accuracies (%) of object recognition on Office-Caltech dataset

Method Source-free r→A r→C r→D r→W Average

MCD [27] � 92.1 91.5 99.1 99.5 95.6

M3SDA-β [23] � 94.5 92.2 99.2 99.5 96.4

CMSS [34] � 96.0 93.7 99.3 99.6 97.2

Source Ensemble � 95.6 93.6 98.7 98.2 96.5

SHOT++ [22] � 96.2 96.5 99.4 100.0 98.0

DECISION [1] � 95.9 95.9 100.0 99.6 98.0

CAiDA [9] � 96.8 97.1 100.0 99.8 98.4
Ours � 95.8 96.3 100.0 99.5 97.9

Table 3. Accuracies (%) of object recognition on Office-Home dataset

Method Source-free r→A r→C r→P r→R Average

M3SDA-β [23] � 67.2 58.6 79.1 81.2 71.5

MCD [27] � 69.8 59.8 80.9 82.7 73.3

SImpAl [28] � 72.1 62.0 80.3 81.8 74.1

Source Ensemble � 68.8 52.7 78.2 80.9 70.2

SHOT [20] � 73.0 60.4 83.9 83.3 75.2

SHOT++ [22] � 73.1 61.3 84.3 84.0 75.7

DECISION [1] � 74.5 59.4 84.4 83.6 75.5

CAiDA [9] � 75.2 60.5 84.7 84.2 76.2

Ours � 75.7 63.0 85.7 85.4 77.4

4.2. Implementation Details

Regarding the backbone network of the source models,

ImageNet-pre-trained [7] ResNet50 [16] is used in the ex-

periments with Office31, Office-Home, and DomainNet,

and ImageNet-pre-trained [7] ResNet101 [16] is used in the

experiments with Office-Caltech. We follow the network

architectures in SHOT [20] and replace the original classi-

fier in the backbone with a bottleneck layer and a classifier

for the recognition tasks on each dataset. To produce source

model for each source domain, the entire network is trained

with the commonly used cross-entropy loss on the labeled

dataset of the corresponding source domain. We follow the

training scheduling provided by the code of DECISION [1]
2. For the proposed method, given the source models, we

freeze the classifiers and follow the training scheduling in

[1]. We adapt the entire ensemble model on target data

for 15 epochs, with momentum SGD as the optimizer and

batchsize as 32. For the results of the proposed method in

Table 1, 2, and 3, we follow the existing works [1, 9] and re-

2https://github.com/driptaRC/DECISION

port the average accuracy over 3 runs with different random

seeds.

4.3. Compared Baselines

For the compared baselines, we first report the per-

formance of Source Ensemble by taking the average the

logits from each source model as the final prediction.

For the source-free baselines, we compare the proposed

method with the following existing methods : SHOT [20],

SHOT++ [22], DECISION [1] and CAiDA [9] 3. In ad-

dition, we also report results from several multi-source do-

main adaptation algorithms that use labeled data from mul-

tiple source domains during adaptation. [30, 23, 28, 27, 34]

4.4. Results

The results of Office31, Office-Caltech, and Office-

Home are summarized in Table 1, 2, and 3, respectively.

We use the symbol ‘r’ to represent the domains excluding

3For SHOT and SHOT++, the adaptation is achieved by first apply the

method on each source-model-target-data pair, then sum up the predictions

from each pair as the final prediction
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(a) (b)

Figure 3. Sensitivity analysis of the hyper-parameter λ (a) and γ (b) in r→A experiment of OfficeHome.

the aimed target domain. As shown from the results, within

the source-free group, the proposed method achieves higher

or comparable accuracy compared to the existing methods.

Note that SHOT and SHOT++ tackle MSFDA by consider-

ing each source model and the target dataset as an individual

single-source SFDA problem. Such strategy cannot effec-

tively collaborate multiple source model in recognizing the

same target dataset, thus achieves suboptimal performance.

On the other hand, CAiDA and DECISION tackle

MSFDA by constructing the ensemble of the given source

models, which can better collaborate multiple source model

than considering them individually. However, when fus-

ing multiple features, both works weightedly sum features

from multiple models, which can destroy the discrimina-

tivity of features and degrade the quality of the inferred

pseudo-labels. Instead of directly summing the features

themselves, our method aggregates the similarity between

target samples that are computed within the feature space

of each source model. Such method can better preserving

discriminativity of source-model features, and thus achieves

better adaptation performance.

In summary, compared to existing MSFDA methods, the

proposed method achieves comparable and better perfor-

mance. The various scales of the datasets also suggest the

proposed method is applicable not only in simple but also

difficult scenarios.

5. Discussions

5.1. Ablation Study

Here we provide the ablation study of the proposed

method by removing each of the proposed components from

the training objective. The results on the r→A setting of

Office-Home are summarized in Table 4. As we can see

from the table, the best result is achieved by using all the

proposed components, which verifies the necessity of each

of them, and shows the effectiveness of fusing features

through similarity aggregation, as well as transferring fea-

ture and class semantic supervisions among source models.

Table 4. Accuracies (%) of ablation study for the proposed method

Method Office-Home (r→A)

LSHOT LPSC LADV

� 75.3

� � 75.8

� � 75.4

� � � 75.9

5.2. Sensitivity Analysis

Here we provide the sensitivity analysis on the hyper-

parameter λ in the objective (Equation 10). We change the

value of λ in the set {0, 0.05, 0.1, 0.2, 0.3, 0.5} and observe

the change in accuracy in the r→A experiment of Office-

Home. The results are summarized in Figure 3 (a). When

changing λ in small values (from 0 to 0.1), we observe im-

provements in accuracy, which indicates the importance of

peer-supervised contrastive learning and adversarial train-

ing. The accuracy reaches its best when λ = 0.1 and drops

for larger values. This maybe because that large λ induces

drastic changes of loss in adversarial training, making the

training unstable and desired class semantics are fail to be

transferred among source models. Therefore, small values

of λ are recommended for the proposed method.

We also provide the sensitivity analysis on the hyper-

parameter γ that controls the scaling of the model weights.

We change the value of γ in the set {0.05, 0.25, 0.75, 1.0,

2.0} and again observe the change in accuracy in the r→A

experiment of Office-Home. The results are summarized in

Figure 3 (b). When γ is too small, the model weights α
become too peaky and the performance is degraded due to

the source models cannot be well collaborated. On the other

hand, when γ is too large, the α become too smooth thus the

models with noisy predictions cannot be effectively penal-

ized, which again degrades the performance. The accuracy

reaches its best when γ = 0.5.
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Table 5. Accuracies (%) of object recognition on Office-Home dataset under non-identical feature dimensionalities

Method r→A r→C r→P r→R Average

Source Only 68.6 51.9 78.7 81.2 70.1

DECISION [1] 74.0 58.5 81.7 83.2 74.4

Ours 75.8 62.5 85.4 85.4 77.3

Table 6. Success retrieval rate (%) of different feature spaces on

r→A setting of Office-Home dataset

Feature space Success retrieval rate

on target samples

Source model C 62.9

Source model P 65.6

Source model R 71.0

Summing features 71.3

Summing relations 73.0

5.3. MSFDA Under Non-identical Feature Dimen-
sionalities

In some real-world applications, due to various concerns

when each source model was trained, it is possible that the

feature dimensionalities of each source model are not ex-

actly identical. As a reliable MSFDA algorithm, it is im-

portant to be applicable even under such condition. Here

we evaluate the proposed method with source models hav-

ing diverse feature dimensionality. We conduct experiments

on the Office-Home dataset, with the feature dimension-

alities of the three source models being set to 512, 256,

and 256, respectively, and compare the performance with

DECISION [1]. Since weightedly summing the features is

not applicable in this case, we disable the pseudo-labeling

method in DECISION and use the rest of the losses to adapt

the model. The results are summarized in Table 5, which

shows the proposed method achieves higher accuracy com-

pared to DECISION. This implies the advantage of the pro-

posed method that it is applicable even when the feature

dimensionalities of the given source models are not exactly

identical.

5.4. Nearest-Neighbor Retrieval with Different
Fused Feature Spaces

In Section 1, we claimed the advantage of summing

inter-sample relationship over summing features, which

motivates us to propose the method of MFRA. To further in-

vestigate the claim, we evaluate the resulting feature spaces

with the experiment of nearest-neighbor retrieval : Given

a query sample, we find the nearest neighboring sample in

the evaluated feature space. The retrieval is called a “suc-

cess” if the returned sample belongs to the same class as

the query sample. We use the r→A setting of Office-Home

for the experiment. Given the target features extracted from

the source models, we compute the fused feature space with

two methods : 1) “Summing features” : weighted-summing

features 2) “Summing relations”: weighted-summing the

inter-sample distance 4. We evaluate the success retrieval

rate of each individual and fused feature spaces on the tar-

get dataset. The results are summarized in Table 6. As

shown in the table, both fusion method improves the re-

trieval rate, where “Summing relations” achieves better per-

formance than “Summing features”. This provides the rea-

son why the proposed MFRA can achieve higher and com-

parable performance comparing to the existing methods.

6. Conclusion
In this paper, we proposed the idea of misalignment-

free relation aggregation (MFRA) for multi-source-free do-

main adaptation (MSFDA). Unlike existing MSFDA meth-

ods, which directly sum the feature extracted from mul-

tiple source models, our method aggregates the similar-

ity measures computed between features to fuse informa-

tion from multiple source models. The proposed strate-

gies not only can better preserve the discriminativity of

features from multiple source models, but also can be ap-

plied when the source models come with non-identical fea-

ture dimensionalities. To perform adaptation, in addition

to the information maximization and pseudo-labeling ob-

jective that was commonly used in existing MSFDA meth-

ods, based on the aggregated similarity, we design a peer-

supervised contrastive learning and an adversarial training

scheme to transfer discriminative information among differ-

ent source models, which further improves the performance

of the ensemble of source models. We evaluate the pro-

posed method on various cross-domain object recognition

tasks and achieve higher or comparable accuracy comparing

to existing MSFDA methods. Further studies with nearest-

neighbor retrieval are conducted to verify the advantage of

aggregating inter-sample relationships. The evaluation with

non-identical feature dimensionalities also suggests that the

proposed method is still applicable when the feature dimen-

sionalities of the given source models are not exactly iden-

tical.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,

Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-

laghi Azar, et al. Bootstrap your own latent-a new approach

to self-supervised learning. Advances in Neural Information
Processing Systems, 33:21271–21284, 2020. 2, 3

[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages

9729–9738, 2020. 2, 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[17] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,

Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and

Dilip Krishnan. Supervised contrastive learning. Advances
in Neural Information Processing Systems, 33:18661–18673,

2020. 3

[18] Youngeun Kim, Donghyeon Cho, Kyeongtak Han,

Priyadarshini Panda, and Sungeun Hong. Domain

adaptation without source data. IEEE Transactions on
Artificial Intelligence, 2(6):508–518, 2021. 3

[19] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and

Si Wu. Model adaptation: Unsupervised domain adaptation

without source data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

9641–9650, 2020. 1

[20] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really

need to access the source data? source hypothesis trans-

fer for unsupervised domain adaptation. arXiv preprint
arXiv:2002.08546, 2020. 1, 3, 4, 6

[21] Jian Liang, Dapeng Hu, and Jiashi Feng. Domain adaptation

with auxiliary target domain-oriented classifier. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16632–16642, 2021. 4

[22] Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi

Feng. Source data-absent unsupervised domain adaptation

through hypothesis transfer and labeling transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

2021. 1, 3, 6

[23] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate

Saenko, and Bo Wang. Moment matching for multi-source

domain adaptation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1406–1415,

2019. 5, 6

[24] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-

rell. Adapting visual category models to new domains. In

European conference on computer vision, pages 213–226.

Springer, 2010. 1

[25] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-

rell. Adapting visual category models to new domains. In

European conference on computer vision, pages 213–226.

Springer, 2010. 5

[26] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Dar-

rell, and Kate Saenko. Semi-supervised domain adaptation

4321



via minimax entropy. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 8050–8058,

2019. 5

[27] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages

3723–3732, 2018. 6

[28] Naveen Venkat, Jogendra Nath Kundu, Durgesh Singh, Am-

bareesh Revanur, et al. Your classifier can secretly suffice

multi-source domain adaptation. Advances in Neural Infor-
mation Processing Systems, 33:4647–4659, 2020. 6

[29] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,

and Sethuraman Panchanathan. Deep hashing network for

unsupervised domain adaptation. In (IEEE) Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 5

[30] Hang Wang, Minghao Xu, Bingbing Ni, and Wenjun Zhang.

Learning to combine: Knowledge aggregation for multi-

source domain adaptation. In European Conference on Com-
puter Vision, pages 727–744. Springer, 2020. 6

[31] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742,

2018. 5

[32] Haifeng Xia, Handong Zhao, and Zhengming Ding. Adap-

tive adversarial network for source-free domain adaptation.

In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9010–9019, October

2021. 1

[33] Baoyao Yang, Hao-Wei Yeh, Tatsuya Harada, and Pong C

Yuen. Model-induced generalization error bound for

information-theoretic representation learning in source-data-

free unsupervised domain adaptation. IEEE Transactions on
Image Processing, 31:419–432, 2021. 1

[34] Luyu Yang, Yogesh Balaji, Ser-Nam Lim, and Abhinav Shri-

vastava. Curriculum manager for source selection in multi-

source domain adaptation. In European Conference on Com-
puter Vision, pages 608–624. Springer, 2020. 6

[35] Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling

Jui, et al. Exploiting the intrinsic neighborhood structure for

source-free domain adaptation. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 1

[36] Hao-Wei Yeh, Baoyao Yang, Pong C Yuen, and Tatsuya

Harada. Sofa: Source-data-free feature alignment for

unsupervised domain adaptation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 474–483, 2021. 1

4322


