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Abstract

Deep learning for unsupervised image segmentation re-
mains challenging due to the absence of human labels. The
common idea is to train a segmentation head, with the su-
pervision of pixel-wise pseudo-labels generated based on
the representation of self-supervised backbones. By doing
so, the model performance depends much on the distance
between the distribution of target datasets, and the one of
backbones’ pre-training dataset (e.g., ImageNet). In this
work, we investigate a new task, namely unsupervised cam-
ouflaged object segmentation (UCOS), where the target ob-
jects own a common rarely-seen attribute, i.e., camouflage.
Unsurprisingly, we find that the state-of-the-art unsuper-
vised models struggle in adapting UCOS, due to the domain
gap between the properties of generic and camouflaged ob-
jects. To this end, we formulate the UCOS as a source-free
unsupervised domain adaptation task (UCOS-DA), where
both source labels and target labels are absent during the
whole model training process. Specifically, we define a
source model consisting of self-supervised vision transform-
ers pre-trained on ImageNet. On the other hand, the tar-
get domain includes a simple linear layer (i.e., our target
model) and unlabeled camouflaged objects. We then de-
sign a pipeline for foreground-background-contrastive self-
adversarial domain adaptation, to achieve robust UCOS.
As a result, our baseline model achieves superior segmenta-
tion performance when compared with competing unsuper-
vised models on the UCOS benchmark, with the training set
which’s scale is only one tenth of the supervised COS coun-
terpart. The UCOS benchmark and our baseline model are
now publicly available1.

1. Introduction

In real-world scenes, there is a specific domain of ob-

jects which share one common attribute, namely “visual

camouflage”. Camouflaged objects introduce challenges

1https://github.com/Jun-Pu/UCOS-DA
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Figure 1: An illustration of camouflaged object segmen-

tation. The camouflage domain-specific properties (e.g.,
color-/texture-based background matching, transparency

and disruptive pattern) are rarely-seen in generic object

dataset such as ImageNet.

to image segmentation with their different types of con-

cealing coloration [9] (Figure 1). The common setting

for camouflaged object segmentation (COS) is to fine-tune

an encoder-decoder framework with well-labelled camou-

flaged objects [16, 55, 51, 71], based on the supervised Ima-

geNet pre-trains [10, 21, 13]. Though improvement [71, 36]

has been made as the booming development of vision trans-

formers [13, 42], this setting requires either dense labels

(i.e., pixel-wise binary masks) or weak labels (e.g., points,

object categories) as the supervision for training COS mod-

els. To advance COS to open-world applications where

extensive human labels are hardly gained, and supervised

models tend to be poorly generalized [5, 31, 47]; We take

advantage of self-supervised ImageNet-based pre-trains [5]

and propose the first unsupervised COS baseline model,

which requires no any human labels in the whole training

pipeline.

Intuitively, we formulate the unsupervised COS as a

task of source-free unsupervised domain adaptation, abbre-

viated as UCOS-DA (Figure 2). Being different to com-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: An illustration of related tasks. {X,Y, Ŷ } de-

note images, ground truth and pseudo-labels generated by

unsupervised backbones, respectively. {θS , θT } indicate

parameter sets of source and target models, respectively.

{θE , θD} means the parameter set of encoder and decoder

of a given segmentation network. Note that in our task,

namely UCOS-DA, the source model (θS) was trained in a

self-supervised manner, without using source labels (Y S).

mon source-free unsupervised domain adaptation settings

where human labels are needed to train the source model,

our UCOS-DA setting does not involve supervised train-

ing of the source domain. To conduct the new task, we

propose a UCOS-DA baseline model consisting of three

components, i.e., a self-supervised source model, a light-

weighted target model and an adversarial domain adaptation

module (Figure 3). Following state-of-the-art unsupervised

image segmentation methods [61, 38, 23, 48, 49, 43, 34], we

use DINO [5]’s ImageNet pre-trained self-supervised vision

transformer, as the unsupervised object-centric feature ex-

tractor (i.e., our source model). Considering the ambiguity

(Figure 1) between object parts and background region in

COS, we explore to shift more attention to the local features

representing the boundary of camouflaged targets, during

domain adaptation. We thus design a self-adversarial train-

ing module to weight more importance to the boundary-

specific object-centric representations. Meanwhile, the tar-

get model learns to segment camouflaged objects with the

pixel-wise supervision of pseudo-labels gained from DINO

features.

In a nutshell, by proposing the new task (UCOS-DA)

in the context of fully unsupervised image segmentation,

we investigate the domain transfer ability of state-of-the-

art self-supervised vision transformers, especially towards

the circumstance where a large discrepancy exists between

the source domain and target domain (here we mean dif-

ferent visual patterns between generic objects and camou-

flaged objects). The main contributions are summarized

as follows: 1) We firstly investigate the task of unsuper-

vised COS, by implementing a systematic benchmark study

involving seven evaluative metrics and five state-of-the-art

image segmentation methods. 2) We investigate unsuper-

vised COS from a perspective of source-free unsupervised

domain adaptation, by proposing a baseline model which

gains competitive results on multiple benchmark datasets.

Besides, we discuss key issues for bridging domain adapta-

tion to unsupervised object-centric representation learning.

We hope our work could inspire more generalizable unsu-

pervised image segmentation models in future researches.

2. Related Work

2.1. Self-Supervised Representation Learning

Learning to localize objects without using any human la-

bels is a longstanding issue in the field of computer vision.

The issue has recently appealed much more attention from

the community, owing to the release of self-supervised rep-

resentation learning methodologies, such as “MoCo Tril-

ogy” [20, 7, 8], SimCLR [6], DenseCL [60], DINO [5],

MAE [19] and “BEiT Trilogy” [4, 39, 57]. These models

were trained with large-scale datasets (e.g., ImageNet [10])

in a self-supervised manner, advancing the label-free ob-

ject discovery. We briefly summarize recent self-supervised

methods according to their types of pretext tasks:

Contrastive Learning. Pioneer works, MoCo [20] and

SimCLR [6], proposed to optimize their networks’ features

via calculating similarities between two branches of fea-

tures, respectively acquired from two sets of visual inputs.

Notably, MoCo [20] used two encoders with different pa-

rameter updating strategies , while SimCLR [6] took advan-

tage of one encoder with two sets of parameters (Siamese

framework). Following MoCo, DenseCL [60] proposed

dense projection heads to facilitate downstream unsuper-

vised dense prediction tasks. Inspired by both MoCo and

SimCLR, BYOL [17] used an on-line network and a target

network to conduct self-supervised training, without relying

on negative pairs. Following BYOL, DINO [5] applied two

interactive encoders sharing the same ViT [13]-based archi-

tecture however with different parameter sets and updating

strategies, achieved representations that illustrate superior

object emergence when compared to the fully supervised
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counterparts.

Masked Image Modeling (MIM). MIM-based methods

aim to learn representations via reconstructing original im-

ages from image patches where a certain percentage of them

are masked out. BeiT [4], as one of the pioneer works

within this category, followed the masked language model-

ing strategy proposed in BERT [11] and introduced MIM

into vision transformers. MAE [19] also proposed auto-

encoder-like architecture but to reconstruct pixels rather

than to predict tokens. BEiT-v2 [39] replaced the original

reconstruction target with semantic-rich visual tokenizers

to learn representations highlighting semantic cues. Mask-

Feat [62] also used MIM for model training however with

the optimizing target of reconstructing HOG features of the

masked image patches. SimMIM [65] proposed new pre-

diction head consisting of only one linear payer.

Multi-Modal Alignment. The community recently wit-

nessed a competition in establishing large vision-language

models (VLMs) for representation learning [41, 66, 30, 52,

12, 57, 26]. Compared to vision-only self-supervised set-

tings, VLMs relax the constrict of leveraging human la-

bels by relying on image-text pairs, to learn multi-modal

representations via aligning visual and textual cues. CLIP

[41] jointly trained a text encoder and an image encoder

to predict positive image-text pairs, achieving state-of-the-

art zero-shot image classification. To further obtain object-

centric locality-aware representation, GLIP [30] jointly op-

timized image and text encoders to localize positive region-

word pairs. GroupViT [66] added grouping blocks to each

level of a ViT [13], enabling progressive optimization of its

vision encoder with only text-based weak supervision. Be-

ing different to above frameworks which rely on separate

text and image encoders, CLIPPO [52] extracted both im-

age and text features with a single encoder. Methods such as

MaskCLIP [12] and BEiT-v3 [57] combined MIM strategy

and visual-language contrastive learning to pursue general-

izable representation. RO-ViT [26] achieved state-of-the-art

open-vocabulary object detection, via manipulating ViT’s

positional embeddings at the pre-training stage and gain-

ing region-aware image-text pairs at the fine-tuning stage.

More recently, MUG [72] achieved new state-of-the-art in

vision transfer learning tasks, via training a self-supervised

vision-language model based on large-scale web data.

Despite the booming development of large-scale self-

supervised multi-modal pre-trained models, unsupervised

domain adaptation remains an open issue due to the finite

scale of the pre-training data. To this end, OOD-CV [73] re-

leased an open challenge2 to continually advance researches

in exploring the transfer learning ability of state-of-the-art

self-supervised pre-trained models.

2http://www.ood-cv.org/challenge.html

2.2. State-of-the-Art Unsupervised Segmentation

The “pre-training and fine-tuning” has been the most

commonly-used paradigm for training deep neural networks

since the emergence of ImageNet [10]. Recent devel-

opment of self-supervised pre-trains (Section 2.1) stimu-

lates the development of unsupervised image segmentation

[18, 61, 38, 59, 70, 74, 69, 48, 23, 43, 49, 24, 58]. These

methods are able to conduct instance-level pixel-wise clas-

sification without using any manual annotations.

Unsupervised Object Segmentation. TokenCut [61] con-

ducted spectral clustering based on the DINO [5] features,

yet the method is able to segment only one object per im-

age. SelfMask [48] applied different number of clusters

to produce multiple binary masks, and introduced a voting

strategy to gain the final prediction. Also based on DINO

features, FOUND [49] retrieved the background seed and

identified its complement as the foreground. Final results

were obtained by training a linear layer with the supervi-

sion of retrieved foreground masks. DINOSAUR [43] ex-

plored the task from a perspective of object-centric learn-

ing. The method was optimized to reconstruct the given

images with slot-attention-based [33] decomposed object-

centric representations. There is another class of methods

[53, 1, 22, 3, 75] that use generative adversarial networks

to generate the foreground masks representing target ob-

jects. Though progress was achieved during the past few

years, we find that current unsupervised object segmenta-

tion methods tend to fail the cases where objects show com-

plicated appearances in specific context (e.g., camouflage,

an object-centric attribute rarely-seen in ImageNet).

Unsupervised Semantic Segmentation. Thanks to the

booming trend of large-scale self-supervised pre-trained

models, the community witnessed an important change

of the learning paradigm of semantic segmentation, from

fully-/weakly-supervised learning to fully unsupervised

learning. Recent methods such as STEGO [18], Spec-

tralSeg [38], FreeSOLO [59], SelfPatch [70], TransFGU

[69], Leopart [74], Odin [23], Exemplar-FreeSOLO [24]

and CutLER [58], were trained to assign each pixel to spe-

cific object class without the supervision of any human la-

bels. Similar to supervised methods, current unsupervised

semantic segmentation methods face challenges such as oc-

clusion detection, small object detection and multi-instance

identification.

2.3. Unsupervised Domain Adaptation

Recent researches [27, 68, 64, 67, 40, 32, 54, 25, 44]

investigated source-free unsupervised domain adaptation,

where only the pre-trained source model and unlabeled

target data are accessible during the domain adaptation.

USFDA [27] proposed a source similarity metric to conduct

domain adaptation without source data, and achieved on-

par results when compared to the source-dependent coun-
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terparts. G-SFDA [68] proposed local structure clustering

to adapt source model to the target domain in the absence

of source data. A2Net [64] was trained to classify the tar-

get data into source-similar and source-dissimilar groups,

via an adaptive adversarial strategy. NRC-SFDA [67] ex-

plored the local affinity of target data and achieved im-

proved source-free adaptation upon both 2D and 3D tar-

get data. CPGA [40] disentangled the source model and

gained class-wise features, namely avatar prototype, to fa-

cilitate source-target alignment. More recently, STPL [32]

used temporal cues, i.e., optical flow, to conduct domain

adaptation for video semantic segmentation. ASFDA [54]

resorted to active learning technique to identify a small set

of source features, which supported the efficient training of

the target model. C-SFDA [25] proposed new self-training

strategy based on curriculum learning. MSFDA [44] ex-

plored multi-source-free domain adaptation and found an

inherent bias-variance trade-off within the task, thus inspir-

ing future works.

2.4. Uniqueness of Our Model

Training a segmentation head, with merely unlabeled

COS dataset and ImageNet pre-trained self-supervised

model, can be regarded as a source-free unsupervised do-

main adaptation task. Due to the out-of-distribution proper-

ties of camouflaged objects (Figure 1), unsupervised COS

is an extremely challenging task. To this end, we consider

to discovery and reserve the boundary-specific local self-

supervised features, and resort to adversarial domain adap-

tation technique to improve the model transfer robustness.

Besides the innovation towards the task formulation and

camouflaged prior modeling, we define our target model

as a simple linear layer yet predicts superior results when

compared with its counterparts in unsupervised object seg-

mentation.

3. UCOS-DA Methodology
We propose the first baseline model for unsupervised

camouflaged object segmentation, from the perspective of

domain adaptation (UCOS-DA). The model consists of

a self-supervised ImageNet-based pre-trained vision trans-

former as the source model (θS), a linear-probe layer

as the target model (θT ), and a foreground-background-

contrastive self-adversarial domain adaptation module (θD,

abbreviated as FBA). The pipeline of the proposed baseline

model is shown in Figure 3.

3.1. UCOS-DA Motivation&Formulation

A popular chatbot gives a definition towards “object”:

“An object refers to a distinct item or entity that occu-
pies space, has properties, can be perceived through our
senses”. In 2D domain, object segmentation (a.k.a., object-

level pixel-wise classification) models usually require man-
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Figure 3: The pipeline of our proposed UCOS-DA baseline

model. The model consists of a frozen source model (θS),

a light-weighted linear target model (θT ) and a foreground-

background-contrastive self-adversarial domain adaptation

module (θD). Notably, no any human labels are used for

UCOS-DA pseudo-labelling, pre-training or fine-tuning.

ual annotations as supervision to learn the mapping from

images to objects. As the recent development of self-

supervised models, it is inspiring to see that, specific pretext

tasks (e.g., enforcing the view-invariance [17, 5], recover-

ing the missing parts [19]), enable deep learning models to

discover object concepts without using external supervision

of human labels. Thus, self-supervised learning seems to

be a more humanoid learning paradigm and thus promising.

In the context of unsupervised COS, we aim to achieve a

model which learns the camouflaged properties with only

unlabelled image data, thus segmenting objects concealed

in various real-world scenes effectively. Considering the

absence of large-scale camouflage pre-trains, a feasible so-

lution is to extract features from generic data-based self-

supervised models and adapt them to the camouflage do-

main.

To this end, we formulate the objective of UCOS-DA as

minimizing an empirical loss function:

min
{θS ,θD,θT }

EXT ,Ŷ T [L(fT (XT ; θS , θD, θT ), Ŷ T )]

=

∫
L(fT (XT ; θS , θD, θT ), Ŷ T )dp(XT , Ŷ T )

≈ 1

N

N∑
i=1

L(fT (xT
i ; θ

S , θD, θT ), ŷi
T ),

(1)

with

(xT
i , ŷi

T ) ∼ p(XT , Ŷ T ), (2)

where {θS , θD, θT } denotes parameter sets of the source

model, the FBA module and the target model, respectively.

(xT
i , ŷ

T
i ) denotes a sample pair from the joint data distri-

bution in the target domain. Notably, the Ŷ T indicates the

pseudo-labels corresponding to the training data in the tar-

get domain. L(·) means the loss function.
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Figure 4: The architecture of the FBA (foreground-

background-contrastive self-adversarial domain

adaptation) module (θD). {C1, C2, C3} denotes the

number of channels of each linear layer, respectively.

3.2. UCOS-DA Architecture

Generic Object-Centric Knowledge Extraction. Acor-

rding to previous researches [61, 49, 58], among various

self-supervised pre-trains, DINO [5] has proved its supe-

rior object emergence ability and is regarded as one of

most promising candidates for downstream unsupervised

image segmentation tasks. We use DINO ImageNet pre-

trains as our source model, and extract its rich generic ob-

ject knowledge to generate pseudo-labels, and to facilitate a

self-supervised training of the target model.

Pseudo-Labels. We resort to normalized cuts technique

[45] to generate coarse maps based on DINO features.

Specifically, we resort to MaskCut methodology [58],

which conducts multiple iterations of normalized cuts with

DINO features, based on a patch-level affinity matrix.

Adversarial Domain Adaptation. To adapt DINO pre-

trained features to unsupervised COS, we first study the

object priors when it comes to the camouflaged scenario.

In fact, animals tend to deceive predators’ visual percep-

tion with specific concealing coloration. As a consequence,

noisy visual cues are brought to the boundary region of

camouflaged objects in 2D images, making it hard to ob-

tain on-par segmentation results. We argue that the blur of

object boundary is one of the main cause for the big diver-

gence between camouflaged and generic data distributions.

To close the gap between the source (generic) domain

and the target (camouflage) domain, we suggest a new mod-

ule to emphasize the reservation of boundary-specific lo-

cal representations of source model, during training the

target model. Specifically, we introduce a foreground-

background-contrastive self-adversarial domain adaptation

(FBA) module (Figure 4), to conduct a sub-task aiming

at further distinguishing the predicted foreground maps

from their complements. Our FBA module mainly con-

sists of three hierarchical linear layers, computing fore-

ground/background class score (S, S ∈ [0, 1]) as:

S = σ(FCC3(LR(FCC2(LR(FCC1(Cat(X,P ′))))))),
(3)

where {X,P ′} means the given images and corresponding

binary masks gained via the target model. σ(·), FC(·),
LR(·) and Cat(·) denotes Sigmoid function, linear(fully-

connected) layer, leakyReLu activation layer and concate-

nation operation, respectively.

3.3. Implementation Details

Loss Function. As the target model and FBA module are

co-trained for domain adaptation, the total loss (L) of our

UCOS-DA baseline model is thus formulated as the sum of

a segmenting loss (LSeg.) and an adversarial loss (LAdv.):

L = LSeg.(P, Ŷ T ) + LAdv.(S,C), (4)

where P and C (C ∈ {0, 1}) denotes segmentation results

of target model, and foreground/background class label, re-

spectively. Notably, in this work, we apply the structure loss

[63] as the segmentation loss LSeg., and binary cross en-

tropy loss as the foreground/background classification loss

(i.e., adversarial loss LAdv.).

Hyper-Parameters. We train the UCOS-DA baseline

model by using PyTorch with a maximum epoch of 5. The

images are re-scaled to the size of 512×512 during train-

ing. The initial learning rate of the target model and the

FBA module is set to 5e-3 and 5e-4, respectively.

4. Experiments
4.1. Settings

Training DataSets. We randomly collect 300 images

from the most commonly-used supervised COS training set

[16, 71], which includes 4,040 images representing various

camouflage-based scenes. We also randomly select 300 im-

ages from the most commonly-used salient object segmen-

tation training set, i.e., DUTS-tr [56]. Thus, the training set

for our UCOS-DA consists of 600 images covering wide

real-world daily scenes, while has its scale much smaller

than the ones for fully-supervised image segmentation.

Testing DataSets. To thoroughly analyze the performance

of our new unsupervised baseline, we test our model and all

benchmark models on six commonly-used testing sets, i.e.,
ECSSD [46], HKU-IS [29], CAMO [28], CHAMELEON

[50], COD10K [16] and NC4K [35], which possess 1K,

4447, 250, 76, 2026 and 4121 images, respectively.

Benchmark Models. To contribute the community a com-

prehensive benchmark towards unsupervised object seg-

mentation, we collect most recent state-of-the-art fully un-

supervised models, including BigGW [53], TokenCut [61],

SpectralSeg [38], SelfMask [48] and FOUND [49].
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Table 1: Comparison of our UCOS-DA and state-of-the-art unsupervised methods on salient object segmentation benchmark

datasets. The best and the second best results of each row are highlighted.

Task Dataset Metric
BigGW TokenCut TokenCut w/ B.S. SpectralSeg SelfMask SelfMask w/ U.B. FOUND UCOS-DA(Ours)

ICML’21 [53] CVPR’22 [61] CVPR’22 [61] CVPR’22 [38] CVPRw’22 [48] CVPRw’22 [48] CVPR’23 [49] ICCVw’23

S
al

ie
n

t
O

b
je

ct
S

eg
m

en
ta

ti
o

n

E
C

S
S

D
[4

6
]

mIoU ↑ .689 .712 .774 .733 .779 .787 .805 .816
Acc. ↑ .905 .918 .934 .891 .943 .946 .948 .951

Fmax
β ↑ .800 .803 .874 .805 .892 .897 .896 .891

Fmean
β ↑ .654 .801 .714 .803 .861 .867 .894 .888

FW
β ↑ .568 .785 .630 .790 .846 .852 .877 .876

Sα ↑ .783 .807 .832 .806 .866 .871 .875 .878
Emax

φ ↑ .871 .886 .905 .865 .928 .932 .932 .934
Emean

φ ↑ .714 .884 .755 .862 .920 .925 .930 .931
M ↓ .169 .082 .129 .109 .058 .055 .052 .049

H
K

U
-I

S
[2

9
]

mIoU ↑ .641 .608 .673 .735 .747 .755 .787 .794
Acc. ↑ .905 .916 .936 .932 .949 .951 .958 .959

Fmax
β ↑ .760 .741 .832 .815 .869 .874 .877 .872

Fmean
β ↑ .611 .739 .667 .812 .830 .836 .875 .870

FW
β ↑ .515 .703 .557 .801 .818 .824 .863 .861

Sα ↑ .761 .748 .777 .828 .851 .856 .869 .871
Emax

φ ↑ .859 .866 .871 .896 .930 .934 .939 .937

Emean
φ ↑ .696 .864 .728 .894 .919 .923 .936 .935

M ↓ .166 .084 .123 .068 .052 .050 .042 .041

Table 2: Comparison of our UCOS-DA baseline and state-of-the-art unsupervised methods on camouflaged object segmen-

tation benchmark datasets. The best and the second best results of each row are highlighted.

Task Dataset Metric
BigGW TokenCut TokenCut w/ B.S. SpectralSeg SelfMask SelfMask w/ U.B. FOUND UCOS-DA(Ours)

ICML’21 [53] CVPR’22 [61] CVPR’22 [61] CVPR’22 [38] CVPRw’22 [48] CVPRw’22 [48] CVPR’23 [49] ICCVw’23

C
am

o
u

fl
ag

ed
O

b
je

ct
S

eg
m

en
ta

ti
o

n

C
A

M
O

[2
8

]

mIoU ↑ .322 .431 .422 .411 .418 .430 .505 .528
Acc. ↑ .775 .837 .838 .765 .813 .819 .871 .873

Fmax
β ↑ .428 .546 .550 .486 .549 .561 .635 .647

Fmean
β ↑ .349 .543 .434 .481 .536 .547 .633 .646
FW
β ↑ .299 .498 .383 .450 .483 .495 .584 .606
Sα ↑ .565 .633 .639 .579 .617 .627 .685 .701

Emax
φ ↑ .678 .708 .699 .658 .713 .724 .784 .786

Emean
φ ↑ .528 .706 .595 .648 .698 .708 .782 .784
M ↓ .282 .163 .195 .235 .188 .182 .129 .127

C
H

A
M

E
L

E
O

N
[5

0
]

mIoU ↑ .267 .436 .415 .381 .396 .406 .468 .525
Acc. ↑ .807 .868 .871 .780 .825 .832 .905 .905

Fmax
β ↑ .356 .540 .544 .446 .511 .522 .591 .631

Fmean
β ↑ .294 .536 .393 .440 .481 .491 .590 .629
FW
β ↑ .244 .496 .351 .410 .436 .447 .542 .591
Sα ↑ .547 .654 .655 .575 .619 .629 .684 .715

Emax
φ ↑ .662 .743 .734 .638 .726 .734 .812 .804

Emean
φ ↑ .527 .740 .582 .628 .675 .683 .810 .802

M ↓ .257 .132 .169 .220 .176 .169 .095 .095

C
O

D
1

0
K

[1
6

]

mIoU ↑ .236 .415 .423 .331 .388 .397 .428 .462
Acc. ↑ .798 .897 .903 .807 .870 .875 .915 .914

Fmax
β ↑ .315 .509 .537 .395 .504 .514 .521 .548

Fmean
β ↑ .246 .502 .399 .388 .469 .478 .520 .546
FW
β ↑ .185 .469 .334 .360 .431 .440 .482 .513
Sα ↑ .528 .658 .666 .575 .637 .645 .670 .689

Emax
φ ↑ .670 .740 .739 .606 .718 .728 .753 .741

Emean
φ ↑ .497 .735 .609 .595 .679 .687 .751 .740

M ↓ .261 .103 .127 .193 .131 .125 .085 .086

N
C

4
K

[3
5

]

mIoU ↑ .382 .546 .561 .495 .529 .538 .566 .590
Acc. ↑ .814 .899 .904 .841 .887 .891 .916 .915

Fmax
β ↑ .484 .655 .682 .570 .661 .670 .676 .691

Fmean
β ↑ .391 .649 .547 .562 .634 .642 .674 .689
FW
β ↑ .319 .615 .478 .535 .593 .601 .637 .656
Sα ↑ .608 .725 .735 .669 .716 .723 .741 .755

Emax
φ ↑ .714 .806 .807 .729 .796 .803 .827 .822

Emean
φ ↑ .565 .802 .683 .719 .777 .784 .824 .819

M ↓ .246 .101 .133 .159 .114 .110 .084 .085
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Figure 5: Visual samples of our baseline model (UCOS-DA) and all competing models.

Evaluation Metrics. We apply seven widely-used metrics

to quantitatively evaluate all the benchmark models. The

metrics include Accuracy (Acc.), mean Intersection over

Union (mIoU ), mean absolute error (M ), F-measure [2]
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Table 3: Comparison of linear-probe strategies upon COS.

Method
COD10K NC4K

mIoU ↑ Acc. ↑ Fmax
β ↑ mIoU ↑ Acc. ↑ Fmax

β ↑
FOUND 42.8 91.5 52.1 56.6 91.6 67.6

FOUND (F.T.) -4.0 -1.8 -4.8 -3.8 -1.5 -4.6

Ours 46.2 91.4 54.8 59.0 91.5 69.1

(Fβ), weighted F-measure [37] (FW
β ), S-measure [14] (Sα)

and E-measure [15] (Eφ). Notably,

Fβ computes both Precision and Recall, formulated as:

Fβ =
(1 + β2)Precision Recall

β2Precision+Recall
, (5)

with

Precision =
|P ∩G|
|P | ;Recall =

|P ∩G|
|G| , (6)

where G is the ground truth and P denotes a binarized pre-

dictions. Multiple P are computed by assigning different

integral thresholds τ (τ ∈ [0, 255]) to the predicted map.

The β2 is commonly set to 0.3 .

Sα evaluates the structural similarities between the predic-

tion and the ground truth. The metric is defined as:

S = αSo + (1− α)Sr, (7)

where Sr and So denote the region-/object-based structure

similarities, respectively. α ∈ [0, 1] is empirically set as 0.5

to arrange equal weights to both region-level and object-

level quantitative evaluation.

4.2. Comparison with Unsupervised Methods

Zero-Shot Transfer. As shown in Table 1 and Table 2, we

benchmark all competing models on datasets for both cam-

ouflaged and salient object segmentation. As a result, our

UCOS-DA baseline model obtains overall superior perfor-

mance on multiple testing sets. Please note that the bench-

mark results are all based on the codes and released check-

points from each model’s official project page. We also

show some visual samples in Figure 5.

Linear Probe via Adversarial training. To analyze the

effectiveness of our proposed FBA module, we compare our

results with the ones of FOUND [49], which also uses linear

probe-based DINO fine-tuning strategy. As a result, we spot

a slight performance drop of FOUND when fine-tuning its

linear layer with COS training set (Table 3). We also show a

visual example to further illustrate the phenomenon (Figure

6). On the contrary, our method not only performs superior

results on COS testing sets, but also acquires competitive

results on salient object segmentation datasets, indicating

the effectiveness and robustness of the proposed modules.
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Figure 6: Visual comparison of different linear-probe-based

unsupervised image segmentation methods.

5. Conclusion and Future Work

In this work, we investigate a new challenging image

segmentation task, i.e., unsupervised camouflaged object

segmentation. We firstly contribute a comprehensive bench-

mark study to show limited transferring ability of state-of-

the-art unsupervised image segmentation models. We ex-

plore the co-existence of challenge and opportunity of a

unique object-centric attribute, i.e., concealing coloration,

and resort to prior-inspired adversarial domain adaptation

to conduct the task. As a result, our new baseline model

achieves overall superior scores based on multiple metrics

and testing sets. Based on our study towards UCOS-DA,

we find following issues that could be paid attention in the

future researches.

Attribute-based Domain Adaptation. The concealing

coloration attribute makes unsupervised COS an open is-

sue in both societies of unsupervised domain adaptation and

unsupervised image segmentation, in the context of current

generic object datasets-based pre-trains. Future works may

explore more towards specific domains where the objects

own rarely-seen attributes, and investigate attribute-specific

domain adaptation methods.

Generalizability of Self-Supervised Pre-trains. Our

benchmark shows limited application of current self-

supervised pre-trained models, which could inspire more

studies towards generalizable pre-trains. Investigating the

transfer learning ability of self-supervised pre-trained mod-

els is essential, since it is expensive to train large models

in each domain. Besides, exploring effective domain adap-

tation methods under challenging settings helps to advance

the development of interpretable AI. We hope our prelim-

inary work could inspire future researches towards more

generalizable label-free segmentation and unsupervised do-

main adaptation methodologies.

Other Learning Paradigms. Besides “pre-training and

fine-tuning”, future researches may explore unsupervised

representation decomposition with attribute-sufficient real-

world data, aiming to acquire both interpretability and gen-

eralizability.
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