
Appendix

Experiment Details
Data Preparation. We synthesized 500k im-
ages with StyleGAN2 [4] and scored 6 at-
tributes(gender,smile,eyeglasses,age,lipstick,beard) with
CelebA attribute classifiers [3]. In Figure 2a, for each
attribute, we compute the average of 1000 images in which
the corresponding classifier predicts the attribute class with
the highest confidence. After applying our method to [1]
and editing such sets of images to achieve the opposite
attribute class, we invert them back to the W space and
re-generate the self-corrected samples for Figure 3b.
Similarly, for Figure 3c, we sample 10k latent codes corre-
sponding to images with the highest classifier confidence
for predicting eyeglasses and gender.
Latent Interpolation Methods. For Figure 4, we train
both [5] and [1] on the same set of 1000 latent code sam-
ples with the highest classifier confidence for each attribute.
For [2] and [6], we use the original directions as presented
in the original paper,and we use the channel for “grey hair”
as the Age+ channel for [6].
Attribute Dependency. First, we sample 3000 test images
with all attributes of interest(gender, smile, eyeglasses, age,
lipstick, beard) lying around the attribute classifiers’ deci-
sion boundaries. We split the images into 5 test sets AD
calculation. We present the full procedure to calculate AD
on each attribute a as follows:

• For each set of images with target attribute a ∈ A,
where A stands for all attributes, we interpolate the
original latent codes following [5] and [1] for d = 6
in 9 steps.

• For each interpolation result at step s, we compute x =
∆las
σla , which stands for the absolute change in the target
attribute logit, normalized by the population standard
deviation and obtain the x-values for plotting AD.

• For each interpolation result at step s, we also compute
y = 1

|A|−1Σi∈A\a
∆lis
σli , which stands for the mean of

the absolute change in the other attribute logits, nor-
malized by each population standard deviation, and
obtain the y-values for plotting AD.

• We then group the (x,y) pairs with their x values into
buckets of (0, 0.25], (0.25, 0.5], . . . , (1.75, 2], and plot
the midpoint for each bucket as the final x-value, mean
of y values within each bucket as the final y-value.
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