
A. Implementation Details
Hyperparameter search strategy. Similar to [8], the
hyperparameter tuning strategy differs depending on the
types of pre-trained models. In the experiments of this
work, we use three different pre-trained models: ResNet-
50 [15] pre-trained on ImageNet [9] (RN50), ViT-B/16 [10]
with CLIP [37] (CLIP), and RegNetY-16GF [38] with
SWAG [42] (SWAG).

Table 7: Hyperparameters used for RN50 in the experi-
ments.

Hyperparameter PACS VLCS OfficeHome TerraInc DomainNet

λ 0.01 0.05 0.01 0.01 0.01
Learning rate 5e-5 5e-5 5e-5 5e-5 5e-5
Weight decay 0.0 1e-4 1e-6 0.0 1e-4
Dropout 0.0 0.5 0.5 0.0 0.1

For RN50, we apply a two-stage hyperparameter search
strategy. The batch size and the moving average coefficient
(m) are fixed as 32 and 0.999 in the entire search procedure,
respectively. In the first stage, we search the gradient scale
factor λ from {0.01, 0.05, 0.1, 0.5} with the fixed learning
rate of 5e-5. In this stage, we do not apply weight decay
and dropout, i.e., weight decay and dropout rate are equal
to 0. In the second stage, we search the learning rate from
{1e-5, 3e-5, 5e-5}, weight decay rate from {0, 1e-6, 1e-4},
and dropout rate from {0, 0.1, 0.5} with the fix λ searched
in the first stage. We summarize the optimal set of hyperpa-
rameters for RN50 in Table 7.

Table 8: The gradient scale factor λ used for CLIP and
SWAG in the experiments.

Pre-trained Model PACS VLCS OfficeHome TerraInc DomainNet

CLIP 0.05 0.1 0.05 0.05 0.05
SWAG 0.05 0.1 0.05 0.05 0.05

Unlike the experiments with RN50, we apply a single-
stage hyperparameter search strategy to CLIP and SWAG
due to the size of the larger-scale pre-trained models. We
only search the gradient scale factor λ from {0.01, 0.05, 0.1,
0.5}. In particular, we use the same learning rate, weight
decay, and dropout rate used in the hyperparameter search
of RN50. For the batch size of CLIP, we fix it as 32 except
for the one case on DomainNet [34] where the batch size
is set as 24. For SWAG, we fix the batch size as 16 for all
experiments. In Table 8, we summarize the searched λ for
CLIP and SWAG.

Similar to [8], we set the total number of iterations as
15,000 for DomainNet and 5,000 for the others regardless

of types of pre-trained models throughout the entire experi-
ments.

B. Additional Results
B.1. Main results

In § 3.2, we only compare baselines superior to
ERM [45] with GESTUR for simplicity. Here, we provide
the entire results of the main experiment in Table 9.

Baselines. In the main experiment, we compare GESTUR
against a number of baselines: MMD [24], MixStyle [58],
GroupDRO [40], IRM [1], ARM [57], VREx [20],
CDANN [25], DANN [13], RSC [16], MTL [5], Mixup [48,
50, 51], MLDG [22], Fish [41], Fishr [39], ERM [45],
SagNet [32], SelfReg [18], CORAL [43], mDSDI [6],
GVRT [30], MIRO [8], SMA [2], and SWAD [7].

B.2. Relationship between λ and the types of the
pre-trained model

In § 3.4, we analyze the relationship between λ and the
size of the pre-trained model. However, we only present
the results from PACS [23] in Table 3 for simplicity. Here,
we provide the additional results from VLCS [12], Office-
Home [46], and TerraIncognita [4] in Table 11, Table 12,
and Table 13, respectively. We also provide the additional
results on PACS again containing the standard error which
is omitted in main manuscript due to the page limit (Ta-
ble 10).

C. Further Analysis
C.1. Comparison with CLIP-based baselines

Setup. CLIP [37] is pre-trained on the huge web-crawled
image-caption pair dataset and has been widely adopted
in various computer vision tasks due to its generalization
ability. CLIP-based methods could be strong baselines in
domain generalization because the text content they used
in pre-training could act as a robust anchor to the do-
main shift of images. Therefore, we conduct additional
experiments using CLIP-based methods, CLIP Zero-shot
and WiSE-FT [49]. The CLIP-based methods require text-
based queries to output text-based representations of tar-
get classes. Following the previous study, we obtain the
80 text-based queries from the official repository1 of CLIP
and compute the final text-based representation of each tar-
get class by averaging the text-based representations of the
queries. Finally, the model predictions are computed as the
dot product of the text-based representations and the rep-
resentations of input images. For WiSE-FT, an ensemble

1https://github.com/openai/CLIP/blob/main/
notebooks/Prompt_Engineering_for_ImageNet.ipynb

https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb


Table 9: Domain generalization accuracy (%) on the five domain generalization benchmark datasets with the three different
pre-trained models. We mark ∗, †, and ‡ for the results from [14], [7] and [8] respectively. We use the reported numbers from
each paper for Fish, Fishr, SelfReg, mDSDI, GVRT, and SMA.

Method PACS VLCS OfficeHome TerraInc DomainNet Avg.

Using ResNet-50 pre-trained on ImageNet.

MMD∗ 84.7 ±0.5 77.5 ±0.9 66.3 ±0.1 42.2 ±1.6 23.4 ±9.5 58.8
MixStyle† 85.2 ±0.3 77.9 ±0.5 60.4 ±0.3 44.0 ±0.7 34.0 ±0.1 60.3
GroupDRO∗ 84.4 ±0.8 76.7 ±0.6 66.0 ±0.7 43.2 ±1.1 33.3 ±0.2 60.7
IRM∗ 83.5 ±0.8 78.5 ±0.5 64.3 ±2.2 47.6 ±0.8 33.9 ±2.8 61.6
ARM∗ 85.1 ±0.4 77.6 ±0.3 64.8 ±0.3 45.5 ±0.3 35.5 ±0.2 61.7
VREx∗ 84.9 ±0.6 78.3 ±0.2 66.4 ±0.6 46.4 ±0.6 33.6 ±2.9 61.9
CDANN∗ 82.6 ±0.9 77.5 ±0.1 65.8 ±1.3 45.8 ±1.6 38.3 ±0.3 62.0
DANN∗ 83.6 ±0.4 78.6 ±0.4 65.9 ±0.6 46.7 ±0.5 38.3 ±0.1 62.6
RSC∗ 85.2 ±0.9 77.1 ±0.5 65.5 ±0.9 46.6 ±1.0 38.9 ±0.5 62.7
MTL∗ 84.6 ±0.5 77.2 ±0.4 66.4 ±0.5 45.6 ±1.2 40.6 ±0.1 62.9
Mixup∗ 84.6 ±0.6 77.4 ±0.6 68.1 ±0.3 47.9 ±0.8 39.2 ±0.1 63.4
MLDG∗ 84.9 ±1.0 77.2 ±0.4 66.8 ±0.6 47.7 ±0.9 41.2 ±0.1 63.6
Fish 85.5 ±0.3 77.8 ±0.3 68.6 ±0.4 45.1 ±1.3 42.7 ±0.2 63.9
Fishr 85.5 ±0.4 77.8 ±0.1 67.8 ±0.1 47.4 ±1.6 41.7 ±0.0 64.0
ERM† 84.2 ±0.1 77.3 ±0.1 67.6 ±0.2 47.8 ±0.6 44.0 ±0.1 64.2
SagNet∗ 86.3 ±0.2 77.8 ±0.5 68.1 ±0.1 48.6 ±1.0 40.3 ±0.1 64.2
SelfReg 85.6 ±0.4 77.8 ±0.9 67.9 ±0.7 47.0 ±0.3 42.8 ±0.0 64.2
CORAL∗ 86.2 ±0.3 78.8 ±0.6 68.7 ±0.3 47.6 ±1.0 41.5 ±0.1 64.5
mDSDI 86.2 ±0.2 79.0 ±0.3 69.2 ±0.4 48.1 ±1.4 42.8 ±0.1 65.1
GVRT 85.1 ±0.3 79.0 ±0.2 70.1 ±0.1 48.0 ±1.4 44.1 ±0.1 65.2
MIRO‡ 85.4 ±0.4 79.0 ±0.0 70.5 ±0.4 50.4 ±1.1 44.3 ±0.2 65.9
SMA 87.5 ±0.2 78.2 ±0.2 70.6 ±0.1 50.3 ±0.5 46.0 ±0.1 66.5
SWAD† 88.1 ±0.1 79.1 ±0.1 70.6 ±0.2 50.0 ±0.3 46.5 ±0.1 66.9
GESTUR 88.0 ±0.2 80.1 ±0.2 71.1 ±0.0 51.3 ±0.2 46.3 ±0.1 67.4

Using ViT-B/16 with CLIP.

ERM‡ 83.4 ±0.5 75.9 ±1.3 66.4 ±0.5 35.3 ±0.8 44.4 ±0.6 61.1
SWAD 91.3 ±0.1 79.4 ±0.4 76.9 ±0.1 45.4 ±0.5 51.7 ±0.8 68.9
SMA 92.1 ±0.2 79.7 ±0.2 78.1 ±0.1 48.3 ±0.7 55.9 ±0.2 70.8
MIRO‡ 95.6 ±0.8 82.2 ±0.3 82.5 ±0.1 54.3 ±0.4 54.0 ±0.3 73.7
GESTUR 96.0 ±0.0 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 58.9 ±0.1 75.5

Using RegNetY-16GF with SWAG.

ERM‡ 89.6 ±0.4 78.6 ±0.3 71.9 ±0.6 51.4 ±1.8 48.5 ±0.6 68.0
SWAD‡ 94.7 ±0.2 79.7 ±0.2 80.0 ±0.1 57.9 ±0.7 53.6 ±0.6 73.2
MIRO‡ 97.4 ±0.2 79.9 ±0.6 80.4 ±0.2 58.9 ±1.3 53.8 ±0.1 74.1
SMA 95.5 ±0.0 80.7 ±0.1 82.0 ±0.0 59.7 ±0.0 60.0 ±0.0 75.6
GESTUR 96.9 ±0.1 83.5 ±0.1 83.1 ±0.0 61.1 ±0.4 60.1 ±0.0 76.9

of the fine-tuned and zero-shot models, we set the balance
factor α as 0.5 following its original paper since target un-
seen domains are inaccessible in the domain generalization
setting.

Results. Table 14 shows the evaluation results where
GESTUR achieves the best averaged performance. In de-
tail, GESTUR outperforms CLIP Zero-shot on VLCS, Of-

ficeHome, and TerraIncognita, and shows comparable per-
formance on PACS. Likewise, GESTUR achieves better
performance on PACS, OfficeHome, and TerraIncognita
than WiSE-FT and comparable performance on VLCS.

Interestingly, the CLIP-based methods exhibit severe
performance degradation on TerraIncognita. We conjecture
that their performance is sensitive to pre-defined text-based
queries. For example, the query “a sketch of a {}” is help-



Table 10: Evaluation results (%) on PACS with the three
different pre-trained models varying λ.

Pre-trained model Dataset (size) λ
0.01 0.05 0.1 0.5

RN50 ImageNet (1.3M) 88.0 ±0.2 86.0 ±0.2 82.1 ±0.2 73.4 ±0.4

CLIP CLIP (400M) 94.8 ±0.2 96.0 ±0.0 96.2 ±0.1 96.0 ±0.0

SWAG Instagram (3.6B) 96.3 ±0.2 96.9 ±0.1 97.6 ±0.1 97.9 ±0.1

Table 11: Evaluation results (%) on VLCS with the three
different pre-trained models varying λ.

Pre-trained model Dataset (size) λ
0.01 0.05 0.1 0.5

RN50 ImageNet (1.3M) 78.9 ±0.3 80.1 ±0.2 80.0 ±0.1 77.6 ±0.1

CLIP CLIP (400M) 81.3 ±0.4 82.7 ±0.1 82.8 ±0.1 82.1 ±0.3

SWAG Instagram (3.6B) 81.7 ±0.0 82.7 ±0.2 83.5 ±0.1 82.4 ±0.2

Table 12: Evaluation results (%) on OfficeHome with the
three different pre-trained models varying λ.

Pre-trained model Dataset (size) λ
0.01 0.05 0.1 0.5

RN50 ImageNet (1.3M) 71.1 ±0.0 71.1 ±0.1 70.4 ±0.2 68.9 ±0.1

CLIP CLIP (400M) 82.5 ±0.2 84.2 ±0.1 84.4 ±0.0 84.7 ±0.0

SWAG Instagram (3.6B) 81.5 ±0.2 83.1 ±0.0 83.5 ±0.0 81.1 ±0.1

Table 13: Evaluation results (%) on TerraIncognita with the
three different pre-trained models varying λ.

Pre-trained model Dataset (size) λ
0.01 0.05 0.1 0.5

RN50 ImageNet (1.3M) 51.3 ±0.2 50.0 ±0.4 45.5 ±0.2 31.2 ±0.1

CLIP CLIP (400M) 51.3 ±0.2 55.7 ±0.2 54.0 ±0.3 42.3 ±0.9

SWAG Instagram (3.6B) 57.6 ±0.9 61.1 ±0.4 62.1 ±0.3 54.9 ±0.1

Table 14: Evaluation results (%) on the four datasets with
CLIP. We compare GESTUR with CLIP-based baselines,
CILP Zero-shot and WiSE-FT [49] which require additional
text-based queries. Our proposed GSETUR outperforms
the CLIP-based baselines without requiring additional text-
based queries.

Method PACS VLCS OfficeHome TerraInc Avg.

CLIP Zero-shot 96.8 ±0.0 81.7 ±0.3 83.0 ±0.3 31.3 ±0.2 73.2
WiSE-FT (α = 0.5) 94.5 ±0.0 83.9 ±0.3 83.9 ±0.2 47.5 ±1.2 77.5
GESTUR 96.0 ±0.0 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 79.7

ful for the “Sketch” domain of PACS. On the other hand,
the queries “a plastic {}” and “a {} in a video game” are
not helpful for TerraIncognita, which is composed of ani-

Table 15: Evaluation results (%) of combination of SWAD
and GESTUR on the four datasets with the three different
pre-trained models.

Method PACS VLCS OfficeHome TerraInc Avg.

Using ResNet-50 pre-trained on ImageNet.

GESTUR 88.0 ±0.2 80.1 ±0.2 71.1 ±0.0 51.3 ±0.2 72.6
GESTUR + SWAD 88.3 ±0.1 80.1 ±0.1 71.0 ±0.0 51.2 ±0.2 72.7

Using ViT-B/16 with CLIP.

GESTUR 96.0 ±0.0 82.8 ±0.1 84.2 ±0.1 55.7 ±0.2 79.7
GESTUR + SWAD 95.9 ±0.0 82.8 ±0.1 84.3 ±0.0 55.3 ±0.6 79.6

Using RegNetY-16GF with SWAG.

GESTUR 96.9 ±0.1 83.5 ±0.1 83.1 ±0.0 61.1 ±0.4 81.2
GESTUR + SWAD 96.8 ±0.0 83.0 ±0.1 83.4 ±0.1 60.6 ±0.8 81.0

mal images taken from the wild. These observations indi-
cate that the CLIP-based methods require hard prompt engi-
neering for each target dataset. Moreover, the CLIP-based
methods depend on language modality, which cannot be ex-
tended to other architecture or learning methods trained on
only visual modality, such as RN50 and SWAG. Considering
these, our GESTUR achieves a meaningful performance.

C.2. Applicability of SWAD [7] to GESTUR

Setup. The recent studies [7, 8] have observed that
SWAD [7] that seeks the flat minima is a good optimizer for
domain generalization, improving the generalization perfor-
mance of several baselines by applying it to the baselines
as a optimizer. Motivated by this observation, we evalu-
ate the performance of our GESTUR applied with SWAD
as a optimizer to verify whether GESTUR and SWAD are
orthogonal directions to each other.

Results. Table 15 shows that SWAD does not improve the
performance of GESTUR. We conjecture that it is because
EMA used to transfer the knowledge of TE to GE has a
similar effect as SWAD to find a flat minima by averaging
the model’s weights.

C.3. Similarity between true unobservable gradi-
ents gu and estimated unobservable gradients
g̃u of GESTUR

Setup. In this paper, we argue that gradient bias is a ma-
jor culprit in degrading domain generalization performance
(Figure 1) and our proposed method relieves the gradient
bias by estimating unobservable gradients. To support this
argument, we reported the number of iterations where gra-
dient conflicts exist in Figure 2 and Table 2. To examine
whether the estimated unobservable gradients g̃u are similar
to the true unobservable gradients gu, we add the analysis
calculating the cosine similarity of the true and estimated



unobservable gradients. Note that the true unobservable
gradients are computed by cross-entropy loss using true la-
bels of unseen domain datasets Du. On the other hand, the
estimated unobservable gradients are just computed as the
parameter difference between GE and TE (θGE − θTE).

Results. Figure 3 shows that our estimated gradients dis-
play positive similarity scores with the true gradients. This
trend demonstrates that the estimated gradients reduce the
number of gradient conflicts, leading models to reduce the
risks of unseen domains without accessing unseen domain
data.
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Figure 3: Cosine similarity between the true unobservable gradients gu and the estimated unobservable gradients g̃u


