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1. Results on DomainNet testing set
We further evaluate the generalization ability of existing SFDA methods on the DomainNet dataset, as shown in Ta-

ble 1. The train-test split is the same as [3], and testing set results of previous methods are reproduced with their official
codes. Our consistency regularization based paradigm shows high accuracy both in training and testing data, avoiding a giant
performance degradation on testing data like what appeared in previous works.

Table 1. Accuracy (%) and its drop between target training and testing data on DomainNet dataset. Best results are highlighted.

Method SF Target Test Drop

SHOT [1] ✓ 65.1 62.7 2.4(3.7%↓)
G-SFDA [5] ✓ 63.3 58.1 5.2(8.2%↓)

NRC [4] ✓ 64.7 60.6 4.1(6.3%↓)
DaC [6] ✓ 68.3 66.6 1.7(2.5%↓)

Ours ✓ 69.2 67.9 1.3(1.9%↓)

2. Full results on testing set
Table 2 and Table 3 shows accuracy results on VisDA-2017 and DomainNet testing set. Our consistency regularization

based SFDA method gains improvement on most classes, especially for those who suffer from severe performance degra-
dation with previous SFDA works. It proves that our method can avoid overfitting issues and develop a more generalizable
model under the SFDA setting, which are essential for real-world scenarios.

Table 2. Per-class and mean accuracy (%) on VisDA-2017 testing set. SF means source-free. We highlight the best results and underline
the second-best ones in SFDA methods. † means these results from VisDA2017 Classification Challenge [2] leaderboard, which are under
easier vanilla UDA setting and may use stronger backbone causing unfair comparisons.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

BUPT† × 95.7 67.0 93.4 97.2 90.6 86.9 92.0 74.2 96.3 66.9 95.2 69.2 85.4
IISC SML† × 92.4 81.0 86.4 92.2 87.9 89.4 69.4 84.2 96.4 85.3 83.5 89.3 86.4

NLE† × 94.3 86.5 86.9 95.1 91.1 90.0 82.1 77.9 96.4 77.2 86.6 88.0 87.7

SHOT [1] ✓ 81.4 73.4 77.2 81.9 80.0 79.7 54.0 63.3 91.8 45.7 78.7 78.9 73.2
G-SFDA [5] ✓ 89.2 76.2 88.0 93.4 87.7 83.0 71.4 62.4 92.8 74.6 82.9 79.7 81.8

NRC [4] ✓ 90.3 84.9 85.7 86.0 88.9 83.2 69.2 66.1 95.4 69.1 85.4 79.2 82.0
DaC [6] ✓ 93.3 73.5 85.2 93.6 90.7 86.0 80.0 68.5 96.5 76.6 81.8 84.7 84.2

Ours ✓ 93.7 80.6 87.7 93.9 88.2 97.9 77.8 81.3 96.9 82.3 87.2 87.3 87.8

3. Adaptation procedure
Algorithm 1 shows the overall adaptation process of our proposed SFDA method. Instead of introducing multiple loss

terms with some balance hyper-parameters by previous works, our method only has one loss term, which can effectively



Table 3. Accuracy (%) on DomainNet testing set. SF means source-free. We highlight the best results and underline the second-best ones.

Method SF Rw→Cl Rw→Pt Pt→Cl Cl→Sk Sk→Pt Rw→Sk Pt→Rw Avg.

SHOT [1] ✓ 64.1 59.0 64.9 59.0 59.6 58.8 73.3 62.7
G-SFDA [5] ✓ 57.4 58.5 57.4 51.9 54.0 54.8 73.0 58.1

NRC [4] ✓ 61.2 60.7 61.5 55.1 58.9 52.2 74.5 60.6
DaC [6] ✓ 68.0 68.5 65.9 60.0 63.5 60.3 79.6 66.6

Ours ✓ 71.4 68.3 71.2 63.2 65.1 62.2 74.1 67.9

erase the burden of the hyper-parameters optimization process.

Algorithm 1 Process of our proposed SFDA method.
Input: target unlabelled dataset Dt = {xt

i}
nt
i=1, source model hs = fs ◦ gs.

Parameters: maximum iteration I , sharpening temperature T , selection threshold τ , mapping functionsM and T .
1: Initialize prediction bank P and feature bank F
2: iter ← 0
3: while iter < I do
4: Fetch mini-batch samples xi from Dt

5: Apply strong image augmentation x′
i = A(xi)

6: Compute model prediction pi, p
′
i = h(xi, x

′
i)

7:
8: Derive soft pseudo-labels p̂k(xi) and sampling probabilities ξi ▷ Eq. (1,3)
9: Compute consistency regularization loss L̂cr ▷ Eq. (4)

10:
11: Compute class-wise weight wdiv with prediction bank P ▷ Eq. (5,6)
12: Update prediction bank P with current mini-batch predictions
13:
14: Update prototype and compute assignments of samples with feature bank F ▷ Eq. (7)
15: Compute prototype calibration weight wproto ▷ Eq. (8)
16: Update feature bank F with current mini-batch features
17:
18: Compute final loss L = wdiv · wproto · L̂cr and update model
19: end while
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