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1. Results on DomainNet testing set

We further evaluate the generalization ability of existing SFDA methods on the DomainNet dataset, as shown in Ta-
ble 1. The train-test split is the same as [3], and testing set results of previous methods are reproduced with their official
codes. Our consistency regularization based paradigm shows high accuracy both in training and testing data, avoiding a giant
performance degradation on testing data like what appeared in previous works.

Table 1. Accuracy (%) and its drop between target training and testing data on DomainNet dataset. Best results are highlighted.

Method | SF | Target Test Drop
SHOT [1] v 65.1 62.7 2.43.7%))
G-SFDA [5] | V 63.3 58.1 5.2(8.2%))
NRC[4] | v | 647 606 4.1(63%))
DaC [6] v 68.3 666 1.72.5%])
Ours v 69.2 679 1.3(1.9%.)

2. Full results on testing set

Table 2 and Table 3 shows accuracy results on VisDA-2017 and DomainNet testing set. Our consistency regularization
based SFDA method gains improvement on most classes, especially for those who suffer from severe performance degra-
dation with previous SFDA works. It proves that our method can avoid overfitting issues and develop a more generalizable
model under the SFDA setting, which are essential for real-world scenarios.

Table 2. Per-class and mean accuracy (%) on VisDA-2017 testing set. SF means source-free. We highlight the best results and underline
the second-best ones in SFDA methods. 1 means these results from VisDA2017 Classification Challenge [2] leaderboard, which are under
easier vanilla UDA setting and may use stronger backbone causing unfair comparisons.

Method ‘SF ‘ plane bcycl bus car horse knife mcycl person plant sktbrd train truck ‘ Avg.
BUPT'

x | 957 670 934 972 906 8.9 920 742 963 669 952 692 | 854

NSCSML! | x | 924 810 864 922 879 894 694 842 964 853 835 893 | 864
NLEf x | 943 865 869 951 91.1 90.0 82.1 719 964 772 86.6 88.0 | 87.7
SHOT [1] v | 814 734 772 819 80.0 797 54.0 63.3 91.8 457 787 789 | 732
G-SFDA[5] | v | 89.2 762 88.0 934 877 830 714 624 928 746 829 79.7 | 81.8
NRC [4] v | 903 849 857 860 889 832 692 66.1 954 69.1 854 792 | 82.0
DaC [6] v 1 933 735 852 936 907 860 80.0 68.5 9.5 766 81.8 847 | 84.2
Ours v | 937 80.6 877 939 882 979 778 81.3 969 823 872 873 | 878

3. Adaptation procedure

Algorithm 1 shows the overall adaptation process of our proposed SFDA method. Instead of introducing multiple loss
terms with some balance hyper-parameters by previous works, our method only has one loss term, which can effectively



Table 3. Accuracy (%) on DomainNet testing set. SF means source-free. We highlight the best results and underline the second-best ones.

Method | SF | Rw—Cl Rw—Pt Pt—Cl Cl—Sk Sk—Pt Rw—Sk Pt—Rw | Avg.
SHOT[1] | v | 641 59.0 649 590  59.6 58.8 73.3 | 627
G-SFDA[5] | v | 574 58.5 574 519 540 54.8 73.0 | 58.1
NRC[4] | v | 612 60.7 615 551 58.9 522 745 | 60.6
DaC[6] | v | 680 68.5 659  60.0  63.5 60.3 79.6 | 66.6
Ours v | 714 68.3 712 632 651 62.2 74.1 | 679

erase the burden of the hyper-parameters optimization process.

Algorithm 1 Process of our proposed SFDA method.

Input: target unlabelled dataset D; = {z!}7*,, source model hs = f; o gs.

Parameters: maximum iteration I, sharpening temperature 7', selection threshold 7, mapping functions M and 7.

1: Initialize prediction bank P and feature bank F'
2: iter < 0
3: while iter < I do

4: Fetch mini-batch samples z; from D,
5: Apply strong image augmentation z; = A(z;)
6: Compute model prediction p;, p; = h(z;, x})
7:
8: Derive soft pseudo-labels px(;) and sampling probabilities &;
9: Compute consistency regularization loss L.,
10:
11: Compute class-wise weight wg;, with prediction bank P
12: Update prediction bank P with current mini-batch predictions
13:
14: Update prototype and compute assignments of samples with feature bank F'
15: Compute prototype calibration weight wy,.ot0
16: Update feature bank F' with current mini-batch features
17:
18: Compute final loss £ = Wasv - Wproto * ﬁcr and update model

19: end while

> Eq. (1,3)
> Eq. (4)

> Eq. (5,6)

> Eq. (7)
> Eq. (8)
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