
Supplementary Material
In this supplementary material we give a detailed

overview of the training and evaluation settings along with
hyperparameters. We also provide a detailed description
of the employed augmentation methods. Further, we show
additional ablation studies and investigations. We also de-
pict the SegFormer architecture in a block diagram. Fi-
nally, we discuss limitations and ethical implications for our
method.

A. Detailed Description of Augmentation Methods

In the following section, we present a detailed descrip-
tion of the employed augmentation methods.

Random crop: Parameter ϱ defines the maximum pro-
portion a single class can occupy in the random crop.

PhotoAug: Photometric augmentation (PhotoAug) com-
prises the following steps: Each transformation is applied to
the image with a probability of 0.5. The position of the ran-
dom contrast adjustment is in second (mode ➊) or second
to last position (mode ➋). The position is randomly selected
for each image.

1. random brightness
2. if ➊: random contrast
3. convert color from RGB to HSV
4. random saturation
5. random hue
6. convert color from HSV to RGB
7. if ➋: random contrast
8. randomly swap channels

Bilateral filter: A bilateral filter smoothes an image
while preserving sharp edges. Its focus is on the removal
of noise and textures. In general, it is a Gaussian filter that
smoothes less in non-uniform regions (edge regions) and
more in uniform image regions (non-edge regions). The bi-
lateral filter at pixel index i can be described as:

G(i) =
1

w

∑
j∈J

N(∆ij ;σ
2
s)N(||xi − xj ||2;σ2

c)xj , (3)

with
N(d;σ2) = e−

1
2 (

d
σ)2 , (4)

and normalizing factor

w =
∑
j∈J

N(∆ij ;σ
2
s)N(||xi − xj ||2;σ2

c). (5)

The neighboring pixel index is denoted as j and stems
from the neighborhood J . The neighborhood is defined
by the kernel size which we sample from a uniform dis-
tribution between 1 (px) and 15 (px). Distances ∆ij =√

|hi − hj |2 + |wi − wj |2 and ||xi −xj ||2 denote the (Eu-
clidean) pixel distance and color difference, respectively,

Listing 1. Pseudo-code of the PixMix [13] data augmenation.

def PixMix (x, z,K, β) : # mixing image z ∈ Z
x̃0 = random . c h o i c e ({ augment (x) ,x})
random number o f mixing rou nd s
f o r k = 1 : random . c h o i c e ({ 0 , 1 , . . . , K }) :

xmix = random . c h o i c e ({ augment (x) ,z})
mix_op = random . c h o i c e ({ add , m u l t i p l y })
x̃k = mix_op (x̃k−1,xmix, β)

re turn x̃k

where hi and wi are the height and width position of pixel
i and xi ∈ G3 denotes the vector of RGB values for pixel i
(likewise for pixel j). We set the spatial distance to σs=75
and the color distance to σc = 75. The probability for ap-
plying this filter is set to p=0.5.

PixMix: The PixMix [13] augmentation method com-
prises multiple processing steps as shown in Listing 1.
Here, x denotes the input image and z ∈ Z denotes the
mixing image from the PixMix set of fractal images Z [13].
We set the maximum number of mixing rounds to K = 3.
Note that the for loop is not executed for random choice = 0.
The mix_op(·) function is randomly chosen to be either ad-
dition (add) or multiplication (multiply). It gets the images
x̃k−1 and x̃mix as inputs, as well as β=3, which is used to
generate independent weighting factors for the images. The
weighting factors are sampled from a Beta distribution. For
the augment(·) function in the PixMix pseudocode we used
only baseline augmentation methods PhotoAug and Ran-
dom Flip (cf. Figure 3), that is why we denote the method
as PixMix*.

B. Training/Evaluation Settings, Hyperparameters

In the following section, we will provide a detailed
overview of the training and evaluation settings and hy-
perparameters. For the training and evaluation we employ
PyTorch v.3.8.13 and the MMSegmentation toolbox
v.0.11.0. Additionally, we refer to our repository, where
all code for the conducted experiments is made available3.

Training phase: In Table 9 we list all settings and hy-
perparameters that were used for the training process. The
polynomial learning rate schedule is defined as follows:

η(τ) = η0(1−
τ

τmax
)0.9, (6)

with η(τ) being the learning rate at optimizer step (itera-
tion) τ and η0 being the initial learning rate. The maximum
number of iterations is given by τmax.
During training, the images from the source domain DS get
resized to a resolution of 720×1280.

Evaluation phase: For evaluation, we always employ
the final model weights after the full training and do not per-
form any checkpoint selection. We resize the input images

3Code is available at https://github.com/ifnspaml/ReVT

Table 9. Settings and hyperparameters for the SegFormer and DeepLabv3+ training.

Setting / Hyperparameter SegFormer DeepLabv3+

Optimizer AdamW [24] SGD
of training iterations (τmax) 40,000 60,000
Momentum values (AdamW) (β1, β2) 0.9, 0.999 -
Momentum (β) - 0.9
Warm-up iterations 1500 -
Warm-up ratio 1·10−6 -
Initial LR (η0) 6·10−5 1·10−3

Weight decay ω 0.01 0.0005
Learning rate (LR) schedule (η(τ)) Polynomial (6) Polynomial (6)
Batch size 2 2
Random decoder init Kaiming initialization Kaiming initialization
Resized input resolution DGTA5

train 720×1280 720×1280

Table 8. Image and label resolution [px×px] for the employed
evaluation datasets. ◦In both GTA and KITTI, there are images
that differ by a few pixels from their normal resolution. *The
crowd-sourced Mapillary Vistas dataset does not have a fixed res-
olution, but a highly variable one.

Dataset name Resolution (H×W) of ...
resized images labels

GTA5 [32] 512× 932◦ 1052×1914◦

SYNTHIA [33] (SYN) 512× 862 760×1280

Cityscapes [7] (CS) 512×1024 1024×2048

Mapillary Vistas [26] (MV) various∗ various∗

BDD100k [43] (BDD) 512× 910 720×1280

ACDC [34] 512× 910 1080×1920

KITTI [1] (KIT) 309×1024◦ 375×1242◦

during evaluation in a way that the image will be rescaled
as large as possible within a pre-defined scale (512×1024),
while still keeping their aspect ratios. The network output
is then resized to the original image resolution. The mIoU
is calculated on the original resolution, also referred to as
label resolution. The resized image and the original label
resolutions for all employed datasets are listed in Table 8.

The frame rate computations were performed on the
rescaled Cityscapes dataset. We used 200 images for in-
ference and computed the mean frame rate after a warmup
phase of five images to account for any delays due to image
reading operations.

C. Additional Details on the Choice of Optimizer

In our experiments in Table 4 we show that the choice
of optimizer has a strong effect on the baseline perfor-

mance of the models, as well as on the performance af-
ter re-parameterization. In Figure 5, we compare the
SegFormer architecture with its standard optimizer setup
(left) and the DeepLabv3+ architecture with its standard
optimizer setup (right). We show the mean cosine simi-
larity between three baseline (1⃝) models for the encoder
only (θE, upper plots) and the full model (θ, center plots),
during the training process. Note that the standard number
of iterations differs for both models and is 40,000 for the
SegFormer and 60,000 for the DeepLabv3+.

It can be seen that the mean cosine similarity for the
network parts that are re-parameterized in our method (en-
coder only) have a similar mean cosine similarity after the
training for both networks (0.995). In the bottom plots of
the figure, we report the mIoU values for both in-domain
(GTA5, green) and out-of-domain (OOD) data (Cityscapes,
red) for the baseline (dashed lines) and re-parameterized
(solid lines) models. It can be seen that the performance of
the re-parameterized models is higher for the SegFormer
for any training iteration. For the DeepLabv3+, however,
the baseline performance is always higher for in-domain
data (green) and fluctuates for OOD data (red), but ulti-
mately the baseline performance is also higher for OOD
data in the last iterations.

Since the mean cosine similarity did not provide any in-
sights into the causes for the poor performance of the re-
parameterized DeepLabv3+, we further investigated the
mean cosine similarity for individual layers ℓ of the net-
works as shown in Figure 6. We show the layer-wise
mean cosine similarity for the encoder network (θE

ℓ), where
ℓ indicates the layer index. For the purpose of clarity,
we only mark the first layer of each of the major net-
work blocks. For the SegFormer, we indicate the trans-
former blocks by Bb with b being the block index (cf. Fig-

0.8

0.9

1

M
ea
n
C
o
si
n
e

S
im

il
a
ri
ty

(θ
)

SegFormer DeepLabv3+

0.8

0.9

1

0 k 8 k 16 k 24 k 32 k 40 k
20

40

60

Number of Iterations

m
Io
U

(%
)
o
n
D

d
e
v

0 k 8 k 16 k 24 k 32 k 40 k 48 k 56 k
20

40

60

Number of Iterations

GTA5 Cityscapes { 1○, 1○, 1○} Re-parameterization Baseline

0.985

0.990

0.995

1

M
ea
n
C
o
si
n
e

S
im

il
a
ri
ty

(θ
E
)

0.985

0.990

0.995

1

Figure 5. Comparison of mean cosine similarity vs. mIoU performance for SegFormer and DeepLabv3+ during training. The first
row shows the mean cosine similarity for the encoder only (θE), the second row for the full network (θE). The mean cosine similarity is
computed between three models. In the bottom row, the mIoU is given for the dev sets of GTA5 (green) and Cityscapes (red).

0.99991

0.99994

0.99997

1

M
ea
n
C
o
si
n
e

S
im

il
a
ri
ty

(θ
E ℓ
)

Optimizer Setup:

SGD (DeepLabv3+-like) AdamW (SegFormer-like)

SegFormer DeepLabv3+

0.97

0.98

0.99

1

B
1

B
2

B
3

B
4

0.996

0.998

1

Layer ℓ

M
ea
n
C
o
si
n
e

S
im

il
a
ri
ty

(θ
E ℓ
)

C
1

C
2

C
3

C
4

0.97

0.98

0.99

1

Layer ℓ

Figure 6. Comparison of the layer-wise mean cosine similarity
for the encoder only (θE

ℓ). Shown are results for the SegFormer
(left) and DeepLabv3+ (right) architectures, which were trained
with the standard DeepLabv3+ or SegFormer optimizer setup,
shown in gray and yellow, respectively. The mean cosine sim-
ilarity is computed between three models. For the purpose of
clarity, we only indicate the individual network blocks (Bb for
SegFormer, Cc for DeepLabv3+) on the x axis.

ure 8). For the DeepLabv3+, we indicate the convolu-
tional blocks, as defined by He et al. [48], by Cc with c

being the block index. It can be seen that the choice of
optimizer has a significant effect on the layer-wise cosine
similarity. For the standard DeepLabv3+ optimizer setup
with SGD, the cosine similarity for both network architec-
tures is higher in deeper layers and lower in earlier layers.
In contrast, when the standard SegFormer optimizer setup
with AdamW is employed, the cosine similarity is highest
for earlier layers and drops for deeper layers. This specific
property might be important for a well-performing encoder
re-parameterization. As already shown in Table 4, this op-
timizer setup (AdamW [24]) also allows the DeepLabv3+
to improve over its baseline performance. Accordingly, we
used the AdamW optimizer for our ReVT method in the
main paper.

D. Additional Ablation Studies

In this section, we will investigate the weighting of the
base models and compare the ReVT re-parameterization
w.r.t. re-parameterized network parts, layers, and the num-
ber of base models. Afterwards, we evaluate different base
model augmentations and optimizer methods during train-
ing to design our final ReVT.

Weighting of networks: In Figure 7 we depict multi-
ple possible weighting combinations for three models with
the best combination (marked with a blue circle) achieving
an mIoU of 47.68%, while the uniform re-parameterization

0

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

0 1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1
0

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

αβ

γ

47.68%
47.49%

43

44

45

46

47

mIoU (%)

Figure 7. Ternay plot showing the performance (mIoU (%)) of
three baseline models { 1⃝, 1⃝, 1⃝} and multiple weight combina-
tions (α, β, γ). The mIoU is calculated by a re-parameterization,
where the parameters of the three models are weighted by the val-
ues of α, β, and γ, respectively. The training of the base mod-
els (SegFormer) was performed on the synthetic GTA5 train-
ing set (DS = DGTA5

train). The evaluation is performed on the
Cityscapes development set (DT = DCS

dev). The center of the
plot (α = β = γ = 1

3
) corresponds to a uniform encoder re-

parameterization.

(all models weighted with 1
3 , marked with a yellow circle)

achieves an mIoU of 47.49%. It can be seen that the weight-
ing of the individual models is actually quite insensitive,
which is why we decide to use the simple variant of the uni-
form encoder re-parameterization (i.e., weights 1

3).

ReVT vs. ensembles: In Table 10 we compare the ReVT
and a network ensemble for different combinations of train-
ing settings. It can be seen that the ReVT method outper-
forms the network ensemble not only for the combination of
three baseline models { 1⃝, 1⃝, 1⃝}, as already shown in Fig-
ure 4, but also for all other tested base model combinations
{a1, a2, a3} on the real test∗ sets. However, the network
ensemble is slightly better in the synthetic source domain
(DGTA5

dev), which has little relevance for real-world appli-
cations. The same applies to the base model combination
{ 5⃝, 5⃝, 5⃝}, where the ensemble performs slightly better on
the SYNTHIA dataset (DSYN

dev). The overall best perfor-
mance for each dataset is highlighted in light green. It can
be seen that the ReVT method achieves top performance
for each dataset and is even on par with the ensemble on the
source dataset (DGTA5

dev). In general, once again, the ReVT
{ 1⃝, 4⃝, 6⃝} seems to be a strong ReVT, generalizing well to
unseen datasets.

Table 10. Performance (mIoU (%)) of a network ensemble vs.
the ReVT for different base model combinations. The training
of the base models (SegFormer) was performed on the GTA5
(DS=DGTA5

train) dataset. The evaluation is performed on the GTA5
and SYNTHIA development sets and on the test∗ data of various
real-world target datasets (DT = Dtest∗). Reported is the mean
value over the respective number of employed base models. Best
result for each each base model combination in bold face, overall
best performance per dataset is highlighted in light green.

Base
Models Method mIoU (%) on

DGTA5
dev DSYN

dev DCS
test∗ DBDD

test∗ DMV
test∗

{ 1⃝, 1⃝, 1⃝} Ensemble 68.8 34.6 46.9 44.8 48.0

ReVT 68.6 35.5 49.3 45.3 49.3

{ 2⃝, 2⃝, 2⃝} Ensemble 69.2 33.1 43.8 43.9 46.6

ReVT 69.1 34.1 44.9 44.1 47.6

{ 3⃝, 3⃝, 3⃝} Ensemble 69.7 33.8 43.8 42.6 47.3

ReVT 69.7 35.0 45.7 43.5 48.8

{ 4⃝, 4⃝, 4⃝} Ensemble 65.9 36.8 47.5 47.4 52.6

ReVT 65.7 36.2 48.8 47.5 53.2

{ 5⃝, 5⃝, 5⃝} Ensemble 68.6 35.1 47.5 45.4 50.4

ReVT 68.5 35.9 48.6 45.9 51.2

{ 6⃝, 6⃝, 6⃝} Ensemble 65.0 37.0 48.0 47.9 52.8

ReVT 64.9 36.1 49.7 48.5 53.5

{ 4⃝, 5⃝, 6⃝} Ensemble 67.2 35.1 48.1 47.3 51.6

ReVT 66.4 36.9 49.5 48.1 53.1

{ 1⃝, 4⃝, 6⃝} Ensemble 68.5 34.2 47.0 45.9 50.1

ReVT 66.4 37.3 50.0 48.0 52.8

E. ReVT with SYNTHIA as Source

In this section, we provide additional results for our
method, when trained with the SYNTHIA dataset as source
domain: DS = DSYN

train. In Table 11 we evaluate the vari-
ous augmentation methods a⃝ that were already evaluated
for models trained on GTA5 (DS = DSYN

train) in Section 5.
In the lower part of the table we report some (M = 3)
combinations {a1, a2, a3} of these base models by our re-
parameterization. The gray columns indicate our develop-
ment sets (Ddev), where the light grey column is DSYN

dev .
The OOD mean mIoU of DGTA5

dev and DCS
dev is shown in the

dark grey columns. It can be seen in the upper part of Ta-
ble 11 that the augmentation methods do not improve the
performance as much as for models trained on GTA5. The
best OOD mean performance is achieved with the baseline
model 1⃝. On the test∗ mean the PixMix* augmentation
works best, followed by the combination of PixMix* and
the bilateral filter, and baseline model.

Although the individual augmentations do not perform
as well for these models, the ReVT { 1⃝, 4⃝, 6⃝}, which we

Table 11. Performance (mIoU (%)) of the SegFormer model (with an MiT-B5 encoder) using different domain generalization methods.
Training was performed on the synthetic SYNTHIA (DS = DSYN

train) dataset. Evaluation is performed on the Cityscapes, GTA5, and
SYNTHIA development sets (gray columns) and on the test∗ data of various real-world target datasets (DT =Dtest∗). Reported is the
mean mIoU ± the standard deviation of M =3 models with various image augmentations. For the ReVT, the mean ± standard deviation
is computed with one averaged encoder and the three associated decoders m ∈ {1, 2, 3}. For models trained on SYNTHIA, we evaluate
over 16 classes, as is common practice [19]. Best results in bold face, second-best underlined.

Method
performed: mIoU (%) on

DSYN
dev DGTA5

dev DCS
dev

OOD
mean DCS

test∗ DBDD
test∗ DMV

test∗
test∗
mean

...
du

ri
ng

tr
ai

ni
ng

Baseline 1⃝ 76.5±0.1 42.8±0.4 44.3±1.3 43.5±1.2 45.1±1.6 35.2±1.4 42.5±0.9 40.9±4.4

−PhotoAug 2⃝ 77.3±0.1 39.8±0.6 41.4±0.5 40.6±0.9 41.6±0.8 33.7±1.0 40.8±0.6 38.7±3.6

−PhotoAug, −Rand. Flip 3⃝ 78.3±0.0 40.7±0.7 41.3±0.3 41.0±0.6 41.8±0.2 34.3±1.1 41.3±0.3 39.1±3.5

+PixMix* [13] 4⃝ 73.8±0.1 43.1±1.0 42.6±1.7 42.8±1.4 42.6±2.2 38.4±0.8 42.5±0.6 41.2±2.4

+Bilateral Filter (BF) [39] 5⃝ 76.0±0.1 42.9±0.9 43.2±0.7 43.1±0.8 43.1±0.9 36.0±0.7 41.7±0.4 40.3±3.1

+PixMix* [13] +BF [39] 6⃝ 72.3±0.1 41.2±0.6 43.3±0.4 42.2±1.2 43.0±0.5 38.0±0.6 41.6±0.3 40.9±2.2

...
af

te
rt

ra
in

in
g

ReVT { 1⃝, 1⃝, 1⃝} 76.2±0.1 42.3±0.1 44.9±0.4 43.6±1.3 45.8±0.4 35.8±0.2 43.6±0.2 41.7±4.3

ReVT { 2⃝, 2⃝, 2⃝} 76.9±0.0 40.4±0.2 42.2±0.2 41.3±1.0 42.6±0.1 34.7±0.3 42.0±0.3 39.8±3.6

ReVT { 3⃝, 3⃝, 3⃝} 78.0±0.1 41.3±0.6 41.9±0.3 41.6±0.6 42.5±0.4 35.2±0.3 42.7±0.3 40.1±3.5

ReVT { 4⃝, 4⃝, 4⃝} 73.7±0.1 43.4±0.1 44.1±0.3 43.7±0.4 44.3±0.3 39.5±0.3 44.0±0.3 42.6±2.2

ReVT { 5⃝, 5⃝, 5⃝} 75.7±0.0 44.1±0.7 44.4±0.3 44.2±0.6 44.5±0.3 37.1±0.3 43.0±0.2 41.5±3.2

ReVT { 6⃝, 6⃝, 6⃝} 72.2±0.1 42.4±0.2 44.4±0.2 43.4±1.0 44.3±0.2 38.9±0.2 42.9±0.0 42.0±2.3

ReVT { 4⃝, 5⃝, 6⃝} 74.0±0.6 43.2±0.4 45.0±0.4 44.1±0.9 45.1±0.4 39.6±0.4 44.0±0.2 42.9±2.4

ReVT { 1⃝, 4⃝, 6⃝} 74.1±0.6 42.7±0.3 45.7±0.5 44.2±1.5 46.3±0.3 40.3±0.5 44.8±0.1 43.8±2.6

already identified as our best ReVT in Section 5, provides
both top OOD mean (44.2%) and test∗ mean (43.8%) per-
formance. Again, second-best results are achieved with the
ReVT { 4⃝, 5⃝, 6⃝}. Additionally, the ReVT { 5⃝, 5⃝, 5⃝} is
on par with the ReVT { 1⃝, 4⃝, 6⃝} for the OOD mean per-
formance when trained on SYNTHIA.

In the following, we compare also against prior art that
have also been evaluated with SYNTHIA as source do-
main. Again, we choose the ReVT { 1⃝, 4⃝, 6⃝} and ReVT
{ 4⃝, 5⃝, 6⃝} for the comparison with prior art. The results
are shown in Table 12. In contrast to the models trained
on GTA5, for models trained on SYNTHIA, the ReVT
{ 1⃝, 4⃝, 6⃝} does not always reach the top BM mean per-
formance. Similar to the GTA5-trained models, the perfor-
mance of both ReVT variants remains slightly behind that
of the baseline for synthetic source domain data (DSYN

dev),
which, however, has little relevance for practical real-world
applications.

For the small (group 1) and midsized (group 2) mod-
els, the ReVT { 4⃝, 5⃝, 6⃝} yields a slightly better perfor-
mance of 45.79% vs. 45.44% (baseline: 44.09%) and
48.99% vs. 48.84% (baseline: 46.72%), respectively. For
the large models (group 3), the ReVT { 1⃝, 4⃝, 6⃝} yields
the best performance with a BM mIoU of 49.64% (base-

line: 48.42%). In summary, on the benchmark (BM) data,
our proposed SYNTHIA-trained ReVT models achieve an
mIoU improvement of +1.2% absolute (large models) to
+1.7% absolute (small models).

It should be noted that no prior work reported on all
datasets necessary for the benchmark (BM) mean when
trained with SYNTHIA as source domain. All of our
ReVTs improve on the prior art for the reported domains.
Only for the smallest models in group 1 the SAN+SAW
method [30] achieves a higher mIoU on the BDD dataset
(best prior art: 35.42% vs. ours: 35.18%). For the mid-
sized models we already improve on this domain (best prior
art: 37.40% vs. ours: 38.73%), and interestingly signif-
icantly excel the SAN+SAW method (ours: 38.73% vs.
SAN+SAW: 35.98%).

F. SegFormer Block Diagrams

In Section 5 we investigated the effect of the re-
parameterization on different network parts (cf. Table 3) and
block or layer types (cf. Table 5). To give the reader a better
idea of how the network is structured and where the indi-
vidual block and layer types are located in the network, an
hierarchically illustrated overview of the SegFormer ar-
chitecture with an MiTB5 encoder is given in Figures 8, 9,

Table 12. Performance (mIoU (%)) of various domain generalization methods employing different segmentation networks, sorted into
three performance groups. Training was performed on the synthetic SYNTHIA (DS=DSYN

train) dataset. The results marked with ◦ are cited
from [20] and with ∗ are cited from the respective paper. All results without any identifier are simulated. Evaluation is performed on the
SYNTHIA and GTA5 development sets and on the test∗ data of various real-world target datasets (DT=Dtest∗). BM means benchmark.
For our simulations we report mean values over three runs with different seeding. For models trained on SYNTHIA, we evaluate over 16
classes, as is common practice [19]. Best performance per group in bold face, second best underlined.

E
nc

. Method |θ|
(·106)

Single
Source

Frame
Rate
[fps]

mIoU (%) on
DCS

test∗ DBDD
test∗ DMV

test∗ DSYN
dev DGTA5

dev DACDC
test∗ DKIT

test∗
BM

mean

G
ro

up
1

R
e
s
N
e
t
-
5
0

Baseline• 49.6 ✓ 7.9 28.36 25.16 27.24 - - - - -
DRPC• [44] 49.6 ✗ 8.3 35.65 31.53 32.74 - - - - -
SAN+SAW* [30] 25.6 ✓ 8.1 38.92 35.42 34.52 - 29.16 - - -

M
i
T
-
B
2 Baseline 27.4 ✓ 12.0 39.71 29.76 38.37 74.78 37.83 26.16 35.18 44.09

Ours: ReVT { 4⃝, 5⃝, 6⃝} 27.4 ✓ 12.0 41.09 35.18 40.21 71.59 40.88 30.39 34.64 45.79

Ours: ReVT { 1⃝, 4⃝, 6⃝} 27.4 ✓ 12.0 40.91 34.53 40.44 71.45 39.87 30.13 35.29 45.44

G
ro

up
2

R
e
s
N
e
t
-
1
0
1 Baseline• 68.6 ✓ 7.9 29.67 25.64 28.73 - - - - -

DRPC• [44] 68.6 ✗ 5.3 37.58 34.34 34.12 - - - - -
FSDR* [14] 68.6 ✗ 5.3 40.80 37.40 39.60 - - - - -
SAN+SAW* [30] 44.6 ✓ 5.3 40.87 35.98 37.26 - 30.79 - - -

M
i
T
-
B
3 Baseline 47.2 ✓ 10.7 42.43 33.33 40.47 75.82 41.53 29.73 35.91 46.72

Ours: ReVT { 4⃝, 5⃝, 6⃝} 47.2 ✓ 10.7 45.26 38.73 42.86 73.12 44.99 35.27 36.42 48.99

Ours: ReVT { 1⃝, 4⃝, 6⃝} 47.2 ✓ 10.7 44.97 38.65 43.00 73.16 44.42 35.16 36.31 48.84

G
ro

up
3

M
i
T
-
B
5 Baseline 84.7 ✓ 9.7 45.07 35.19 42.51 76.49 42.82 30.81 37.02 48.42

Ours: ReVT { 4⃝, 5⃝, 6⃝} 84.7 ✓ 9.7 45.08 39.62 43.99 73.96 43.25 35.12 37.20 49.18

Ours: ReVT { 1⃝, 4⃝, 6⃝} 84.7 ✓ 9.7 46.28 40.30 44.76 74.11 42.74 35.75 37.86 49.64

10, 11, and 12.

G. Discussion of Limitations

Although modern methods for domain generalization
provide good performance on completely unseen real data
(after training on synthetic data), the performance still re-
mains behind that of modern methods for unsupervised do-
main adaptation (UDA) [47,49]. Such a comparison, how-
ever, is not entirely fair, since UDA methods employ un-
labeled data from a target domain (typically Cityscapes)
during the training process, which we intentionally avoid
in domain generalization. Nevertheless, it should be noted
that better performance on a specific target domain can be
achieved, if samples from this domain are available during
training.

Our proposed method cannot be applied advantageously
to any already trained model, since the optimizer choice has
a significant impact on the performance. To be fair, how-
ever, this is the case with all prior art methods as well. Most
of them additionally extend the training process consider-
ably, far beyond the choice of the optimizer [5, 14, 20, 30,
44].

H. Discussion of Ethical Implications

Although well generalizing semantic segmentation has
many civilian applications that provide great value to so-
ciety, e.g., automated driving, robotics, and medical appli-
cations, this technology can also be used for military and
surveillance applications. Research on better generalizing
methods may also indirectly contribute to the improvement
of these applications.

Another aspect to consider are biases in the employed
datasets. Three of the five real datasets (Cityscapes, ACDC,
KITTI) were captured in Central Europe, one in the USA
(BDD100k), and only one contains data from all over the
world (Mapillary Vistas). This may lead to biases regarding
different ethnicities in the data, which were not investigated
further in this paper. For the reported results on improved
generalization from synthetic to real data, the biases may be
negligible, but should be considered for possible real-world
applications.

Overlap Patch Embeddings

Transformer Block B1

Layer Normalization

Overlap Patch Embeddings

Transformer Block B2

Layer Normalization

Overlap Patch Embeddings

Transformer Block B3

Layer Normalization

Overlap Patch Embeddings

Transformer Block B4

Layer Normalization

x

f4f3f2f1

MiT-B5

Figure 8. Overview of the MiT-B5 encoder that is employed by
the largest SegFormer model. This is the standard encoder em-
ployed in the segmenation model (cf. Figure 2).

Additional References

[47] Nikita Araslanov and Stefan Roth. Self-Supervised Aug-
mentation Consistency for Adapting Semantic Segmenta-
tion. In Proc. of CVPR, pages 15384–15394, virtual, June
2021.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proc. of
CVPR, pages 770–778, Las Vegas, NV, USA, June 2016

[49] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. DAFormer:
Improving Network Architectures and Training Strategies
for Domain-Adaptive Semantic Segmentation. In Proc. of
CVPR, pages 9924–9935, New Orleans, LA, USA, June
2022

2DConv

Flatten

Transpose

Layer Normalization

Overlap Patch

Embeddings

Figure 9. Overview of the overlap patch embeddings block that is
employed in the MiT encoder (cf. Figure 8 for MiT-B5).

Layer Normalization

Efficient Self-Attention

Drop Path

Layer Normalization

Mix-FFN

Drop Path

Transformer Block

Figure 10. Overview of the transformer block that is employed in
the MiT encoder (cf. Figure 8 for MiT-B5).

Fully Connected

Transpose

Reshape

Depth-Wise Conv

Transpose

Reshape

GeLU

Dropout

Fully Connected

Dropout

Mix-FFN

Figure 11. Overview of the Mix-FFN block that is employed in
the transformer block (cf. Figure 10).

Fully Connected

Reshape and Permute

Reshape and Permute

2DConv

Reshape and Permute

Layer Norm

Fully Connected

Reshape and Permute

Permute

Split

Matrix Multiplication

Softmax

Dropout

Matrix Multiplication

Permute and Reshape

Fully Connected

Dropout

Q

K

V

ξ

Efficient Self-Attention

Figure 12. Overview of the efficient self-attention block that is
employed in the transformer block (cf. Figure 10). The fixed scal-
ing factor ξ is a hyperparameter and block-dependent.

