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Abstract

CLIP is a significant vision-and-language training
framework that has shown surprisingly general understand-
ing of the world, with good performance in many open-
ended tasks with little or no additional training. A re-
cent technique has used CLIP to perform 0-shot Monocular
Depth Estimation (MDE) by using depth-related prompts,
but the use of human language in these prompts presents
an unnecessary human bias. In this work, we use continu-
ous learnable tokens in place of discrete human-language
words to shed light on the problem. We achieve a signif-
icant boost in performance, and find that the learned to-
kens do not map neatly to depth-related human language,
implying that CLIP’s concept of depth is not succinctly ex-
pressible in human language. We posit that this may ex-
tend to other CLIP concepts, and believe that this finding
will spark further research into both the use and interpreta-
tion of non-linguistic tokens in all open-ended scene inter-
pretation tasks. Code is available at https://github.
com/DylanAuty/PromptLearningCLIP-MDE

1. Introduction

Monocular Depth Estimation (MDE) from a single im-

age only is a poorly-posed problem: a given 2D image may

have been taken from any number of 3D scenes. This in-

herent ambiguity makes the problem extremely challeng-

ing, requiring the use of scene context and a degree of

prior knowledge to ascertain the most likely solution. De-

spite this, however, deep-learning methods are able to per-

form well on this task, although they are typically large and

highly specialised.

Recently, the Contrastive Language-Image Pretraining

(CLIP) [19] method has been proposed as a way to train a

model jointly with both images their natural-language cap-

tions. This results in a model with significant and surprising

general knowledge about the world, which has been used

as the basis of several low- and zero-shot models for im-

age classification, captioning, and visual question answer-

ing (VQA) (see section 2.2). The use of a very large dataset

of captioned images enables the model to learn to associate

concepts with human language, and it is this general associ-

ation that makes CLIP useful for open-ended interpretation

of the world. While this general knowledge is typically ap-

plied to tasks with open-ended linguistic output (e.g. clas-

sification, VQA, captioning etc.), it can be applied to tasks

with scalar output spaces as well, such as depth estimation.

DepthCLIP [27] is a recent method that applies the gen-

eral knowledge of pretrained CLIP models to MDE, phras-

ing it as a problem of zero-shot ordinal classification of

image patches into depth-bins. Human-language prompts

are created that each correspond to one of several bins of

depth values, in the form ‘This object is [near/far/close/dis-

tant/etc.]’. A pretrained CLIP model is used to embed the

input image and each of the prompts, and the degree of cor-

relation between the image features and each of the prompt

features is used to determine the weight of that prompt’s

assigned depth bin. A weighted sum of the bin-centres pro-

duces the final continuous scalar depth output.

While DepthCLIP achieves impressive zero-shot perfor-

mance, it suffers from several weaknesses. Human bias

is introduced by the manual choice of words used for the

prompts at each part of the ordinal depth scale, and the fact

that the depth bin prompts are words at all. CLIP’s training

set is 400M captioned images, meaning that its understand-

ing of abstract concepts that are not commonly discussed in

captions - like depth - is likely to be implicit rather than

explicitly expressible in words. Therefore, we posit that it

is presumptuous to assume that human-chosen and human-

language words would be the best way to convey an abstract

concept like scalar depth to CLIP, and that human-designed

captions are unlikely to be the most efficient solution.

A further human-language-related bias that DepthCLIP

suffers from is the limitation on the number of depth bins

that may be used. When using a conceptual description of

depth as an ordinal scale (such as ‘very near’ or ‘far’ as

opposed to directly stating numbers), any increase in scale

granularity requires increasingly verbose and tortuous de-
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scriptive phrases. This naturally limits the number of dif-

ferent depth bins that can be used, in part due to a limitation

of natural human language: the tokens (words) are inher-

ently discrete.

In this work, we introduce prompt learning for
Monocular Depth Estimation using CLIP, and analyse
the learned embeddings to obtain insight about how
CLIP conceives of depth. We build on the work of Depth-

CLIP by using learnable prompt tokens that are not af-

fected by the human bias of being either chosen by a hu-

man or being made up of human language, delivering sig-

nificant performance improvements over the baseline. With

the training of only a few thousand token parameters com-

bined with a pretrained and frozen CLIP, we produce a sig-

nificant performance improvement across all metrics when

compared to either random controls or to various human-

language depth bin prompts. As the learned prompts are not

input-dependent, our results may indicate that the learned

tokens represent the generic concept of a particular depth

range better than the human-language prompts used. We

analyse the learned tokens to better understand why human

language is insufficient for the task and how CLIP-like mod-

els understand the concept of depth. It is our hope that this

analysis will extend to other abstract concepts and so can

be leveraged for any system that uses a CLIP-style model

as a way of interpreting textual or visual input, either by us-

ing better non-linguistic prompting or by encouraging ad-

ditional research into the decoding of non-linguistic CLIP

features into human-understandable output.

We perform ablations across the number of prompts used

to describe the range of depths, the distribution of depth

values assigned to each prompt, and the number of learn-

able tokens in each prompt. We evaluate our work on the

KITTI[9] and NYUv2[23] datasets, for the outdoor and the

indoor domains respectively.

Our main contributions are:

1. We introduce learnable prompt tokens to prompt
CLIP for Monocular Depth Estimation (MDE). Our

system builds on and improves the work of DepthCLIP

[27] by removing human biases caused by the use of

human language.

2. We perform extensive experiments to find optimal
prompting strategies and templates. We experiment

with different numbers of depth-bin prompts, the use

of learnable context tokens, and different depth-bin

distributions.

3. We analyse and interpret the learned prompts, pro-

viding insight into the nature of the CLIP latent space

and the suitability of language for prompting large lan-

guage models in general. Our work gives compelling

evidence that human language is inefficient in pre-
cisely explaining the concept of depth to CLIP, with

consequences for future works that seek to better ex-

ploit its understanding of an open set of concepts.

2. Related Work

2.1. Monocular Depth Estimation (MDE)

Monocular depth estimation (MDE) has been success-

fully tackled by deep-learning systems. Most approaches

treat the problem as an image-to-image translation prob-

lem, using an encoder network to obtain high-dimensional,

low-resolution image features, and then upsampling these

features using a decoder network. Different methods make

minor variations to this basic model structure to encode

some additional inductive bias or to enforce specific losses.

Multi-scale or coarse-to-fine approaches aim to improve

consistency of neighbouring regions while still providing

detail [13, 7, 6]. Multi-task approaches try to introduce in-

formation from other tasks that may have use for depth es-

timation, or try to make use of the information from other

tasks (most commonly semantic segmentation)[20, 12, 2,

26, 25].

Recently, the MDE literature has shifted towards a new

paradigm: rephrasing the problem as ordinal classification

as opposed to pixelwise regression. Each pixel is assigned

probabilities of belonging to one of several depth ‘bins’ dis-

tributed along the range of the dataset in question. A linear

combination of the bin centres with the predicted probabil-

ities provides a scalar depth value as output.

AdaBins [3] note that the bin distributions should be

made adaptive rather than remaining fixed, and condition

the distribution of the depth bins based on the input im-

age using a transformer-based module. BinsFormer [15]

and PixelFormer [1] improve on this idea with the addition

of more complex transformer-based encoders and decoders.

Most recently, LocalBins [4] applied the adaptive-binning

technique on a per-pixel-region basis instead of a per-image

basis, and is the state-of-the-art in the MDE literature at

the time of writing. All In Tokens (AiT) [17] is a recent

digression from the adaptive binning method: a VQ-VAE

[18] autoencoder is trained on the ground-truth depth im-

ages, and a transformer-based encoder is trained to map the

input image into the quantised feature space for use by the

pretrained decoder, achieving excellent results.

2.2. Contrastive Language-Image Pretraining
(CLIP)

Contrastive Language-Image Pretraining (CLIP) [19] is

a recent training framework that jointly trains image and

text encoders. The CLIP model comprises a visual encoder

and a text encoder, and is trained on 400M images with cor-

responding English-language captions. The training objec-

tive is to minimise the cosine distance between the features
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N depth prompts (one per depth bin)

···

N fixed depth centres (one per depth bin)

view([B,C,-1]).permute(0,2,1)

"This object appears to be {depth_tkn_2}"
"This object appears to be {depth_tkn_1}"

"This object appears to be {depth_tkn_0}"

"This object appears to be {depth_tkn_n}"

Modified
CLIP Text
Encoder ···

Inner product 

prompt
logits

Reshape, bilinear
resize

 
 

CLIP Img  
Encoder

Figure 1. An overview of the pipeline used. The basic structure of the pipeline is the same as [27], but with our modified CLIP encoder
used instead to allow the use of learnable tokens in place of human words in the prompts. The modified CLIP text encoder is detailed in

figure 2. The pretrained CLIP model is completely frozen; the only parameters that we train are those in the learnable tokens. Note that
the output prediction is low-resolution by design: our aim is to probe the limits of CLIP’s understanding without the confounding factor

of a specialised learned decoder.

of an image and the features of its corresponding caption,

extracted using the visual and text encoders respectively.

The trained CLIP model exhibits significant general

knowledge and understanding of the world, and the authors

apply it to zero-shot classification. In this configuration, an

image is encoded using the trained CLIP image encoder. A

textual prompt in English is constructed for each possible

class in the form ‘This is a photo of a(n) {classname}.’, and

the trained CLIP text encoder is used to extract features for

each of these. The class whose corresponding prompt is

most similar to the input image in feature space is deemed

to be the class of the image. This approach requires no addi-

tional training, achieving excellent zero-shot performance.

Other works have leveraged CLIP’s zero-shot abilities

for less obvious tasks. It has been applied with success

to both image captioning and Visual Question Answering

(VQA): [5] use a few small linear layers to convert the com-

bined prompt (question) and image features into categorical

VQA outputs, [24] do few-shot VQA by training an an-

swer template generator that transforms the question into

an answer-style statement that can be used with the stan-

dard CLIP zero-shot classification setup, while [16] use a

simple mapping network to convert the image embeddings

into prefix tokens to be fed to a frozen large language model

(GPT2) for caption generation. While some of this perfor-

mance may be attributed to the information likely to be in

its training captions, some of these tasks may require a de-

gree of reasoning (e.g. the ability to count or to accurately

summarise information in an image).

The remarkable general knowledge exhibited by CLIP

makes it a useful target of research for cross-domain, cross-

task, and open-ended problems. Recently, DepthCLIP

[27] extend the zero-shot classification approach to achieve

good-quality (albeit necessarily low-resolution) zero-shot

MDE performance. This good performance is particularly

surprising considering that the commonplace image cap-

tions scraped from the internet that form CLIP’s training

dataset are not likely to contain precise, numerical scalar

values of depth on a per-pixel basis. This indicates that

CLIP has a more nuanced layer of understanding than

would be admitted by the training captions, and/or that the

‘meaning’ extracted by its trained image encoder includes a

degree of reasoning ability.

2.3. Prompt engineering

Modifying the prompts used for large language models

(LLMs) have been shown to improve performance for cer-

tain tasks. [22] used a first-order approximation of gradi-

ent to select the optimal human-language words to use in

prompting masked language models for sentiment analy-

sis and natural language inference; although results were

promising, the use of human language brings with it the

biases detailed in section 1. The original CLIP paper[19]

provide contextual clauses, e.g. “...a picture of a pet” is

appended to the classification prompt to condition CLIP’s

responses for use with a pet-related dataset.
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Instead of manually selecting the correct prompts to use,

some works have experimented with learnable prompts. For

VQA, [24] and [10] generate prompts based on the input

questions and images to encourage LLMs to answer ques-

tions. A CLIP-base image captioning model [16] gener-

ates a prompt ‘prefix’ that is fed to a frozen generative

LLM, which then generates a salient caption. CoOp [29]

recognised that human words may not be the most suit-

able for providing context, and introduced learnable con-

text tokens for use with classification. A successor work

[28] uses the input image to condition the context tokens.

In both cases, classification performance improves dramat-

ically. VPT [11] introduces learnable tokens to a vision

transformer setup, where the learned tokens are trained to

improve performance on a specific task. None of these

methods, however, directly encode specific input-agnostic

concepts themselves in input tokens (as opposed to the gen-

eral context for the problem or information about a specific

input).

3. Method
In this section, we detail our method. We augment

the method of DepthCLIP [27] by introducing learnable
prompt tokens as a replacement for the human-selected,

human-language words used to describe each of the depth

classes, thus allowing the user to prompt the model for

specific and indescribable concepts (such as depth). With

the addition of only a few thousand trained parameters on

top of the frozen pretrained CLIP model, our method pro-

duces significant performance improvements over human-

language prompts. An overview of the pipeline is shown

in figure 1; this pipeline matches that used in DepthCLIP

with the exception of our modified text encoder, the detail

of which is shown in figure 2.

3.1. Depth Bin Classification with Prompts

We follow the method of [27]: instead of classifying

class labels, we perform depth bin classification. Mirroring

the zero-shot classification strategies, we create one prompt

per depth-bin, with the depth word selected being different

between prompts to correspond to different bins.

The original CLIP language embedding pipeline first to-

kenizes the words in the input prompt, looking up frozen

pre-trained 512-dimensional tokens for each in-vocabulary

word. These tokens are then fed to the transformer-based

language model to obtain the final text embeddings. Our

method replaces certain human-language words within the

prompts with special, out-of-vocabulary override words us-

ing our modified CLIP encoder (shown in figure 2). The

corresponding 512-dimensional tokens for these override

words are learnable parameters, allowing the learning of

tokens for which no English word exists. This follows

the technique shown in CoOp [29], who apply a simi-

3 13 51 132 531 "{depth_tkn_n}"

tkn_3 tkn_13 tkn_51 tkn_132 tkn_531

Learnable
Parameter
Lookup (n of N)

depth_tkn_n

Modified tokenizer

�CLIP Token  
�Embedding Lookup

��CLIP Transformer

"This object appears to be {depth_tkn_n}"Input Prompt

Prompt features

Figure 2. Our modified CLIP text encoder, used to allow the

insertion of learnable tokens in place of the human-word tokens.

Special words in the prompt are replaced by the tokenizer with

learnable parameters (nn.Parameter). The pretrained CLIP to-

ken embeddings and transformer are frozen: the only parameters

that are trained are the learnable tokens.

lar technique to learn the context tokens surrounding the

class name token and obtain an increase in performance for

classification (see section 2). Learned tokens are initialised

by randomly drawing 512 elements from a normal distribu-

tion with mean 0 and standard deviation 0.02, and are op-

timised “in-place” as part of the depth estimation pipeline

described. The objective is the minimisation of the loss

function described in equation 1. Different datasets were

used to train the tokens depending on the experiment (see

section 4.1.2).

When comparing the use of learned tokens to the use of

human language tokens, we use 7-point scales to maintain

a balance between the expressiveness given by adding more

bins and the difficulty in expressing a many-pointed ordinal

scale with human language. However, learned tokens do not

suffer from this limitation, and in section 4.4 we experiment

with increased bin number using learned tokens instead of

human-language words.

3.2. Scalar output

Each of the N generated prompts is embedded using the

CLIP transformer, producing text features of shape [C ×
N ]. The input image is encoded through a pretrained CLIP

image encoder that has had the final pooling layer removed,

providing patch-wise features of size [C × H
32 × W

32 ]. C
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Name Template

Baseline ‘This object appears to be {depth tkn}.’
1o1d ‘{p 0} object {p 1} {depth tkn}.’
1o2d ‘{p 0} object {p 1} {p 2} {depth tkn}.’
4o4d ‘{p 0} {p 1} {p 2} {p 3} object

{p 4}{p 5} {p 6} {p 7} {depth tkn}.’
Table 1. The prompt templates used. One prompt is gener-

ated per depth-bin: the {depth tkn} is replaced with either the

learned depth token corresponding to that prompt’s bin, or with

the human-language words detailed in table 2, depending on the

experiment. Context tokens ({p i}) are learnable but identical

between prompts. Template names describe the number and lo-

cation of learnable context tokens: ‘XoY d’ denotes X learnable

context tokens before the word ‘object’, Y more after it, and the

{depth tkn} at the end.

is the channel dimension, and is 1024 for the RN50 CLIP

backbone used in our experiments.

The inner product of the image and text features is taken

and then normalised to provide depth-bin logits of shape

[N × H
32 × W

32 ]. The vector of N pre-determined depth-

bin centres in metres, whose distribution is fixed at the start

of the experiment, is then multiplied by these logits and

summed along the N dimension to give a low-resolution

output depth map of shape [1× H
32 × W

32 ]. This is then bilin-

early upsampled to the full input resolution to give the final

prediction.

3.3. Prompt Templates

We experiment with different learned prompt templates,

varying the number and location of the learnable tokens

within the prompts. The templates we experiment with are

shown in table 1. The most basic prompt template uses only

a learnable depth token (one per depth-bin prompt). N in-

dividual prompts will be generated according to the N bins

in use; between these, only the depth tokens will vary. The

other learnable tokens in the prompt, if in use, remain the

same between different bin prompts.

4. Experiments
In this section, we detail our experiments. We first

describe our experimental setup. We then detail our ex-

periments to confirm the efficacy of the prompt learning

technique when applied to monocular depth estimation.

We demonstrate the improvement over human-language

prompts and random controls, then perform ablations to de-

termine the optimal number of depth prompts, the optimal

number of learnable tokens in each prompt, and the optimal

distribution of depth bins across each dataset.

4.1. Experimental Setup

For repeatability, our experiments are all conducted with

a batch size of 16. The random seed used is fixed for all

experiments. All code is written in PyTorch. Training is

performed for 25 epochs using either 2x 1080s, 1x A5000,

or 1x A6000 NVIDIA GPUs. Evaluation is performed on

the final training checkpoint only.

Our training hyperparameters mirror [3]: we

use the AdamW optimizer with a learning rate of

0.000357 and a OneCycleLR learning rate sched-

uler, with max lr=0.000357, cycle momentum=True,

base momentum=0.85, max momentum=0.95,

div factor=25, and final div factor=100.

The pretrained CLIP checkpoints we use are those pro-

vided by the official OpenAI CLIP repository1. We use the

ResNet-50 backbone for all of our experiments, both for the

sake of consistency and because several works have shown

some evidence that the ResNet-based CLIP backbones are

better able to extract spatially-relevant features than the Vi-

sion Transformer CLIP backbones [24, 21, 14].

4.1.1 Loss function

The loss function used is a variant of the Scale-Invariant

Log-Loss (SILog), first proposed by [7] and modified by

[3]:

LSILog = 10

√
1

K

∑
i∈K

g2i +
0.15

K2
(
∑
i∈K

gi)
2 (1)

where ground-truth and predicted depth values for pixel i
are given as d∗i and di respectively, gi = log(di)− log(d∗i )
and K is the total number of pixels with valid depth val-

ues. The learnable tokens are trained by minimising this

loss function.

4.1.2 Datasets

We use the NYUv2 dataset [23] to represent the indoor do-

main and the KITTI dataset [9] to represent the outdoor do-

main. The splits we use of these datasets are taken directly

from the official implementation of [3]2, and our dataloader

and data augmentation code is a slightly modified version

of that used in the same repository.

NYUv2 comprises a variety of indoor scenes with

ground-truth depth captured using a Microsoft Kinect. We

use 24231 training examples and the official test split of 654

examples. We train on random crops of size [416 × 544],
and evaluate on the Eigen crop [7]. The input images at test

time have dimensions [480× 640].
KITTI is an outdoor driving dataset with sparse depth

ground-truth captured using LiDAR. We use 23157 training

and 696 test examples. Following [3], during training we

take a random crop of size [352 × 704], and during evalua-

tion we follow the cropping strategy of [8].

1github.com/openai/CLIP
2github.com/shariqfarooq123/AdaBins
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Bin depth-7 size-7 colour-7
0 very close very small very red
1 close small red
2 slightly close slightly small slightly red
3 neither close nor distant neither small nor large neither red nor green
4 slightly distant slightly large slightly green
5 distant large green
6 very distant very large very green

Table 2. The 7-point human-language ordinal scales used as
non-learned depth tokens. We compare these to the use of

learned tokens in section 4.2. The depth-7 and size-7 scales con-

tain geometrically-relevant words, and the colour-7 scale is used to

provide a control that is unrelated but still follows an approximate

‘continuum’ of meaning.

4.1.3 Evaluation Metrics

We use the commonly-used evaluation metrics defined in

[7]: Abs relative difference (Abs): 1
T

∑T
i=1

|di−d∗
i |

d∗
i

, RMSE

(RMS):

√
1
T

∑T
i=0 ‖di − d∗i ‖2, log RMSE (RMSL):√

1
T

∑T
i=0 ‖log(di)− log(d∗i )‖2, and the threshold accu-

racy δn: % of di s.t. max( di

d∗
i
,
d∗
i

di
) = δ < thr, where

δn denotes that thr = 1.25n (we use n ∈ {1, 2, 3}).

We follow [3, 13, 4] in computing metrics as a running

average throughout evaluation, using a batch size of 1. We

also use test-time augmentation: each input image is run

through the model both as-is and mirrored in the y-axis. The

prediction from the mirrored input is mirrored back, and the

two predictions are averaged together pixelwise to give a

final prediction on which all metrics are computed.

4.2. Comparing Learned to Human-Language To-
kens

We first verify the effects of learning tokens as compared

to the human-language tokens. The ‘baseline’ shown in ta-

ble 1 is used, with the human-language or learned tokens

replacing the {depth tkn}. We use 7 depth bins, evenly

distributed throughout the range of the target dataset: for

NYUv2, this is [0.001, 10.0] metres, and for KITTI this is

[0.001, 80.0] metres. Even bin distribution is used so as to

remove bin distribution as a confounding factor, though re-

cent work in adaptive bin distribution for depth shows that

even bins are sub-optimal (see section 2.1). 7 depth bins are

used to allow comparison between the use of learned depth

tokens and human-language ordinal scales shown in table 2.

The human-language ordinal scales used are shown in

table 2. The ‘depth-7’ scale relates directly to depth and the

‘size-7’ scale relates to it via the phenomenon of perspec-

tive. The ‘colour-7’ scale is included as a further control

that does not relate to depth in any obvious way, but that

still describes an approximate ‘continuum’ of meaning.

We also compare with random tokens (denoted as

‘random-7’) as an additional control: these are randomly

initialised from a normal distribution with mean 0 and stan-

Depth

tkns
Dset Abs RMS RMSL log10 δ1 δ2 δ3

colour-7 nyu 1.381 3.010 0.786 0.331 0.131 0.277 0.449

size-7 nyu 2.130 4.431 1.281 0.446 0.048 0.119 0.235

depth-7 nyu 1.014 2.413 0.566 0.265 0.227 0.431 0.606

random-7 nyu 1.593 3.308 0.929 0.372 0.081 0.190 0.354

rand-txt-7 nyu 1.335 2.875 0.754 0.324 0.129 0.287 0.471

learned-7 nyu 0.319 0.970 0.139 0.128 0.465 0.776 0.922
colour-7 kitti 2.177 23.470 1.328 0.446 0.077 0.163 0.267

size-7 kitti 3.363 33.978 2.067 0.568 0.048 0.103 0.171

depth-7 kitti 2.353 25.518 1.433 0.454 0.094 0.193 0.297

random-7 kitti 1.664 19.279 0.994 0.370 0.119 0.251 0.400

rand-txt-7 kitti 2.887 29.553 1.789 0.535 0.046 0.098 0.161

learned-7 kitti 0.303 6.322 0.119 0.112 0.550 0.830 0.938
Table 3. Comparison of human-word, random, and learned to-
kens across a 7-bin scale, on the NYUv2 and KITTI datasets. Best

results in bold, second best underlined. The use of only a single

learned token in each prompt improves performance significantly

across every metric. We also see that the geometrically-related

human-language tokens are not always the best, particularly for

KITTI where size-7 is outperformed by colour-7.

dard deviation 0.02 for each bin-prompt at the start of a run,

then remain constant throughout the experiment. As an ad-

ditional random control, we use randomly-selected natural

language tokens from the CLIP token vocabulary (which in-

cludes word fragments). These are: [summer, inian, fellow,
greg, bis, ksh, aidan] for the 7 bins.

The results are shown in table 3. We find that the use of

only a single learned token in each of the 7 bin prompts (a

total of 512 × 7 = 3584 trained parameters only) signifi-

cantly improves performance, by a factor of between 1.5 to

5.5×. This is despite the even bin distribution and the low

granularity resulting from only using 7 bins.

We also observe an interesting result in the case of the

human-language tokens: depth-related words are not al-

ways the best. In the case of KITTI, we see that a random

token performs better than any of the human-language word

tokens. In the case of NYUv2, we see that the ‘colour-7’ to-

kens, chosen for their supposed lack of geometric meaning,

outperform the size-related tokens. We conjecture that the

most likely cause for these counterintuitive results is a gen-

eral unsuitability of human language to describe the implicit

and complex concept of depth, though it may also be due to

either the distinctiveness of different random embeddings

compared to a scale of depth-related words, or the distribu-

tion of the random embeddings being coincidentally ideal

for mapping to the concept of depth.

4.3. Varying Number of Learned Tokens In Prompt

Having ascertained the learned depth tokens provide a

significant performance boost, we turn our attention to the

surrounding context of the prompt. Prior works have found

that adding appropriate context to the prompt can improve

performance; for instance, the original CLIP paper used the

ending “[...], a type of pet” to improve classification per-

formance on a pet-centric dataset [19]. CoOp [29] find
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Prompt

format

Depth

tkns
Dset Abs RMS RMSL log10 δ1 δ2 δ3

Baseline depth-7 nyu 1.014 2.413 0.566 0.265 0.227 0.431 0.606

1o1d depth-7 nyu 0.323 0.975 0.142 0.129 0.461 0.772 0.920

1o2d depth-7 nyu 0.323 0.974 0.141 0.129 0.462 0.773 0.920

4o4d depth-7 nyu 0.318 0.965 0.138 0.127 0.466 0.778 0.923
Baseline depth-7 kitti 2.353 25.518 1.433 0.454 0.094 0.193 0.297

1o1d depth-7 kitti 0.331 6.528 0.132 0.120 0.511 0.809 0.929

1o2d depth-7 kitti 0.321 6.420 0.127 0.117 0.527 0.817 0.932

4o4d depth-7 kitti 0.309 6.334 0.122 0.114 0.541 0.826 0.936
Table 4. Effect of adding learned context tokens {p i} to
human-language depth tokens (using depth-7 ordinal scale).

Prompt formats are described in table 1. Although {p i} con-

text tokens are the same for each depth-bin’s prompt (unlike

{depth tkn}s), a significant performance improvement is still

obtained.

that learning the context tokens, rather than manually set-

ting them, provides a performance increase; we follow suit

and experiment with the prompt types shown in table 1. 7

evenly-distributed depth bins are used, as in section 4.2.

In each of these prompt templates, the context tokens

{p i} remain constant between the N different prompts.

Only the {depth tkn}s vary between each of the N
prompts. We first verify the efficacy of learnable context

tokens {p i} with human-language {depth tkn}s in ta-

ble 4, and then use learnable {depth tkn}s and context

tokens {p i} together in table 5.

It can be seen that, for both datasets, learned context

tokens produce a significant boost to performance. Note

that context tokens {p i} are identical for each depth bin’s

prompt, and therefore do not provide discriminative infor-

mation to CLIP’s language model. We also find that adding

more learnable context tokens improves performance fur-

ther, affirming that the findings of [29] apply for MDE as

well as for classification.

It can also be seen that the combined use of both learned

context tokens and learned depth tokens does not, in the

case of KITTI, produce a significant performance over the

use of only depth tokens. This may indicate that the existing

template is sufficient to extract the most depth-relevant in-

formation from CLIP. For NYUv2, the use of learned con-

text tokens improves only marginally over the use of only

learned depth tokens, which may provide evidence to sup-

port this conclusion.

Prompt

format

Depth

tkns
Dset Abs RMS RMSL log10 δ1 δ2 δ3

Baseline learned-7 nyu 0.319 0.970 0.139 0.128 0.465 0.776 0.922

ls4o4d depth-7 nyu 0.318 0.965 0.138 0.127 0.466 0.778 0.923

ls4o4d learned-7 nyu 0.317 0.955 0.136 0.126 0.474 0.782 0.925
Baseline learned-7 kitti 0.303 6.322 0.119 0.112 0.550 0.830 0.938
ls4o4d depth-7 kitti 0.309 6.334 0.122 0.114 0.541 0.826 0.936

ls4o4d learned-7 kitti 0.307 6.209 0.119 0.113 0.546 0.830 0.938
Table 5. Effect of combining both learned context and learned
depth tokens. Best results in bold, second best underlined. Some

improvement from the combined use of both learned depth tokens

and learned context tokens may be seen, but in the case of KITTI

the results indicate that the majority of the performance may be

attributed to the learnable depth tokens.

Bins Dist. Dataset Abs SqRel RMS RMSL log10 δ1 δ2 δ3
7 Linear nyu 0.319 0.370 0.970 0.139 0.128 0.465 0.776 0.922
7 Log nyu 0.312 0.366 0.991 0.142 0.130 0.449 0.767 0.922

20 Linear nyu 0.314 0.360 0.949 0.134 0.125 0.475 0.785 0.926
20 Log nyu 0.308 0.355 0.968 0.136 0.127 0.466 0.780 0.926
7 Linear kitti 0.303 2.157 6.322 0.119 0.112 0.550 0.830 0.938

7 Log kitti 0.265 1.926 6.933 0.112 0.108 0.580 0.838 0.939
20 Linear kitti 0.292 2.062 6.159 0.113 0.108 0.573 0.841 0.941

20 Log kitti 0.265 1.837 6.153 0.103 0.102 0.606 0.853 0.948
Table 6. The effect of using uniform vs. log-uniform bin distri-
butions. Best results in bold. While for the [0.001, 80m] range

of KITTI the log-uniform distribution is better, the 10m range of

NYUv2 means that many log-uniformly distributed bins are clus-

tered in a very small space. This may explain the drop in perfor-

mance with NYUv2.

Bins Dset Abs RMS RMSL log10 δ1 δ2 δ3
7 nyu 0.312 0.991 0.142 0.130 0.449 0.767 0.922

20 nyu 0.308 0.968 0.136 0.127 0.466 0.780 0.926

256 nyu 0.298 0.933 0.127 0.122 0.485 0.796 0.934
7 kitti 0.265 6.933 0.112 0.108 0.580 0.838 0.939

20 kitti 0.265 6.153 0.103 0.102 0.606 0.853 0.948

256 kitti 0.238 5.756 0.088 0.092 0.652 0.877 0.957
Table 7. Effect of varying the number of bins used, with learn-

able depth tokens. Bins are log-uniformly distributed. Best results

in bold, second-best underlined. A clear correlation between bin

number and performance may be seen across all metrics.

4.4. Varying Number And Distribution of Bins

The use of learned depth tokens removes the restriction

on bin number: human-language ordinal scales require in-

creasingly tortuous and verbose phrasing as bin granularity

increases, but learnable depth tokens do not have this re-

striction. We also experiment with different bin distribu-

tions. As discussed in section 2.1, the distribution of depth

values in an image is rarely linear, and the occlusion of the

background by objects in the foreground naturally lends to

a long-tailed distribution of depth values.

Table 6 compares the use of linearly and log-linearly dis-

tributed bins for different numbers of bins. We continue

to use fixed rather than adaptive bin distributions to reduce

trainable parameters and to better allow comparison. Ta-

ble 6 shows that the log-uniform bin distribution is clearly

better in the larger depth range of KITTI ([0.001, 80m]),
but for NYUv2 it is not as clear. This is likely due to

NYUv2’s smaller range: log-uniformly-distributed bins are

compressed into a very small space at the start of the range,

and may not be sufficiently distinct to be useful.

Table 7 shows the effects of increasing the number of

bins (and thus the number of depth-bin prompts), with log-

uniform bin distribution. This adds 512 learnable parame-

ters per bin, but a clear improvement in performance can be

seen as the number of bins is increased.

4.5. Interpretation of Learned Tokens

Our results show that, for conveying the concept of spe-

cific depths to CLIP, the learned tokens are superior to the

human-language depth and prompt context tokens. In this
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{depth 0} {depth 1} {depth 2} {depth 3} {depth 4} {depth 5} {depth 6}
Token Dist. Token Dist. Token Dist. Token Dist. Token Dist. Token Dist. Token Dist.

{depth 2} 0.177 close</w> 0.000 {depth 0} 0.177 {depth 2} 0.313 {depth 6} 0.185 distant</w> 0.000 {depth 4} 0.185

{depth 3} 0.320 closest</w> 0.725 {depth 3} 0.313 {depth 0} 0.320 {depth 2} 0.780 distance</w> 0.656 {depth 2} 0.776

{depth 6} 0.781 close 0.746 {depth 6} 0.776 {depth 6} 0.813 {depth 0} 0.790 dissi 0.907 {depth 0} 0.781

{depth 4} 0.790 closes</w> 0.835 {depth 4} 0.780 {depth 4} 0.820 {depth 3} 0.820 dist 0.924 {depth 3} 0.813

·</w> 0.895 clo 0.872 ·</w> 0.907 coscino</w> 0.915 coscino</w> 0.913 thest</w> 0.977 coscino</w> 0.894

coscino</w> 0.911 glou 0.883 coscino</w> 0.918 ·</w> 0.918 ·</w> 0.976 ssian</w> 1.006 ·</w> 0.955

atility</w> 0.923 closer</w> 0.887 atility</w> 0.928 atility</w> 0.918 atility</w> 0.981 pist 1.010 atility</w> 0.971

mikequind 0.949 closing</w> 0.887 mikequind 0.956 mikequind 0.969 mikequind 0.992 dian 1.013 mikequind 0.980

arty 0.979 chose</w> 0.914 arty 0.980 arty 0.982 laghate 1.010 drifting</w> 1.015 laghate 0.992

kirstel</w> 0.987 lose</w> 0.926 kirstel</w> 0.993 âł 0.994 ison</w> 1.018 distribu 1.022 ison</w> 1.000

rhea</w> 0.993 closed</w> 0.942 rhea</w> 1.002 ison</w> 0.995 kirstel</w> 1.023 distri 1.022 kirstel</w> 1.015

laghate 1.001 chosen</w> 0.947 ison</w> 1.005 kirstel</w> 1.002 rectan 1.042 titan 1.028 arty 1.015

ison</w> 1.002 choose 0.953 laghate 1.009 rhea</w> 1.005 arty 1.042 dis 1.033 rectan 1.026

âł 1.005 most</w> 0.958 pknot</w> 1.014 pknot</w> 1.013 soyuz</w> 1.055 disappear</w> 1.033 rhea</w> 1.029

pknot</w> 1.005 chooses</w> 0.971 âł 1.022 laghate 1.017 rhea</w> 1.056 dito</w> 1.034 soyuz</w> 1.030

Table 8. Nearest-neighbours to learned depth tokens in CLIP embedding space. Learned tokens from 7 evenly-distributed bins on

NYUv2 using ‘baseline’ template from table 1. ‘Distance’ is Euclidean distance after normalisation of embeddings. Token 0 corresponds

to a bin centre of approx. 0.714m, and token 6 to approx. 9.29m. We see that tokens 1 and 6 correspond with the tokens ‘close</w>’ and

‘distant</w>’ respectively, but that the remaining tokens are closest to other learned tokens.

section, we attempt to interpret these learned tokens, in par-

ticular their correspondence to human language.

The nearest-neighbours in CLIP-embedding space for

each of the learned tokens are measured. Each of the 40k

tokens in the CLIP vocabulary are inserted into the sen-

tence ”This object appears to be {token}.” and embedded

into CLIP space and the resulting set of embeddings is nor-

malised. The nearest neighbours by Euclidean distance for

each of the learned depth tokens is found and is shown in

table 8. The same procedure was repeated in token space

instead of embedding space, but no apparent relationship

between learned tokens and relevant English words was ob-

served. This is expected: token features are constrained to

be semantically related, but tokens themselves are not.

Several interesting observations may be made from ta-

ble 8. Firstly, the nearest neighbour for every learned token

bar two is another learned token, indicating that they all oc-

cupy a similar region of latent space. This likely indicates

shared meaning, though it may also be due to their shared

initialisation distribution. Secondly, the learned depth to-

kens appear to exist in a continuum of a sort: the larger-

valued tokens are nearest to other large-valued tokens, and

similarly with smaller-valued tokens. This may mean that

the learned tokens exist on a path through latent space, the

distance along which may map to a variation in the concept

of depth, e.g. nearby to distant. Thirdly, only two tokens

correlate with depth-related words, with the rest relating to

one another followed by unrelated tokens. This is the most

relevant finding, as it indicates that while there is some rela-

tionship between the CLIP conception of depth and the hu-

man concepts of “close” and “distant”, it also indicates that

there is another, inexpressible, concept contained within the

learnable depth tokens that is nonetheless important. This

is further supported by the increase in performance from

adding additional bins: a degenerate case where only two

tokens contain meaning and the rest are irrelevant would

yield similar performance regardless of the number of bins.

5. Conclusion and Future Work
In this work, we have illustrated the efficacy of learnable

tokens for monocular depth estimation using CLIP. We see

that with only a few thousand learnable parameters, we are

able to extract significant performance improvements over

the use of geometrically-related human-language words and

random tokens. Analysis of the learned tokens shows that

their CLIP embeddings are dissimilar to those of the depth-

related human language prompts tried, suggesting that the

concept of depth is not succinctly expressible in language.

All but two of the learned depth tokens are nearest in

latent space to one another and not near any relevant En-

glish words. The remaining two are nearby words relating

to the concepts of “close” and “distant”, but a degenerate

case where all but two tokens are ignored is unlikely given

that performance continues to improve when more learnable

tokens are introduced. This finding suggests that succinct

human-language prompts that seem relevant to depth to a

human writer do not, in fact, map to the region of CLIP’s

latent space that relates to CLIP’s concept of depth.

The implications of this for any method that uses CLIP

are clear: CLIP contains surprising general knowledge,

but accessing it using human-chosen prompts may be sub-

optimal, implying that its understanding of the world ex-

tends beyond the limits of what language can succinctly rep-

resent. While we focus on the concept of specific depths, it

may be the case that other similarly abstract concepts could

also require learnable, non-linguistic tokens to effectively

describe them.

Future work will further investigate the CLIP embedding

space, both in translating complex geometric concepts into

tokens that CLIP can comprehend, and in learning to in-

terpret CLIP features in a human-readable way, in order to

enhance the utility of CLIP for all open-ended tasks.
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