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Figure 1: Overview of our proposed framework CLIP goes 3D (CG3D). We introduce a 3D Encoder in the CLIP framework

and pre-train it using natural language supervision while also leveraging CLIP’s pre-trained visual encoder. CG3D solves

various practical tasks like zero-shot 3D recognition, 3D point cloud retrieval, scene querying with natural language, More-

over, it can serve as a strong initial weight for standard fine-tuning tasks.

Abstract

Vision-Language models like CLIP have been widely
adopted for various tasks due to their impressive zero-shot
capabilities. However, CLIP is not suitable for extract-
ing 3D geometric features as it was trained on only im-
ages and text by natural language supervision. We work
on addressing this limitation and propose a new frame-
work termed CG3D (CLIP Goes 3D) where a 3D encoder is
learned to exhibit zero-shot capabilities. CG3D is trained
using triplets of pointclouds, corresponding rendered 2D
images, and texts using natural language supervision. To
align the features in a multimodal embedding space, we
utilize contrastive loss on 3D features obtained from the
3D encoder, as well as visual and text features extracted
from CLIP. We note that the natural images used to train
CLIP and the rendered 2D images in CG3D have a dis-
tribution shift. Attempting to train the visual and text en-
coder to account for this shift results in catastrophic for-
getting and a notable decrease in performance. To solve
this, we employ prompt tuning and introduce trainable pa-
rameters in the input space to shift CLIP towards the 3D
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pre-training dataset utilized in CG3D. We extensively test
our pre-trained CG3D framework and demonstrate its im-
pressive capabilities in zero-shot, open scene understand-
ing, and retrieval tasks. Further, it also serves as strong
starting weights for fine-tuning in downstream 3D recog-
nition tasks. Code: https://github.com/deeptibhegde/CLIP-
goes-3D

1. Introduction

For many tasks in 2D vision, the most efficient and accu-

rate results are now obtained by adapting foundation mod-

els [42, 43, 2, 64] which are pre-trained on large-scale data.

There is currently a significant amount of research focused

on efficiently adapting foundation models for specific 2D

vision tasks [65, 47, 59, 15], rather than developing new su-

pervised methods from scratch. These approaches seeks to

build on existing models and leverage their pre-trained fea-

tures to achieve better performance on target tasks with less

data and computation requirements. These recent trends

in vision is actually similar to trends that were observed

in natural language processing (NLP) a few years ago. In

NLP, foundation models have been dominating since 2018

as models like BERT [9] and GPT-3 [4] showed excep-
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tional ability to accomplish various NLP tasks, such as

question answering, sentence prediction, sentiment classi-

fication, etc. Also, foundation models pre-trained on mul-

timodal data like images and text have been useful by ex-

hibiting impressive zero-shot capabilities. In particular,

Contrastive Language Image Pre-training (CLIP) [41] has

been applied to various 2D tasks, including image classifi-

cation [71], object detection [48, 13], image segmentation

[25, 57, 69], image retrieval [18, 29], and visual question

answering [34, 8]. In this work, we try to bridge the gap

between 2D vision language models and 3D shape under-

standing and focus on answering the following question:

How can we build a 3D network that can possess similar
functionalities as that of a foundation model like CLIP?

3D visual understanding has many practical applications

in robotics [16, 70], augmented reality [17, 55, 62], and

autonomous driving [39, 38, 46, 33]. Comprehending the

semantics and characteristics of each point in a 3D space

is crucial for addressing a wide range of issues in down-

stream tasks. Thus, there lies several use-cases for a po-

tential 3D foundational model similar to foundation models

for vision and NLP. A powerful 3D network with zero-shot

capabilities does not only help improve the performance

of existing 3D backbones but also enables open 3D scene

understanding and 3D retrieval tasks. However, the devel-

opment of foundational models for 3D understanding faces

several challenges, including the limited availability of 3D

data compared to images. While CLIP was able to lever-

age the vast amount of images available on the internet to

create a large pre-training dataset of image-caption pairs, a

similar approach cannot be directly applied to pre-train a

3D encoder with text due to the scarcity of 3D data. There

have been some recent works like PointCLIP [66] which

tried to utilize CLIP’s zero-shot capabilities for 3D zero-

shot problems. PointCLIP directly uses the depth maps of

a 3D point cloud on 2D visual encoder of CLIP. While it

provides a quick and simple solution for 3D zero-shot prob-

lems, it lacks the characteristics of a foundational model

since it cannot be used for 3D fine-tuning tasks or for 3D

open scene understanding. Furthermore, it does not possess

the ability to extract any 3D geometric features relevant for

downstream tasks in 3D understanding.

To this end, we propose a new pre-training framework

termed CG3D (CLIP Goes 3D) that trains a 3D encoder

using natural language supervision while also leveraging

CLIP’s knowledge. We begin by creating a pre-training

dataset consisting of triplets of 3D point clouds, images, and

corresponding text descriptions. We use point clouds from

ShapeNet [5] as our 3D data and curate its corresponding

rendered 2D image and a caption. Since ShapeNet consists

of textured CAD models, we render random views of each

object to use as the image pair. Despite their distinct prop-

erties, both a 3D point cloud and an image of the same ob-

ject share common semantic attributes. This is affirmed by

the success of tasks such the transfer of pre-trained weights

from an image-based network to a 3D point cloud classifi-

cation network [60]. CG3D aims to ensure that there is sim-

ilarity between 3D features and 2D features, as well as be-

tween 3D features and text features for objects of the same

category, while being dissimilar for objects of different cat-

egories. This contrastive approach to learning enables the

3D encoder to acquire zero-shot capabilities similar to those

of CLIP.

The process of training the 3D encoder with contrastive

loss and comparing 3D features to the 2D features from

CLIP’s visual encoder is a means of distilling CLIP’s se-

mantic features to the 3D encoder. Although it would be

efficient to train CLIP’s visual encoder to align with the

data distribution of 3D objects and their related images,

we observed a significant decrease in performance when

training both CLIP’s visual and text encoders along with

the 3D encoder in CG3D. This can be explained as CLIP

starts to catastrophically forget its previous features while

being trained to shift to the new distribution. However, it

is not ideal to keep the visual encoder completely frozen.

Large-scale language models like CLIP are trained mostly

on natural images, which differ in distribution to the graph-

ically rendered views of 3D objects. To address this do-

main gap [53, 51, 52, 50], we propose using prompt tuning

techniques [19, 7] to shift the distribution in the input space

before forwarding it to the visual encoder. We add visual

prompts to the transformer backbone of CLIP’s visual en-

coder thus adding only a small amount of parameters in the

input space while keeping the weights of visual encoder of

CLIP frozen. These parameters learn the shift in input dis-

tribution to suit CLIP so that the 3D pre-training is effec-

tive. To demonstrate the effectiveness of CG3D, we con-

duct several experiments. First, we show its zero-shot capa-

bilities on synthetic and real object datasets like ModelNet

[56] and ScanObjectNN [49]. Additionally, we showcase

the 3D model’s ability in open-scene comprehension by uti-

lizing text-based queries, as well as its ability to conduct

cross-modal 3D data retrieval while utilizing image or text

queries. Further, the weights obtained from pre-training the

3D encoder using CG3D can also serve as effective initial

weights when fine-tuning the model for other 3D tasks.

In summary, the following are our major contributions:

• We propose CG3D, a contrastive pre-training framework

for training 3D networks using natural language supervi-

sion while also leveraging the knowledge of CLIP.

• We utilize prompt tuning to shift the input space of a pre-

trained visual encoder from rendered images of CAD ob-

jects to natural images, allowing for more effective use of

CLIP for 3D shapes.

• We conduct extensive experiments to demonstrate the ver-

satile capabilities of CG3D. It exhibits strong zero-shot,
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3D retrieval and 3D scene understanding capabilities with

language. CG3D also acts as strong starting weights for

multiple 3D recognition tasks.

2. Related works
Vision Language Models: The use of large-scale text-

pre-training on attention-based models [9, 67] has led to

the increasing popularity of vision-language models (VLM)

due to their impressive performance in visual understand-

ing tasks [22, 28, 41]. Recent advancements in contrastive

learning have enabled CLIP [41] to perform multimodal

learning with 400M noisy data crawled from the web. CLIP

has been extended for high efficiency model training and cy-

cle consistency through various methods, such as ALBEF

[20] and Cyclip [12]. Adopting VLM for 3D point cloud

processing is still in its infancy. PointCLIP [66] was the

first method to adopt CLIP for 3D tasks. It directly uses the

depth maps of 3D point clouds and uses it on the visual en-

coder of CLIP to perform zero-shot classification. Unlike

this, we focus on using a 3D encoder in the CLIP so that it

can directly take in a 3D point cloud.

3D Point cloud processing methods: In general, point

cloud processing methods either process the original point

cloud sets directly [39, 40] or transform the original point

clouds into intermediate representations such as voxels

[31, 45] or images [61, 21]. PointNet [39] enabled the

direct use of unordered point sets as input through shared

MLPs. PointNet++ [40] was later proposed as an extension

of PointNet, incorporating a hierarchical feature learning

approach that recursively captures local geometric struc-

tures. Recently, methods like PointTransformer [68] and

PCT [14] have proposed transformer-based methods show-

ing a significant improvements in performance. The current

state of the art method is PointMLP [30] which effectively

uses a deep residual MLP network for point cloud analysis.

There have also been pre-training methods which show

3D backbones can be pre-trained with unlabelled data to

obtain strong initial weights to boost fine-tuning perfor-

mance. PointContrast [58] performs contrastive training

[6] by pushing together heavily augmented views of the

same sample and minimizing the similarity between views

of other samples on point cloud scenes that have under-

gone rigid transformations. CrossPoint [1] boosts point

cloud classification performance by maximising the agree-

ment between images and point cloud objects. PointBERT

[63] and PointMAE [37] leverage masked modelling meth-

ods to perform pre-training. Unlike these backbone or pre-

training works, we focus on enabling zero-shot capabilities

to given 3D encoder in our proposed CG3D framework.

3. Method
Our main objective is to train a 3D shape encoder to ac-

quire shape characteristics that can effectively capture the

Figure 2: Overview of the proposed learning strategy in

CG3D. Note that only the 3D Encoder and learnable visual

prompts are trained while everything else is frozen.

geometric properties of point clouds while also aligning

with CLIP’s feature representation for each object category.

In essence, we aspire to acquire features that are unique

to each category yet unaffected by the mode of representa-

tion. To this end, we use point cloud-image-caption triplets

to train the framework. Each element within a triplet of

point cloud-image-caption is indicative of an object pos-

sessing specific semantic traits that are shared among the

other objects in the collection. In this section, we first give

an overview of the proposed CG3D framework, followed by

details to effectively train the network. We then give details

on the potential use-cases of CG3D.

3.1. CG3D framework

The CG3D framework as illustrated in Fig 2 consists of

3 networks - 3D shape encoder, visual encoder and text en-

coder from CLIP.

3D Encoder takes in a 3D point cloud as the input. To

capture the essential shape characteristics of an object, we

employ a 3D encoder that is specifically designed to analyze

point clouds and generate a feature vector representing the

object. Our framework is agnostic with the choice of 3D

encoder, and an added projection layer ensures the output

feature dimension remains consistent.

2D Visual Encoder takes in the corresponding rendered

image of the 3D pointcloud as the input. Although shape

features are essential in representing point clouds, image

backbones from vision-language models trained on large

amounts of data offer powerful feature representations of

images that are semantically correlated with text. We em-

ploy CLIP’s visual encoder as it is pre-trained on a massive
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amount of data. By utilizing the visual encoder, we can

acquire highly effective and implied representations of cat-

egories present in point cloud datasets, which are then use

to align with the 3D features. Note that CLIP provides both

ResNet and ViT weights for visual encoder.

Text Encoder takes in the corresponding text caption of the

3D point cloud as input. Adopting natural language super-

vision for feature learning has been successful in training

models to grasp visual concepts that can be depicted in both

images and text [41]. We use the CLIP text encoder out-of-

the-box under the same configuration as [41].

3.2. Training the 3D encoder

Our main training objective is to align the 3D point

clouds with their corresponding category level images and

texts. This alignment happens in a common embedding

space to which data from each modality is projected from

the modality-specific encoder and a projection head. Our

training strategy relies on contrastive learning, which incen-

tivizes cross-modal features of the same pair to be in close

proximity to one another in the embedding space while

keeping apart samples belonging to other pairs. We for-

mulate the proposed losses below. Consider a set of N
pointcloud-image-text triplets {x3Di , x2Di , xtexti }Ni=1, where

x3Di represents a pointcloud, x2Di is the corresponding ren-

dered image, and xtexti is the corresponding text. Let the

encoder for each modality be represented as φ3D, φ2D, and

φtext. We obtain the feature representation of each sample

in a common embedding space by projecting the encoded

feature to a common dimension represented by:

f3Di = ψ3D(φ3D(x3Di )) (1)

f2Di = ψ2D(φ2D(x2Di )) (2)

f texti = ψtext(φtext(x
text
i )) (3)

where i ranges from 1 to the number of samples N and

ψ is the projection operation for each modality. Through

normalization, we constrain the output of each projection

network to reside within a unit hypersphere, enabling us to

measure feature similarity using the inner product. The con-

trastive losses (InfoNCE objective [36]) between 3D-image

features; and 3D-text features are defined by:

L(3D,2D) =
1

2

∑

(f3D,f2D)∈B

NCE(f3D, f2D)+

NCE(f2D, f3D)

(4)

L(3D,text) =
1

2

∑

(f3D,ftext)∈B

NCE(f3D, f text)+

NCE(f text, f3D)

(5)

where f3D, f2D, and f text are the projected 3D, image

and text features respectively. B corresponds to the batch.

NCE loss is defined as:

NCE(fA, fB) = − log
exp(〈fA, fB+ 〉/τ)∑

f∈(fB
+ ,fB

− ) exp(〈fA, f〉/τ)
(6)

where A, B are two different modalities and fA, fB are

their corresponding features. τ is the temperature hyper-

parameter, fB+ are the positive embeddings from modality

B overlapping with modality A, and fB− are the negatively

embeddings formed while pairing with modality A. For ex-

ample, in L(3D,2D) the positive pairs between 3D and 2D

are formed by matching the features corresponding to same

class while the rest are termed as negative pairs. The total

loss L3D used to train the 3D encoder is defined by:

L3D = L(3D,2D) + L(3D,text) (7)

3.3. Prompt tuning for visual encoder

The visual encoder in the CG3D framework takes in the

rendered image of the 3D point cloud as its input. While

the CLIP visual encoder has been trained on vast amounts

of internet data and is highly resilient, during pre-training of

CG3D, it only deals with rendered images. As a result, fine-

tuning the CLIP visual encoder to handle rendered images

could improve the training process for the 3D encoder. One

possible approach is to train the visual encoder by optimiz-

ing its weights using the CLIP loss function that computes

the similarity between image and text features. However,

when we tried this method, we noticed a substantial de-

crease in performance. This phenomenon can be explained

by the fact that training the visual encoder of CLIP causes

catastrophic forgetting. That is, the encoder loses all of its

prior knowledge while attempting to adapt to the new data

distribution. Typically, this issue can be avoided by increas-

ing the amount of new data available for fine-tuning. How-

ever, it’s not feasible to obtain a large enough 3D dataset

that matches the scale of the massive image-text data used to

train CLIP. Therefore, we concentrate on developing meth-

ods to effectively fine-tune the model with new pre-training

data while keeping the visual encoder frozen.

Visual prompt tuning, as described in [15], is a method

that involves adding a small number of trainable parameters

in the input space to fine-tune a base model for a specific

task. In our proposed method for pre-training CG3D, we

adopt this approach and modify the input space to better

align with the visual encoder of the original CLIP model.

This, in turn, allows the visual encoder to produce higher-

quality features, which can enhance the training of the 3D

encoder. We use deep prompting where we introduce learn-

able prompts as learnable tokens at every layer in the trans-

former layer in ViT (visual encoder). For an ith transformer

layer Li, we define the collection of learnable tokens at that

layer as Pi = {pki , 1 ≤ k ≤ n} where p corresponds to indi-

vidual tokens and n is the total number of learnable tokens.

The deep prompted visual encoder at ith can be represented

as :

[yi] = Li([yi−1, Pi−1]) (8)

where yi is the output and yi−1 is the input to the current

layer. Prompt tokens P are trained along with the 3D en-
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coder in our CG3D framework. We use the original CLIP

loss which is a contrastive loss between the image and text

features to train these prompts. We formulate the loss used

to train the prompts LP as:

LP =
1

2

∑

(f2D,ftext)∈B

(NCE(f text, f2D)+

NCE(f2D, f text))

(9)

where where f2D and f text are the image and text fea-

tures respectively. B corresponds to the batch.

3.4. Using CG3D

3.4.1 Zero-shot 3D recognition

Zero-shot 3D classification refers to the method of classi-

fying 3D objects without requiring any previous training

on those specific objects. It has a number of use-cases in

robotics and autonomous systems where objects need to be

recognized quickly and accurately, without the need for ex-

tensive training on new objects. CG3D enables zero-shot

3D recognition directly with a 3D encoder which extracts

shape features from the input point clouds. For zero-shot in-

ference, we only use the 3D and text encoder from our pro-

posed CG3D framework. The model takes as input a point

cloud test sample, denoted as xtest, and a set of prompts

T = {ti, 1 ≤ i ≤ N} where ti represents individual

text prompts and N is the total number of text prompts.

Each prompt ti is denoted in the format of ”This is a OB-

JECT”, where OBJECT represents the name of a test class.

The model’s inference procedure is similar to that of CLIP,

where it calculates the similarity score between each prompt

and the test sample and selects the prompt that yields the

highest score as the final prediction. This is formulated as:

ypred = max(softmax(〈f3D,Ftext〉)) (10)

where f3D and Ftext are the feature vectors of the point

cloud and text inputs respectively, ypred is the class pre-

diction. Note that Ftext is actually a collection of feature

vectors collected from forwarding the text queries T to the

text encoder. This process has been summarized in Fig 1.

3.4.2 Scene querying with language

3D scene understanding is an important task in computer vi-

sion. It is crucial for enabling human-robot interaction and

facilitating intuitive human-machine interfaces. In particu-

lar, querying a scene with language queries to understand

the key details of a scene is a practically useful task. One

aspect of this is answering queries such as ”What is the lo-

cation of the sofa?” or ”Where can the chair be found?”,

which can help an individual in comprehending the envi-

ronment or allow a robot to interact with it intelligently. By

accurately identifying objects and their locations within a

scene, robots can perform a wide range of tasks such as ma-

nipulation, navigation, and object recognition. Meanwhile,

Figure 3: Example of scene querying with text for a random

indoor scene from S3DIS [3] dataset.

individuals can use interactive query and visualization tools

to better understand and analyze complex 3D scenes.

CG3D enables zero-shot scene understanding with lan-

guage queries. Without training the model on indoor scenes

or using direct supervision, we show that a pre-trained

CG3D framework can be used to understand scenes with

text queries. Given an input scene, first we use k-means

clustering to divide the scene into meaningful segments.

We chose the best k value based on empirical analysis.

Next, we feed forward all these clusters to the 3D en-

coder in our CG3D framework and get a set of 3D features

F3D = {f3Di , 1 ≤ i ≤ k}. Here, k is the total number of

clusters obtained from the scene and f3Di is the 3D feature

vector from 3D encoder of CG3D for the ith cluster. We

also pass the text query to the text encoder to obtain f text.
Now, we match these 3D features with the text feature we

obtain by forwarding the input query to the text encoder

which can be denoted as:

ypred = max(softmax(〈f text,F3D〉)) (11)

where ypred is the predicted class. To demonstrate an ex-

ample for scene understanding with language using CG3D,

we pick random indoor scene as seen in Fig 3 from the

S3DIS [3] dataset and use the query ”Bookshelf”. It can

be observed that the model correctly classifies which clus-

ter is the bookshelf in the scene. Although CG3D is not

explicitly designed to provide a complete solution for open

world 3D scene understanding, it facilitates scene querying

using natural language.

3.4.3 Retrieval

3D point cloud retrieval is the process of searching and re-

trieving 3D point cloud data that is similar to a given query.

The query here can be of different modality like an image or

a text. Additionally, this can be reversed to retrieve images

from a 3D query. This has several practical applications

like matching a real-world object with its corresponding 3D
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point cloud in a virtual environment to help create more

realistic and accurate augmented and virtual reality expe-

riences. To retrieve data using CG3D, we utilize the pre-

trained encoders to obtain feature representations for both

the query and the 3D point clouds. Specifically, we feed the

image or text query into the corresponding encoder to ob-

tain its feature vector, and we do the same for the 3D point

clouds using the 3D encoder. The point clouds being for-

warded to the 3D encoder constitute the complete database

from which we are retrieving the relevant shapes. Next, we

obtain the similarity score between these query feature and

the 3D features and select the point clouds with the highest

similarity scores as the output.

In Fig 4, we demonstrate the effectiveness of CG3D in

retrieving relevant 3D point clouds and images. We ran-

domly select some web images as queries, with Model-

Net40 serving as our 3D database for shape retrieval. We

pick the top four 3D point clouds that are of the highest sim-

ilarity to the input query and display them in Fig 4. Simi-

larly, the model is queried by text to retrieve shapes. Lastly,

we perform retrieval in the reverse, by using point clouds

as queries to obtain images from a small database of web-

scraped images, experimenting with adding noise at the in-

put to demonstrate robustness. It can be observed that all the

retrieved point clouds and images are of very high similarity

to the input query, despite the presence of noise and heavily

occluded objects, proving the effectiveness of CG3D.

3.4.4 Fine-tuning for supervised tasks

Pre-training techniques are an effective strategy for enhanc-

ing the performance of fine-tuning in 3D computer vision

tasks. Pre-training models on large datasets of unlabeled

images can help them learn generic and transferable fea-

tures, making them more robust to variations in data and

enabling them to generalize well to new tasks and datasets.

Although the main objective of CG3D is its zero-shot

capabilities, it also has the potential to serve as a valuable

starting point for fine-tuning 3D models for downstream

tasks. This is due to the excellent feature representation ca-

pabilities of the 3D encoder, which has been pre-trained us-

ing natural language supervision in the CG3D framework.

Additionally, CG3D is model-agnostic, meaning that any

3D backbone can be pre-trained using CG3D, and the re-

sulting weights can be used as a starting point for down-

stream tasks. We present multiple experiments that demon-

strate the effectiveness of using CG3D for fine-tuning tasks.

4. Experiments and results

4.1. Datasets

Pre-training dataset: We choose ShapeNet [5] as the pre-

training dataset due to its large number of classes and sam-

ples. ShapeNet consists of textured CAD models of 55 ob-

ject categories and 52,460 total samples. We sample point

clouds of a fixed size from each object mesh and normal-

ize them to fit into a unit sphere. We render the colored

CAD model views in Blender to obtain a image pair for

each point cloud, following [11]. The text captions of each

point cloud-image pair are framed as a descriptive sentences

obtained from a set of standard templates such as “A photo

of a {OBJECT}”. Each input point cloud is augmented with

standard techniques such as object scaling, rotation, random

drop, and perturbations.

Fine-tuning datasets: We perform zero shot (ZS) clas-

sification and downstream fine-tuning on the popular 3D

datasets ModelNet40 [56] and ScanObjectNN [49]. As is

standard, we evaluate on the full dataset (ModelNet40) as

well as a 10-class subset (ModelNet10) for ZS classifica-

tion. ModelNet40 consists of 12,311 synthetic meshes of

common objects from 40 categories. Each mesh is down-

sampled and normalized to fit a unit sphere. ScanObjectNN

is a real-world point cloud dataset of objects from laser-

scanned indoor scenes.

4.2. Implementation details

There exist several vision-language models that can be

considered variants of CLIP that give superior zero-shot

performance on images [20, 35, 24]. We leverage the pre-

trained visual and text encoder weights from SLIP [35] to

train CG3D, due to its performance and flexibility. We

specifically choose ViT-Base [10] as the image backbone.

Pre-training: During pre-training, the visual prompt pa-

rameters and the parameters of the 3D encoder are tuned

under different optimizers in alternate iterations. This is

due to the fact that they are each supervised by disjoint loss

functions and require different learning rates. We append 5

learnable prompt tokens at the input of every encoder layer

in ViT, and initialize them randomly. The visual prompts

are tuned using the SGD [44] optimizer under a cosine

annealing [26] scheduler, with learning rate of 2 × 10−3,

weight decay 10−4 and an minimum learning rate of 10−6.

We follow the training convention of each 3D backbone. In

case of PointTransformer [68] the network is tuned using

the AdamW [27] optimizer under a cosine annealing [26]

scheduler with a learning rate of 5× 10−5 and a weight de-

cay of 0.05, with a minimum learning rate of 10−6. The

PointMLP backbone is tuned under the same optimizer-

scheduler scheme with learning rate 10−4 and weight decay

0.01. The entire framework is pre-trained for 100 epochs

with a batch size of 32.

Fine-tuning: PointMLP is finetuned using the SGD opti-

mizer and cosine scheduler with a learning rate of 0.02, a

weight decay of 2× 10−4, and a minimum learning rate of

5×10−3. PointTransformer is fine-tuned using the AdamW

optimizer and cosine scheduler, with learning rate 2×10−4,
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Figure 4: Retrieval results for CG3D.

Method
Zero-shot performance

MN10 MN40 ScanObjectNN

PointCLIP [66] 30.2 20.2 15.4

PointTransformer [68]+ CG3D 67.3 50.6 25.6

PointMLP [30] + CG3D 64.1 50.4 25.0

Table 1: Comparison of zero-shot classification perfor-

mance of CG3D against that of PointCLIP for the Model-

Net10, ModelNet40, and ScanObjectNN datasets.

a weight decay of 0.05 and a minimum learning rate of

10−6. Each network is fine-tuned for 300 epochs with a

batch size of 32 for PointMLP and 64 for PointTransformer.

Our method is prototyped in PyTorch and all experiments

are performed in a 8 GPU NVIDIA A100 cluster.

4.3. Zero-shot experiments

We present the results of zero-shot experiments con-

ducted on test distributions of ModelNet10, ModelNet40,

and ScanObjectNN in Table 1. We experiment with two

backbones: PointTransformer and PointMLP pre-trained

with CG3D. Note that the previous method PointCLIP uses

a 2D depth map and CLIP’s visual encoder to get the predic-

tion. We directly use the 3D encoder and extract relevant 3D

shape features to perform the zero-shot classification. This

gives a significant improvement over PointCLIP with an in-

crease of 37.1% on ModelNet10, 30.4% on ModelNet40,

and 10.2% on ScanObjectNN.

4.4. Fine-tuning Experiments

We present the results of our fine-tuning experiments in

Table 2 on both synthetic (ModelNet40) and real (ScanOb-

jectNN) datasets. For ScanObjectNN, we pick the hard-

est variant PB-T50-RS for our experiments. We com-

pare against leading backbones as well as pre-training

methods like Point-BERT and Point-MAE. We show fine-

tuning performance on two backbones PointTransformer

and PointMLP. It should be noted that our framework was

not primarily developed to be a pre-training strategy, but

rather to enable zero-shot capabilities for a 3D encoder.

Method
Overall accuracy

ModelNet40 ScanObjectNN

Pointnet [39] 89.2 68.0

Pointnet++ [40] 90.5 77.9

PointCNN [23] 92.2 78.5

DGCNN [54] 92.9 78.1

Point-BERT [63] 93.2 83.07

Point-MAE [37] 93.8 85.18

PointTransformer [68] 91.62 ± 0.29 75.56 ± 0.24

PointTransformer [68] + CG3D 92.93 ± 0.06 80.95 ± 0.54

PointMLP [30] 92.61 ± 0.13 84.08 ± 0.55

PointMLP [30] + CG3D 93.35 ± 0.18 85.78 ± 0.75

Table 2: Comparison of fine-tuning performance of CG3D

with initial weights on ModelNet40 and ScanObjectNN

(hardest variation: PB-T50-RS) against previous methods.

Even then, our framework demonstrates competitive perfor-

mance as a pre-training strategy as observed in Table 2. In

particular, we obtain a boost of 5.39% , 1.31% while us-

ing CG3D starting weights than random weights for Point-

Transformer on ScanObjectNN and ModelNet40 respec-

tively. Also, we obtain a boost of 1.7% , 0.74% while using

CG3D starting weights than random weights for PointMLP

on ScanObjectNN and ModelNet40 respectively. These

observations show the versatility of our proposed frame-

work. We re-run the from-scratch expriments for the Point-

Transformer and PointMLP networks. To account for vari-

ability, we conducted the finetuning experiments for Point-

Transformer and PointMLP three times each, starting from

scratch and also starting with CG3D weights. To account

for this, we have reported the mean and standard deviation

of the results obtained from these experiments.

5. Discussion

Ablation Study: We conduct an ablation study to analyze

the role that each component of CG3D has on zero-shot per-

formance. In Table 3, we report the overall zero-shot accu-

racy of the PointTransformer 3D encoder pre-trained under

different loss configurations for the PB-T50-RS variant of
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ScanObjectNN. We start with the configuration of training

the 3D encoder with L(3D,2D) and L(3D,text) individually.

We note that training with L(3D,text) gives a slight improve-

ment over just training with L(3D,2D). Next, we pre-train

CG3D with both these losses which obtains better perfor-

mance over individual configurations. After this, we incor-

porated visual prompts into the CG3D model and trained it

using LP . This further improved the model’s performance.

L(3D,2D) L(3D,text) visual prompt ZS

� × × 19.1

× � × 19.7

� � × 23.9

� � � 25.6

Table 3: Ablation Study on ScanObjectNN.

Analysis on Less Data: Pre-trained models are partic-

ularly useful when dealing with tasks that have limited

access to data. To prove the effectiveness of CG3D

in such scenarios, we conduct experiments on Model-

Net40 with both PointMLP and PointTransformer as back-

bones. We fine-tune each 3D backbone on different sub-sets

10%, 20%, 30%, 50% of the data and present the results in

Fig. 5. It can be observed that the model trained with start-

ing weights of CG3D always obtains better performance

than starting with random weights across all configurations.

Figure 5: Experiments on data scarce setups on Model-

Net40 with PointTransformer and PointMLP backbones.

Visualization of 3D Feature Representations: For anal-

ysis of the quality of features learned by our method, we

visualize the UMAP [32] embeddings of 3D and image fea-

tures extracted by CG3D while using ModelNet10. In Fig.

6, we plot the 3D feature learned by PointTransformer be-

fore and after pre-training with CG3D. Most features lack

class separability before pre-training as can be seen in Fig.

6a. After pre-training, the 3D encoder is able to produce

class discriminative features even for unseen categories in

ModelNet10 as seen in Fig. 6b.

Effect of Prompt Tuning: We visualize the image fea-

tures learned by the visual encoder with and without the

learned prompts in CG3D. Since textured CAD models are

not available for all samples, we consider depth maps of

the points projected in the 2D plane. Figure 7a shows the

depth map image features learned by the CLIP visual en-

coder. Since these images are visually dissimilar from natu-

ral images, the encoder fails to produce discriminative fea-

tures. However, as seen in Figure 7b, the visual encoder

(a) Before CG3D. (b) After CG3D.

Figure 6: Comparison of UMAP embeddings of point cloud

features from 3D encoder of CG3D while using Model-

Net10 3D point clouds.

trained with visual prompts after CG3D pre-training pro-

duces features with improved class separability proving the

effectiveness prompt tuning.

(a) Without VPT. (b) After contrastive VPT.

Figure 7: Comparison of UMAP embeddings of visual en-

coder features of CG3D with ModelNet10 depth maps.

Limitations: We note that our pre-training dataset is still

small in size, and consists of only simulated point cloud ob-

jects, thus limiting the potential of CG3D. To build a pow-

erful foundation model for 3D, we need to work on data

curation of 3D pointclouds, with corresponding images and

text captions. We also focused on pre-training on objects

and not scenes. Pre-training on scenes could open up inter-

esting full scene understanding capabilities in CG3D.

6. Conclusion

In this paper, we proposed a new framework CG3D,

where a 3D Encoder is introduced into the CLIP frame-

work. This 3D Encoder is trained such that the extracted 3D

features align with the image and text features of the same

category. We also proposed using learnable visual prompts

to shift the rendered image distribution to that of the CLIP

to get better representative image features from the visual

encoder. Through extensive analysis, we demonstrate the

zero-shot capabilities of CG3D, which enables zero-shot

3D classification, scene querying with natural language, and

cross-modal retrieval. Furthermore, CG3D provides strong

initial weights when training 3D networks for downstream

tasks.
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