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Figure 1. On the left: An illustration of the problem we aim to address in this work. Given an image pair of a 3D scene, with a significant

shift in camera pose, can we detect what has changed? On the right: Top prediction by our model on images from the popular TV show

The Big Bang Theory depicting the missing DNA-model.

Abstract

The goal of this paper is to detect what has changed, if
anything, between two “in the wild” images of the same 3D
scene acquired from different camera positions and at dif-
ferent temporal instances. The open-set nature of this prob-
lem, occlusions/dis-occlusions due to the shift in viewpoint,
and the lack of suitable training datasets, presents substan-
tial challenges in devising a solution.

To address this problem, we contribute a change detec-
tion model that is trained entirely on synthetic data and
is class-agnostic, yet it is performant out-of-the-box on
real world images without requiring fine-tuning. Our solu-
tion entails a “register and difference” approach that lever-
ages self-supervised frozen embeddings and feature differ-
ences, which allows the model to generalise to a wide va-
riety of scenes and domains. The model is able to oper-
ate directly on two RGB images, without requiring access
to ground truth camera intrinsics, extrinsics, depth maps,
point clouds, or additional before-after images. Finally,
we collect and release a new evaluation dataset consist-
ing of real-world image pairs with human-annotated differ-
ences and demonstrate the efficacy of our method. The code,
datasets and pre-trained model can be found at: https:
//github.com/ragavsachdeva/CYWS-3D

1. Introduction

From the way leaves rustle in the wind to the shifting pat-

terns of clouds in the sky, our world is in a constant state

of flux. Yet detecting and localising changes in complex

3D scenes remains a challenging task for computer vision.

Imagine being able to identify the changes between two im-

ages of the same scene captured at separate moments in time

and from different viewpoints, as shown in Figure 1. This is

the challenge we aim to address in this work. With applica-

tions in fields such as robotics, facility monitoring, forensics

and augmented reality, our work has the potential to unlock

new possibilities for understanding and interacting with our

dynamic world.

We formulate the problem we study as follows: Given a

pair of 2D images of a 3D scene, captured with a significant

shift in camera position and at different temporal instances,

we wish to localise the changes between them, if any. In

particular, we wish to capture everything that is physically

different in the regions that are visible in both the im-
ages while disregarding areas that appear or disappear from

view due to the shift in camera pose or occlusion. This in-

cludes objects that may have been added or removed from

the scene, and text or decorations that may have been added

to an object, but we wish to ignore photometric differences

such as a lighting change. Under this setting, differentiating

true changes from occlusions or dis-occlusions is intrinsi-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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cally ill-posed using 2D images alone. In other words, an-

swering the question “Is this object missing in the other im-

age, hidden behind another object, or simply out of frame?”

fundamentally requires the 3D shape of the scene, which is

not directly available to us apriori. Furthermore, it is not

possible to compute the shape of the given 3D scene us-

ing two-view stereo methods as they rely on corresponding

points in the two images which are inherently non-existent

in case of changes such as missing objects. Consequently,

in the absence of the scene’s ground truth geometry, it is

theoretically infeasible to reason about the relative posi-

tion, scale and shape of the objects in the scene, and how

or where they might appear when observed from a differ-

ent viewpoint (see Figure 1). This, coupled with the lack of

large-scale real-world datasets that include image pairs of

changing scenes captured from significantly different view-

points, makes devising a solution to this general two-view

change detection problem very challenging.

Nevertheless, our objective is to detect changes in “in

the wild” real world images with minimal constraints and

operate on RGB images only, without assuming access to

ground truth geometry, depth, camera parameters, camera

poses etc. Our solution is to build on the insight that once

the two views are registered, it is relatively easy to deter-

mine what has changed. We thus proceed in two stages:

(1) register by warping the spatial features from one image

to the other, and this fundamentally needs to be in 3D; (2)

determine the differences by training a detector on top of

these registered spatial feature maps in order to identify the

significant changes, and ignore “nuisance” variables such

as changes in lighting. Briefly, we first use an off-the-shelf

pre-trained visual backbone to extract spatial feature maps

for an RGB image pair. We then lift these 2D feature maps

to 3D by making use of state-of-the-art monocular depth

estimation models, followed by a differentiable feature reg-

istration module (DFRM) to align and render the features

maps back to 2D in the other view. Finally, we utilise a sim-

ple detection head to process these features and output the

changes. To overcome the issue of lack of real-world train-

ing data, we train our model exclusively on synthetic data

with controlled 3D changes. In order to permit sim2real, we

keep the visual backbone frozen throughout training, and

decode difference of registered features.

Since the notion of change necessitates a pair of corre-

sponding regions with some differences, our formulation re-

quires model predictions in both the images. For instance, if

a car is present in one image but missing in the other, we ex-

pect the model to put bounding boxes around both – where

the car is, and where the car “should have been”. Further-

more, since the changes in “in the wild” images are custom-

arily open-set, our model is designed to be class-agnostic.

We demonstrate that a model trained in this fashion zero-

shot generalises to a wide variety of datasets including 2D

scenes, 3D scenes, synthetic and real-world images.

In the following we provide an overview of the existing

literature (Sec. 2), details of the proposed method (Sec. 3),

experiments and results (Sec. 4), and finally some conclud-

ing remarks (Sec. 5). We will release the code, datasets and

trained model.

2. Related Work
The problem of exploring visual changes has been studied

in several different flavours previously. In this section we

loosely group these works into two categories, 2D and 3D,

and describe how our problem setting relates/differs from

them.

2D (-ish): A typical scenario for the change detection prob-

lem is one where we have a pair of before-after RGB im-

ages, where the camera is either fixed i.e. the images

are related by an identity transformation (e.g. images from

surveillance cameras), there is a planar-scene assumption

(e.g. bird’s eye view or satellite images), or in the general

case there is limited shift in viewpoint (e.g. street scenes

looking at distant objects/buildings), and the model is ex-

pected to identify the changes between them. Most of the

existing works in the change detection literature belong to

this category.

[18, 17, 21, 12] tackle the change captioning problem

where the goal is to describe the changes in an image pair

in natural language. These methods mainly evaluate their

approach on the STD [10] (images from fixed video surveil-

lance camera), or CLEVR-based change datasets [18, 21,

12] (synthetic images of 3D objects of primitive shapes).

Since the problem these works address is change caption-

ing, their approaches do not deal with precise localisation

of changed regions.

[27, 1, 28, 14] tackle the change localisation problem,

specifically for street-view images where the goal is to

produce segmentation masks for changed regions. These

methods mainly evaluate their approach on TSUNAMI [27]

(panaromic, street-view images), VL-CMU [1] (images of

urban scenes with macroscopic changes) and PCSD [28]

(panoramic, street-view images). While these datasets

do not technically have the planar-scene assumption or a

fixed camera, the scenes are of distant buildings and there

is no “peeking behind” objects due to a shift in camera

pose. Since pixel-wise change annotation is expensive,

these datasets often suffer from non-comprehensively la-
belled test sets, limited to a set classes.

Recently, [26] proposed a class-agnostic method that

tackles the change detection problem for arbitrary images

that are related by a homography transformation, as a

bounding-box based detection problem. They evaluate their

approach on STD [16], Kubric-Change [26] (3D objects

resting on a 2D plane, camera is not fixed but the images
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Figure 2. DFRM: Given two images, we first obtain corresponding points and depth maps which are used to estimate the 3D transformation

Tr→q . Then given a feature map for each image along with the depth map, we create a point cloud of c-dimensional feature vectors, warp

it using the estimated transformation and render it to 2D grid. Notice the black regions in the rendered grid. These regions are dis-occluded

and contain c-dimensional 0 vectors. We obtain a soft visibility mask to counteract the effect of dis-occluded regions when computing the

difference.

are captured from bird’s eye view) and others.

Similar to the methods above, we also tackle the change

detection problem in a pair of RGB images. However,

unlike previous methods our setting involves general two-
view images of 3D scenes (we do not assume fixed camera

or planar scenes and in our case there is a significant shift

in camera pose) and we particularly focus on making our

model work on open-set, real-world images. The problem

formulation closest to ours is that of [26] in that [26] also

train a class-agnostic model that produces bounding boxes

around changed regions in both the images except they

train and evaluate on 2D scenes.

3D: The change detection problem has also been studied ex-

plicitly for 3D data (e.g. multiview before-after images, 3D

scans etc.). [19] tackle the change captioning problem in

a 3D setting by assuming multi-view images are available

both before and after the change. [20] further propose an

end-to-end framework for describing scene changes from

various input modalities, namely, RGB images, depth im-

ages, and point cloud data. Recently, [22] proposed a task

to explicitly localise changes in the form of 3D bounding

boxes from two point clouds and describe detailed scene

changes for a fixed classes of objects. Unlike these works,

we only assume access to a single-view image for both be-

fore and after scenes and do not operate on explicit 3D
data like point clouds. Since RGB images are more readily

available, it allows our method to be easily applied to real-

world scenes. The closest setting to our is of [5] who tackle

the change detection problem for general two-view images,

except their model is trained and tested on the same syn-

thetic setting with 4 fixed classes1.

3. Method
3.1. Overview

Given an image pair of a 3D scene, captured with a signif-

icant shift in camera viewpoints, our goal is to localise the

changes between them in the form of bounding box predic-

tions for each image. In particular, we only wish to capture

changes in the regions that are visible in both the images

while disregarding areas that appear or disappear from view

due to the shift in camera pose.

Our approach, which is overviewed in Figure 2, begins

by extracting dense spatial image descriptors from each im-

age using a pre-trained transformer-based visual backbone,

which are then processed to obtain feature maps at multiple

spatial resolutions using a U-Net [24] style encoder. Next,

in order to reason between changes and occlusions/dis-

occlusions, we need 3D information. Inspired by [31], our

DFRM “lifts” the features to 3D, and differentiably regis-
ters and renders them. After obtaining registered features,

we compute their difference in order to identify what has

changed. Finally, we decode the difference of registered

features using a U-Net style decoder, followed by a bound-

ing box prediction head. We next describe the architecture,

which is illustrated in Figure 3.

3.2. Architecture

Backbone: Given two images I1 ∈ R
3×H×W and

I2 ∈ R
3×H×W , we first encode I1, I2 using a pre-trained

frozen visual backbone, represented by ΦB(·), to obtain

1Not available publicly at the time of writing.
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Figure 3. Architecture: Given two images, we first extract dense spatial feature maps using a pre-trained visual backbone. Following this,

a CNN-based encoder is used to extract visual descriptors at multiple spatial resolutions. We then use a differentiable feature registration

module (DFRM) to warp features from one image to another (such that they are registered), and take their difference (only one resolution

is shown for the purpose of visualisation, however this operation is performed at multiple resolutions). Finally, these difference of feature

maps are processed by a CNN-based decoder followed by a bounding box detection head. For brevity, we only show the prediction for one

of the images, however, the pipeline is symmetric for the other. Please see Sec. 3 for more details.

two sets of feature descriptors per image represented by

f1
s , f

1
d = ΦB(I1) and f2

s , f
2
d = ΦB(I2). In practise, ΦB(·)

is the ViT-B/8 [6] architecture, where fs and fd represent

shallow and deep features.

U-Net Encoder: We process f1
d , f

2
d using a U-Net style

encoder, represented by ΦE(·), to obtain g1n = ΦE(f
1
d )n

and g2n = ΦE(f
2
d )n after each downsampling block

n, resulting in a set of multi-resolution feature maps

G1 = {f1
d , g

1
1 , g

1
2 , g

1
3 , g

1
4} and G2 = {f2

d , g
2
1 , g

2
2 , g

2
3 , g

2
4},

for image I1 and I2 respectively.

Feature Registration and Difference: Given G1, G2,

we use a differentiable feature registration module (de-

scribed in Sec. 3.3) to obtain a warp of feature maps

at each spatial resolution such that the original features

of one image are registered with the warped features of

the other image. We then compute their element-wise

difference and mask out occluded/dis-occluded regions.

Specifically, for feature maps at spatial resolution i, we

obtain the feature map H1
i = v2→1(G

1
i − τ2→1(G

2
i )) and

H2
i = v1→2(G

2
i − τ1→2(G

1
i )), for I1, I2 respectively,

where τr→q represents the 3D feature warp operator from

image Ir to Iq , and vr→q represents the soft visibility mask.

U-Net Decoder: Following this, we decode the set of

feature maps H1 and H2 using a U-Net decoder modulated

with scSE blocks [25], represented by ΦD(·) to produce

feature maps k1 and k2 respectively.

Bbox Head: Finally, feature maps [f1
s ‖ k1] and [f2

s ‖ k2],
where [ ‖ ] is the concatenation operation (along channel

dimension), are fed into a CenterNet head [32], which min-

imises the detection loss function as described in [32], to

produce bounding boxes around changed regions in both

the images. The motivation for concatenating shallow fea-

tures fs with k is that it serves as the final skip connection

before the prediction head, which is consistent with the typ-

ical U-Net style model, and additionally shallow features

are known to capture more positional information, as op-

posed to deep features which capture more semantic infor-

mation [2], and therefore can help with localisation.

3.3. Differentiable Feature Registration Module
(DFRM)

Given images Ir, Iq ∈ R
3×H×W , along with their feature

maps fr, fq ∈ R
c×h×w respectively, we use the following

three-step process, represented by τr→q(·), to warp fr

such that fq and τr→q(f
r) are registered. See Figure 2 to

visually conceptualise all the moving parts.

Step 1: Estimate a 3D linear transformation. In order

to register the two feature maps, we must estimate a 3D

transformation between the two images. To do so, first we

obtain a set of n corresponding points P r, P q ∈ R
n×2 (in

normalised coordinates) in image Ir, Iq respectively, using

a correspondence extractor represented by C(·). Following

this, we estimate the depth maps Dr, Dq ∈ R
3×H×W using
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a monocular depth estimator represented by D(·). Finally,

to estimate the transformation, we first back-project each

point (xj , yj) ∈ P r, P q as,

P̂j =
[
djxj djyj dj 1

]T
(1)

where dj is the depth value at point Pj , resulting in two

sparse 3D point clouds P̂ r, P̂ q ∈ R
n×4 in homogenous

coordinates. Following this, we estimate a transformation

matrix Tr→q ∈ R
4×4, such that Tr→qP̂ r

j ≈ P̂ q
j , using the

following closed-form solution:

Tr→q =
(
P̂ r

+
P̂ q

)T

(2)

where P̂ r
+ ∈ R

4×n is the Moore-Penrose inverse of P̂ r.

Step 2: Lift the features to 3D and warp. For each c-
dimensional feature vector in fr ∈ R

c×h×w, we project

its normalised 2D grid coordinates (xj , yj) to a point

( x
′
j/k, y

′
j/k, z

′
j/k ) in 3D, where

[
x

′
j y

′
j z

′
j k

]T
= Tr→q

[
djxj djyj dj 1

]T
(3)

where dj is the estimated depth value of this point, resulting

in a 3D point cloud of fr feature vectors that are aligned

with fq .

Step 3: Differentiable feature rendering. Given the 3D

point cloud, we render it to the 2D grid using a differen-

tiable renderer R(·). However, instead of rendering RGB

colours, we render c-dimensional feature vectors for each

point. For this, we employ a differentiable point cloud

renderer, as in [31]. The advantages of this differentiable

point cloud renderer are two fold: (1) it solves the “small

neighbourhood” problem, wherein each feature-point

projects to only one or a few pixels in the rendered view,

by splatting the points to a disk of controllable size, and

(2) the “hard z-buffer” problem, wherein each rendered

pixel is only affected by the nearest point in the z-buffer, by

accumulating the effects of K nearest points. Both of these

allow for better gradient propagation during training. In

addition to obtaining the rendered features, we also obtain

a visibility mask vr→q to deal with occluded/dis-occluded

regions (see Figure 2). This is obtained by setting the 2D

coordinates of the rendered points to 1 on a grid initialised

with 0s. However, due to the splatting behaviour of the

renderer, the visibility mask obtained is soft and not binary.

Alternate registration strategies: Since DFRM is

training-parameter free, during inference τr→q(·) may

utilise alternate registration strategies. For instance, if

ground truth depth is known for each image, it can di-

rectly replace Dr, Dq obtained using the monocular depth

estimator D(·). In addition to ground truth depth, if the

camera intrinsics and extrinsics are known, points can be

directly back-projected and warped using relative camera

poses without needing to estimate the transformation Tr→q .

Furthermore, if only Dr is available, Perspective-n-Point

methods [9] can be used to warp features fr onto fq .

On the other hand, if it is known apriori that the images

are of planar scenes, depth is not needed and each 2D grid

coordinate can be warped using Tr→q ∈ R
3×3 which can

either be supplied or estimated using standard homography

estimation methods. If the scene consists of multiple planes

(e.g. floor and wall), it may also be possible to obtain de-

sired results using a multi-grid [15] or multi-plane homog-

raphy estimation [9] to register the images.

3.4. Details and discussion

The ViT-B/8 [6] backbone φB(·) is initialised with DINO

model weights [4]. DINO features are known to encode

powerful high level semantic information at fine spatial

granularity and recent works have shown that scalar prod-

uct of DINO features can be used to compute high quality

semantic correspondences [2]. Orthogonally to computing

correspondences, we utilise these powerful DINO features

to compute changes. To prevent the model from overfit-

ting to synthetic data and corrupting the quality of DINO

features, we keep the backbone frozen during training. In

order to allow sim2real, our decoder only ever operates on

the difference of features, which is negatively proportional

to the scalar product i.e. the higher the scalar product the

smaller the difference, and therefore we only consider the

similarity of features (or the lack of) rather than the features

themselves (whether synthetic or real). Following [2], we

increase the resolution of model features by changing the

stride of the patch extraction (from 8 to 4) and adjusting

the positional encoding appropriately via interpolation, al-

lowing us to operate on more granular spatial features. The

shallow features and deep features fs, fd are extracted from

the keys of the Multiheaded Self-Attention layers of the

third and the last block respectively, an insight also from [2].

For correspondence extractor C(·), we experimented

with [11, 30] but found SuperGlue [29] to work the best at

generating high quality dense correspondences and at high

inference speed. After extracting 2D correspondences from

SuperGlue, we filter out outliers using RANSAC. Finally,

for the monocular depth estimator D(·), we tried [23, 7]

but found the recently released ZoeDepth [3] to consistently

produce better results.

4. Experiments
This section describes the data we used to train our model,

evaluation benchmarks and baselines, and various imple-

mentation details. Please see Table 1 for an overview of the

datasets used and Figure 4 for some example images.
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Figure 4. Qualitative results: We show the bounding box predictions in yellow (solid) of our model on all the test sets, along with the

ground truth in blue (dashed).

4.1. Training datasets

Due to the lack of existing large-scale real-world datasets

for the change detection problem, as formulated in this

work, we fall-back to training our model entirely on

synthetic data. Specifically, we train our model jointly on

the following two datasets:

KC-3D: Similar to [26], we make use of the Kubric

dataset generator [8] to curate 86407 image pairs (of

which 4548 images pairs are for validation) of 3D scenes

with controlled changes. The scenes consist of randomly

selected set of 3D objects spawned at random locations on

a randomly textured plane, where we iteratively remove

the objects and capture “before” and “after” image pairs.

However, unlike [26] where they capture birds-eye view

images only, we capture images from a wide variety of
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Figure 5. Failure cases: Here we show some RC-3D images where our model failed to localise the correct changed region. We classify an

output as a failure if the top-5 most confidence bounding boxes do not contain the ground truth changed region. Predictions are in yellow

(solid), ground truth is in blue (dashed).

camera poses inside a cylindrical space around the objects.

In addition, we also capture the depth maps, camera

intrinsics and extrinsics for each image to supply to DFRM

during training.

COCO-Inpainted: While KC-3D captures the underlying

challenges of our task in terms of viewpoint shift quite well,

it lacks diversity in terms of kinds and sizes of objects.

Therefore, we additionally utilise the recently introduced

COCO-Inpainted dataset [26] for training. While this is

a 2D dataset, where the image pairs are perturbed by an

affine transformation, it helps the model learn to predict

changes of various kinds and sizes.

4.2. Testing datasets

To test the performance of our model, we evaluate it on the

following test sets.

KC-3D: Following the same pipeline as before, we curate

an additional 4548 image pairs of 3D scenes from Kubric

for testing purposes (making the total number of image

pairs in KC-3D to be 90955).

RC-3D: To quantify our model’s capacity to generalise to

real-world images, we manually collect and label a small-

scale test set consisting of 100 images pairs, capturing a

diverse set of common objects found in everyday places

like office, kitchen, lounge etc. The images were captured

using a handheld Apple iPad Pro (4th Gen) and Apple

iPhone 14 Pro, which come with a built-in LiDAR giving

us aligned RGB-D images.

Cyws Test Sets: Since the problem we are tackling sub-

sumes the change detection problem in planar scenes, we

also evaluate our model on 2D test datasets proposed

in [26], namely COCO-Inpainted, VIRAT-STD, Kubric-

Change, and Synthtext-Change.

Test set COCO-Inpainted Synthtext-Change VIRAT-STD Kubric-Change KC-3D RC-3D

type inpainting text surveillance sim sim general 2-view

change synthetic synthetic real synthetic synthetic real

geometry affine identity identity 2D-ish (bird’s eye) 3D 3D

# train images 60000+ - - - 81859 -

# test images 4408 5000 1000 1605 4548 100

Table 1. Datasets. KC-3D and RC-3D are ours. Others are

from [26].

4.3. Baseline and metrics

To the best of our knowledge, no prior works have tack-

led the change detection problem in a general two-view and
class-agnostic setting like us which makes it difficult to di-

rectly compare our work with prior art. Nevertheless, we

use cyws [26] as a baseline as their formulation is the same

as ours, except restricted to 2D transformations. To allow

for a fair comparison, in addition to reporting the results

using their open-sourced model, we also finetune their pre-

trained model on the same training dataset as ours for 100
epochs (best model is picked using lowest loss on val set).

We use the average precision metric to report our results,

similarly to [26].

4.4. Training details

We trained the model on 4× A40 GPUs for 50 epochs us-

ing the DDP strategy with a batch size of 16, where the best

model is chosen using a validation set (COCO-Inpainted val

set as in [26] + a KC-3D val set). Images were augmented

with CropAndResize, HorizontalFlips and ColourJittering,

and resized to 224× 224 due to the DINO-ViT [4] require-

ments. Since our training data is entirely synthetic, during

training we use ground truth data for τr→q(·) rather than

estimating it. The overall objective was optimised using

Adam [13] with learning rate of 0.0001 and weight decay

of 0.0005.

4.5. Results

We evaluate our model, which is trained on synthetic data

described in Sec. 4.1, on a diverse set of testing datasets as

described in Sec. 4.2 with no further training/finetuning.
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test dataset
COCO-Inpainted

VIRAT-STD Synthtext-Change Kubric-Change KC-3D RC-3D
small medium large all

depth Const. Const. Const. Const. GT GT Est.

registration GT GT Est. Id. Id. Est. GT Est. Est.

method training data (Const. = Constant, Id. = identity, Est. = Estimated, GT = Ground Truth)

cyws coco-inpainted 0.46 0.79 0.85 0.63 0.65 0.89 0.76 0.13 0.12

cyws coco-inpainted + KC-3D 0.41 0.73 0.78 0.57 0.54 0.87 0.76 0.87 0.14

ours coco-inpainted 0.34 0.69 0.76 0.52 0.51 0.46 0.85 0.84 0.14 0.10 0.35 0.27

ours KC-3D 0 0.03 0.06 0.02 0.02 0.01 0.01 0.23 0.83 0.69 0.19 0.19

ours coco-inpainted + KC-3D 0.36 0.72 0.77 0.53 0.52 0.49 0.84 0.84 0.82 0.68 0.50 0.41

Table 2. Results: We report the AP of cyws [26] and our model on test sets described in Sec 4.2.

Table 2 contains the quantitative results in terms of average

precision, while we show some qualitative predictions of

our model in Figure 4 and some failure cases in Figure 5.

3D scenes (KC-3D, RC-3D): From Table 2 it is evident that

our model produces impressive results on both synthetic

and “in the wild” real-world images. Particularly in the

case of RC-3D, the model produces almost 4× better

results than the baseline and performs well even in the

most challenging setting when only RGB image pairs are

available as input. Despite only having been trained on

synthetic data, the remarkable performance of the model

on real-world images validates the design choice of only

using feature differences and not features directly (unlike

cyws, where their co-attention module concatenates the

cross-attended features). On the other hand, we observe a

surprising result from the cyws model, which is able to pro-

duce impressive results on KC-3D dataset when finetuned

on it. It is likely that the cyws model is “over-fitting” to the

Kubric setting given that the set of objects and scenes in

Kubric [8] are limited (different scenes just have different

random combinations from the same set of objects and

backgrounds). Despite this fact, it is still interesting that the

model is able to reason about changes despite not being 3D

aware. Nevertheless, this performance does not generalise

to real-world images as observed by its poor results on

RC-3D.

2D/fixed-camera scenes (Cyws test sets): In the 2D set-

ting, we found that our model is often comparable but not

strictly better than cyws. In particular, we observed that

our model particularly struggles with detecting really small

changes in comparison to cyws which is likely due to the

fact that cyws operates at higher input resolution than us

(256× 256 vs 224× 224) and that the number of trainable

parameters in our model is 31.5M which is much less than

49.5M in cyws. Furthermore, we found that a lot of the

annotations (for COCO-Inpainted small and VIRAT-STD),

are extremely small (handful of pixels, almost indiscernible

to human-eye). This becomes problematic for our model

when the input resolution is reduced to 224× 224. In addi-

tion, the ground-truth annotations for VIRAT-STD are noisy

(both false positives and missing annotations, see Figure 4

where our model predicts valid changes that are missing

from ground truth).

4.6. Limitations

Despite the remarkable ability of our model to localise

changes in real-world general two-view images, it suffers

from a few limitations. A potential concern is the large size

of the model. While the number of trainable parameters

is 31.5M (which is less than 49.5M in cyws), accounting

for the frozen DINO-ViT backbone [4] with 85.8M parame-

ters, our total model size is roughly 117M parameters. This

makes it much slower to train and infer from than cyws.

However, it must be acknowledged that this large backbone

comes with the added benefit of making our model gener-

alisable to real-world images even though it has only been

trained on synthetic data. Another potential cause of con-

cern is that it relies on a good estimated registration, which

in turn relies on reliable correspondences and depth, which

may not be always available. On the other hand, it also

means that as better correspondence extractors and monoc-

ular depth estimators become available, our model’s results

can improve at no additional cost.

5. Conclusion

In the ever-changing landscape of our world, the task of

detecting changes in a 3D scene is daunting for both hu-

mans and machines alike. In this work we take a step

closer towards solving this problem by automatically de-

tecting changes in real-world images captured from signif-

icantly different viewpoints. Due to the lack of large-scale

real-world training datasets for this problem, we propose

a model that is trained entirely on synthetic data but can

generalise to real-world scenes by leveraging the recent ad-

vances in computer vision. Following previous works, we

largely focused on detecting missing objects as they are

easy to acquire and precise. However, we note that our

model should not be confused with a “(missing) object de-

tector”. While it is trained on object-centric datasets, our

model can zero-shot detect all sorts of open-set changes.
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