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Abstract

Drone-based image processing offers valuable capabili-

ties for surveillance, detection, and tracking in vast areas,

aiding in disaster search and rescue, and monitoring arti-

ficial events like traffic jams and outdoor activities under

adversarial weather conditions. Nonetheless, this technol-

ogy encounters numerous challenges, including handling

variations in scales and perspectives and coping with en-

vironmental factors like sky interference and the presence

of far and small objects. Besides, ensuring high visibility

distance in 3D depth is crucial for safe flights in various

settings, including airports, cities, and fields. However, lo-

cal weather conditions can change rapidly during flights,

leading to visibility issues caused by fog and clouds. Due to

the cost of visibility measurement sensors, lower-cost meth-

ods using portable apparatus are desired for flight routines.

Therefore, this paper proposes a camera-based visibility

and weather condition estimation approach using comple-

mentary multiple Deep Learning (DL) and Vision Language

Models (VLM) under adversarial conditions. Experimental

results show the superiority of enhanced 2D/3D captions

with physical scales over SOTA VLMs.

1. Introduction

Recent advances in manned and unmanned aerial vehi-

cles (AVs and UAVs) have led to their widespread use in

various applications [32, 2, 1]. These vehicles are equipped

with cameras, enabling surveillance and recognition of ob-

jects and scenes using Image Processing, Computer Vision

(CV), and Deep Learning (DL) techniques [26], [52]. AV

and UAV cameras offer higher usability with 3D coverage

and viewing angles than fixed cameras. However, chal-

lenges arise from adverse weather conditions, such as fog

and heavy rainfall, causing low visibility that hinders safe

flights. Expensive visibility sensors have been used at spe-

cific airports, while other locations rely on operators’ visual

observations. Robustness to such adversarial visual condi-

tions is essential but requires augmenting training images,

which can be time-consuming [32, 2, 1, 26, 52]. Over the

past few years, there has been substantial advancement in

the Vision Language Model (VLM) domain [55, 59]. Deep

Learning (DL) and Vision Language model (VLM) are use-

ful for object detection, segmentation, and classification

tasks. VLMs can understand vision and text, enabling tasks

like Vision-Question-Answer (VQA) and image captioning.

Image reconstruction by DL models has been proven ef-

ficient for many tasks. However, almost all state-of-the-

art (SOTA) DLs and VLMs present high performance in

fair conditions, but the performance was degraded under

adverse conditions. Besides, a single DL and VL model

might not adapt, and segmentation limitations impact visi-

bility, distance, and weather condition estimation results.

Thus, this paper presents an integrated system with mul-

tiple DL and VL modes to estimate visibility, distance, and

weather condition from fixed and AV/UAV cameras.

The proposed system consists of seven modules, i.e.,

Deep Reject (Dreject), Deep Context (Dcontext), Deep Vi-

sual Language Segmentation (Dvls), Deep Visual Language

Detection (Dvld), Deep Weather (Dweather), Deep Visibil-

ity (Dvis), and Deep Distance (Ddist). The branched ar-

chitecture allows us to maintain and upgrade each of the

eleven modules efficiently. Contributions of this paper are

fourfold:

1. Multiple vision language and Transformer-based Deep

Learning (DL) models with branched structures for ef-

ficiency in light of memory, training, and maintenance.

Dreject excludes difficult images, i.e., lens reflection,

to stabilize the overall system. Due to images from ad-

versarial weather conditions, Dvls, Dcontext, and Dvld

have fine-tuned VLMs from SOTA models for segmen-

tation, detection, and classification, respectively.

2. The system enables the realization of a low-cost and

portable camera system by multiple DL models, i.e.,

Dreject, Dcontext, Dweather, Dvld, Dvls, Dvis, and

Ddist. The proposed combination method enables the

estimation of visibility levels for UAVs without the

need for expensive systems.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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3. More refined and enriched captions are generated

based on multiple modules, i.e., Dweather, Dvis, and

Ddist. Dweather estimates the weather condition of

scenes. Ddist estimates the distance between far ob-

jects and a camera, and Dvis utilizes image-data re-

gression for visibility estimation without the need for

landmarks or geo-tagged scenes.

4. The proposed DL models and system have undergone

experiments covering various lighting and weather

conditions, confirming their stability, robustness, and

accuracy. Additionally, the camera-based assistance

for UAVs is useful for rescue during disaster events.

2. Related Work

This section describes related works on Computer Vi-

sion (CV), Deep Learning (DL), and Vision Language (VL)

models, mainly in visibility estimation and segmentation

using cameras.

2.1. Visibility Estimation

Visibility distance can also be considered one of the most

important factors for a safe flight and accident reduction. At

most airports, visibility is observed by experienced opera-

tors. Although visibility measurement can also be used, it is

often restricted to the application due to the expensive and

point-wise measurement tools. Various methods have been

proposed for visibility estimation, such as using wavelet

transform [5], spatially partial structure reconstruction [4],

detecting road markings and calculating contrast [33], es-

timating the extinction coefficient from a single daylight

photograph [20], and fog detection from onboard camera

[31]. Additionally, a new approach using Retinex filtering

for light intensity invariant images is presented in [43], and

the Comprehensive Visibility Indicator (CVI) algorithm is

proposed in [51] for more accurate visibility estimations in

various driving situations. However, the previously men-

tioned visibility estimation methods on roads can only be

effective in a short range of distance, i.e., 100-300 m. Re-

cently, to estimate visibility, segmentation-based DL mod-

els have been reported and used by Dvis [37] and Droad

[36]. However, landmarks such as white lanes cannot be

used in UAV applications since a farther visibility distance,

i.e., 500 − 3000 m, is required. Therefore, this paper pro-

poses a novel deep-learning-based method to recognize far-

ther objects and regression-based methods to estimate the

visibility distance.

2.2. Segmentation

Segmentation is an essential topic in Image Processing,

Computer Vision (CV), and Deep Learning (DL) [26, 47,

17]. It can be categorized into three types: semantic seg-

mentation, instance segmentation, and panoptic segmen-

tation [16, 3, 24]. Semantic segmentation aims to clas-

sify each pixel into corresponding classes, while instance

segmentation distinguishes different instances of the same

class, making it more complex and computationally expen-

sive. Panoptic segmentation integrates the advantages of

both semantic and instance segmentation [24]. This pa-

per uses panoptic segmentation to recognize objects (e.g.,

mountains) and non-objects (e.g., sky).

In DL, CNNs play a central role in solving various

CV problems, including object semantic segmentation [26].

The fully convolutional network (FCN) with U-Net as the

backbone has improved semantic segmentation accuracy

[26]. Conditional Markov Random Fields are also used to

enhance the boundaries of recognized objects [16].

Transformers were originally used in NLP [44] and later

applied to 2D images. Vision Transformers (ViT) have

significantly improved over CNN-based models by reduc-

ing dimensionality [8]. Swin Transformer [25] further en-

hances efficiency, making it more suitable for dense pre-

diction tasks like semantic segmentation. Segformer [48]

is the current state-of-the-art in semantic segmentation, uti-

lizing encoder-decoder modules based on the Transformer

architecture.

2.3. Image-Based Regression

Image-based regression has been used as one of the most

convenient analysis and prediction methods pair-wise. This

algorithm usually extracts features from given images and

then regresses between image features and data. There have

been a lot of variant algorithms like Haar features with

boosting [60]. Haar features are effective only when detect-

ing edges and lines. Neural networks [21] are used for im-

age feature extraction, where the full-frame scene is fed into

the network. In [21], data augmentation with both 2D and

3D is applied to avoid over-fitting. However, such local im-

age feature-based regression would be unstable for visibil-

ity estimation due to partial occlusion by time-varying fog.

Therefore, this paper considers more stable segmented re-

gions from overall images. Moreover, image-based regres-

sion has majorly dealt with indoor scenes or fine weather

scenes, whereas this paper challenges adversarial condi-

tions like locally strong illumination that can degrade the

original performance of image-based regression by ML and

DL.

2.4. Vision Language Model

In recent years, the Vision Language model (VLM) field

has undergone significant progress [55, 59]. But most of

them are pre-trained with large-scale training datasets and

fine-tuned with task-specific annotated training data. The

pre-training of VLMs has been explored using three main

approaches: contrastive objectives [34, 22, 7], generative

objectives [45, 13], and alignment objectives [10, 50, 28].
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VLMs are transferred by Text-Prompt Tuning [59, 58, 29].

Besides finetuning, knowledge distillation is a method to

improve VMLs for downstream tasks, including object de-

tection [56, 27] and semantic segmentation [57, 61, 30, 42].

Unseen images that have not been pre-trained have be-

come recognized by VLM frameworks [6, 9]. More diverse

and out-of-distribution data for pre-training and evaluation

are used [12]. Prompt learning to adapt VLMs to new tasks

without fine-tuning is also shown [14]. Contents of captions

have been enhanced for better descriptions of real-world ob-

jects [9].

Geometric reasoning or depth estimation to infer 3-D

information from 2-D images [53, 55] is shown using 3D

point-cloud data and indoor scenes. Pretraining VLMs re-

quire over 100 million image-text paired datasets for high

accuracy, more than DL models require. Therefore, many

efficient models have been introduced [6, 19, 40, 41]. How-

ever, laborious and time-consuming tasks remain unsolved

in pretraining VLMs.

Visual ChatGPT API tool has become famous as the

image-text captioning tool. The advantage of Visual Chat-

GPT [46] is that it can produce acceptable results on the

general scene and unseen classes. However, since Visual

ChatGPT [46] is trained on the limited data of the year

2021, it generates captions under older datasets. So far, Vi-

sual ChatGPT [46] is weak at generating dynamic scene de-

scriptions like weather and road conditions. As mentioned

in [39, 38], the physical factor was considered but did not

orient to the scene’s context.

Therefore, as aforementioned above, no SOTA VLM pa-

pers and API tools have challenged images with the physi-

cal scale in natural phenomena, i.e., fog visibility, distance,

and weather condition.

3. Proposed Method

This section describes the proposed system with multiple

DL models for visibility estimation in a fixed and AV/UAV

camera applications.

3.1. Overview of Proposed System

This section overviews the proposed system for visibil-

ity estimation through cameras as shown in Figure 1. A

single image is assumed to be monitored from a fixed or

drone camera. In order to estimate visibility levels, the ap-

pearance of far objects is an important landmark for human

eyes and image recognition. A location of a camera, drone,

and objects can provide respective latitudes and longitudes

from GPS and Google Maps data. Single or multiple moun-

tains are assumed. The proposed Dvls is a Deep Learning-

based segmentation in an image. Depending on the pre-

trained number of classes, tens or hundreds of objects will

be recognized. Each object can set its latitude and longi-

tude. Therefore, all major objects are arranged in order of

Figure 1. A system overview of the proposed visibility estimation

with four proposed Deep Learning models: Dvls, Dreject, Ddist,

and Dvis.

depth. Fog, rainfall, and snowfall may cover such objects.

Covered objects may not be recognized. Or partially oc-

cluded objects can happen. Thus, different visibility lev-

els will be estimated through object recognition. However,

more considerations are required in various scenes. A case

of them is that far objects such as vehicles, pedestrians, and

sky, may not provide GPS locators. Moreover, GPS infor-

mation may not be useful when monitoring vertically down-

ward to the ground from UAV. No objects may be also as-

sumed on the ground. Therefore, this paper proposes Ddist,

e.g., distance, and Dvis, e.g., visibility, to cope with this is-

sue. Ddist is to utilize recognized far objects with a physical

distance DL model. Such objects are recognized by Dvls.

On the other hand, Dvis consists of Transformer and regres-

sion model to estimate visibility without object recognition

when no object has been recognized on the ground. To sta-

bilize Dvis under adversarial conditions like fog, Dreject is

introduced to select images with good quality, where lens

reflection, strong light, and heavy fog are presented. There-

fore, the proposed system consists of four major DL mod-

els: Dreject, Dvls, Dvis, and Ddist. In the following, each

of these models is mentioned in detail.

3.2. Dreject

Dreject is a classification-based DL model combined to

classify input image quality with low or high. This is used

to enhance the stability and accuracy of the other cascaded

DLs. It is expected to the system more robust than no use

of Dreject. When being rejected images, stored past im-

age results are applied for continuous visibility estimation.

Dreject is an image classification model with an output of 4

different adversarial conditions:

• Clear: Scenes with normal conditions and good visibility.

• Lens reflection: Scenes with the effect of light refraction on the camera lens

or affected by weather conditions with high humidity and raindrops.

• Strong light: Scenes with strong artificial lighting such as beacons, road signs,

and street rump.

• Heavy fog: Scenes with dense fog and very low visibility.
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3.3. Ddist

This section describes Ddist for physical distance esti-

mation as shown in Figure 2 Ddist is a DL-based regression

model which estimates the physical distance based on dis-

tances between target objects and cameras. Target objects

are recognized by Dvls, which is based on an image-data

regression model. Data are physical distances between a

camera and distant objects. Over 3000 images have been

used to train. As shown in Figure 3, when a GPS signal

is available, detected objects are used to estimate their dis-

tance. The predefined fog covers of each object serve as ref-

erences in the order of depth to approximate the distances.

Figure 2. The proposed Ddist.

Figure 3. The proposed distance estimation method relies on the

order of depth.

3.4. Dvis

In real scenes, whenever the fog appears, the recognition

performance of Dvls can be degraded at far objects. For this

issue, far objects cannot be used for physical distance esti-

mation. Therefore, a no-object-based visibility estimation

method is needed for a continuous flight. Dvis is trained

from real and synthesized scenes with known physical dis-

tances and foggy images. Dvis is an image-data regression

model as well as Ddist. Since overall image features have to

be used for training, over 10000 images are needed to train.

For the Dvis model, after preprocessing the raw image data,

the image will be passed through the base models to extract

the feature of that image to form a feature vector. then pass

the feature vectors through the regression classes to find a

unique value.

3.5. Proposed Dcontext

Dcontext is a VL model trained on image and text pairs

that can predict the most relevant text given an image. It

does not need to be directly optimized for this task and can

perform “zero-shot” learning like GPT-3 and -4. Dcontext

matches the performance of the original ResNet50 on Ima-

geNet “zero-shot” without using any of the original 1.28M

labeled examples, which is a significant accomplishment in

Computer Vision. To reduce the computational cost and

memory usage, BLIP2 [18] was used and fine-tuned on the

collected dataset including 5000 images.

Dcontext utilizes the input texts of five distinct disaster

categories: the sky at the airport in the daytime, the sky at

the airport at night time, the road scene captured by a drone

camera, the city scene captured from a drone camera, out-

door activity scene captured from drone camera. Tailored

textual input descriptions are employed for each category to

enhance natural language processing techniques in analyz-

ing related data. These scenes are associated with domain-

specific terms to improve the accuracy of automated disaster

detection and classification.

3.6. Proposed Dvls, and Dvld

Dvls is suggested as a means to achieve semantic seg-

mentation for these scenes. It is built upon the fine-tuned

version of OvSeg [23], with the addition of a new physical

constraint to the loss function. In order to obtain disaster de-

scriptions for Dcontext, a classification task is undertaken,

employing keywords that correspond to each disaster scene.

These textual inputs are utilized to generate fixed text de-

scriptions of the disasters, specific to each scene type.

Dvld is a vision language model with open-vocabulary

object detection [11]. Unlike traditional object detection

models that rely on fixed categories, Dvld can detect ob-

jects based on arbitrary text inputs from Dcontext. The

model achieves this capability by leveraging the knowledge

extracted from a pre-trained open-vocabulary image classi-

fication model. This knowledge is then utilized to create a

two-stage detector, enabling Dvld to accurately identify and

localize objects based on the textual descriptions provided.

3.7. Dweather

Dweather is a combination of a DL-based classifier, i.e.,

transformer, and a VL model, i.e., BLIP-2. Figure 2 shows

an overview of the proposed Dweather trained on 11237 im-

ages with rain, fog, and lightning classes. BLIP-2 is em-

ployed to generate image captions by combining the gener-

ated text from the input image. It uses the weather prompt

“How is the weather?” to include additional weather con-

ditions. The DL employs three classes: rain, fog, and light-

ning. The outputs of the VL model and classifier are sum-

marized by DeepSummary (Dsum), i.e., GPT model. Dsum

summarizes separated texts by inputting ”Summarize the

weather condition without explanation: The weather is X.

There is Y”. In this input, X represents the output of the VL

model, and Y represents the output of the weather classifier.

4. Experiments And Discussion

This section discusses experimental results and discus-

sion on various road scenes that are recognized and seg-
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mented under adversarial conditions.

4.1. Dreject Experiment

This subsection evaluates the performance of Dreject.

The dataset consists of 3050 images with 4 different adver-

sarial conditions types: Clear, Lens reflection, Strong light,

and Heavy fog. Figure 4 shows drone-viewed images re-

jected by Dreject with strong light and lens reflection. Such

images are from strong reflections from bright road surfaces

in the daytime and the spotlight in the nighttime. As shown

in Table 1, the average accuracy 96% shows under different

adversarial conditions. Therefore, it has demonstrated the

Figure 4. Example of rejected drone images by Dreject.

Table 1. Evaluation of Dreject on difficult scene classification un-

der adversarial conditions.
Image

number

Correct

recognition

Wrong

recognition

Accuracy

(%)

Clear 827 821 6 99.27

Lens reflection 627 600 27 95.69

Strong light 864 816 48 94.44

Heavy fog 732 691 41 94.40

Total 3050 2928 122 96.00

effectiveness of Dreject to obtain acceptable drone images,

which are useful for three DLs of Dvls, Dvis, and Ddist.

4.2. Segmentation By Dvls

This subsection presents the results of Dvls recognized

from daytime and nighttime airport camera images. As

shown in Figure 5, in each scene, a pair of two images show

clear or cloudy weather conditions. Background objects are

runways, buildings, and mountains. At night, many light-

ing spots are recognized. Note that such lighting spots are

not assumed to be rejected by Dreject. Owing to panop-

tic segmentation results, wide sky regions and objects on

the ground have been successfully separated. Experiments

are conducted to obtain far horizons. However, due to the

camera lens’s distortion, it becomes difficult to obtain. In

each of the scenes, different segmented objects are shown in

the daytime and the nighttime. However, “sky” and “back-

ground objects” present a clear boundary. No threshold

is applied for segmentation, unlike image processing-based

edge detection with empirical threshold settings. Therefore,

the robustness and stability of Dvls have been reconfirmed.

On the other hand, for a comparison experiment, image pro-

cessing to detect far horizons is conducted with thresholds.

The results failed to detect such lines and curves (not shown

here). Thus, Dvls can be used for obtaining the far horizon

Figure 5. Panoptic segmentation by the proposed Dvls at airports:

(a)(c) Daytime. (b)(d) Nighttime.

lines by the boundaries between the sky and bottom objects.

It is assumed that the distance between such horizons can be

preset by Google Maps geodata. For this, a physical visibil-

ity distance can be estimated.

4.3. Deconposition By Dvls

Dvls with querying objects are used to decomposite the

input image into elements. Dvls is used for panoptic seg-

mentation of an image. A number of objects in an image are

obtained. Based on this, Figs. 6 show two decomposed im-

ages with mountains and no-mountain. 8 sub-images con-

tain sky, buildings, trees, and roads. Each sub-image can be

linked to a longitude and latitude from Google Maps. By

following a flowchart in Figure 1, all recognized objects are

arranged in order of depth from a camera’s location.

Figure 6. Decomposition of a scene with mountains by panoptic

segmentation.

4.4. Dvis Experiments

In order to prove the performance of Dvis, further ex-

periments are conducted. Dvis has been proposed for non-

object recognition cases. The dataset includes 4424, 1109,

and 1175 images on training, validation, and test sets, re-

spectively. For the dataset used for training, the structure
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of the datasets is similar to the datasets of the basic Re-

gression problem. In order to train the Dvis model, the base

model, SwinTransformerV2, combined with regression lay-

ers is used to obtain a single output. This paper defines vis-

ibility in five levels as follows:
• Dvis > 5000 m: Clear Image.

• 3000 m < Dvis < 5000 m: Fog level 1.

• 1500 m < Dvis < 3000 m: Fog level 2.

• 500 m < Dvis < 1500 m: Fog level 3.

• Dvis < 500 m: Fog level 4.

Figure 7. Results by the proposed Dvis for the airport cameras: (a)

Clear Image. (b) Clear Image. (c) Fog level 1. (d) Fog level 2. (e)

Fog level 3. (f) Fog level 4.

In order to justify the performance of Dvis we propose,

different scenes with different fog levels are added to con-

duct an evaluation test. The accuracy scores of the Dvis

model achieve 82.19% on 1175 images of the test dataset.

4.5. Dweather Results

This section provides an evaluation of Dweather with

a combination of a vision-language (VL) model and a

transformer-based model. The weather classifier is evalu-

ated on a test dataset consisting of 1411 images. Figure 8

presents results by DeepWeather. Sunny, rainy, and foggy

scenes have been correctly recognized, where elaborate ob-

jects and background, i.e., trees and water, are present. For

quantitative evaluation, the test dataset except sunny images

is added, which includes five classes, i.e., fog, lightning,

normal, rain, and snow, with 149, 67, 660, 223, and 312 im-

ages, respectively. The accuracy of the test data is 89.4%,

and the loss is 0.397.

To validate the effectiveness of the proposed Dweather

in PanopticBlue, camera images captured under adversar-

ial weather conditions are utilized. Figure 9 shows the re-

sults of weather conditions: (1)-(b) lightning and (2)-(b)

rain and fog from Dweather. (1)-(c) VL recognizes “cloudy

and rainy”, where “with lightning” has been added from the

text at (1)-(b). In (2), “cloudy and rainy” + “rain and fog”

has also been generated. Therefore, enriched auto-briefings

have been demonstrated from image recognition and VL

models.

4.6. Dvld Overall Evaluation

In this section, Dvld is estimated and compared with

YoloV8 [35] for object detection on 1832 images of the Vis-

Drone [62] dataset using pixel-wise accuracy and Intersec-

Figure 8. Results on various weather conditions by DeepWeather:

sunny, rainy, and foggy. Probability is shown in the parenthesis

(a) (b) (c)

Figure 9. Dweather results: (a) Input. (b) Weather classification.

(c) VL model with weather prompt and refined auto-briefing

tion over Union (IoU). Table 2 shows that Dvld is better

than YoloV8 [35].

Table 2. Comparison of Dvld and YoloV8 [35].
Dvld YoloV8[35]

Accuracy 88.34 83.32

IoU 0.78 0.73

5. Ablation Study

This section discusses an ablation study in temporal fog

variation and foggy disaster scenes.

5.1. Dvis With Different Models

This section devotes to justifying the performance of the

proposed Dvis by comparing 7 DLs as baselines. Table 3

summarizes the results and accuracy of the different base

models. It has proven that Swin Transformer V2 in Dvis

presents the best performance among all previous DLs in

terms of Macro F1, Weighted F1, RMSE, MAE, and Accu-

racy.

Model 1: VGG19 [32], accuracy 0.6689; Model 2: Mo-

bileNetV2 [38], accuracy 0.5577; Model 3: EfficientNetB7

[40], accuracy 0.57; Model 4: ResNet152V2 [41], accu-

racy 0.5229; Model 5: ViT [42], accuracy 0.6992; Model
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6: Swin Transformer[43], accuracy 0.692; Model 7: Swin

Transformer V2[43], accuracy 0.8219;

Table 3. Score and accuracy of the Dvis model with different base

models.
Macro F1 Weighted F1 RMSE MAE Accuracy

1 0.660 0.5026 250.16 154.64 0.6689

2 0.4099 0.5644 214.00 146.04 0.5577

3 0.3426 0.3986 245.18 171.08 0.570

4 0.3991 0.4523 310.58 222.48 0.6229

5 0.526 0.5375 232.97 147.89 0.6992

6 0.558 0.661 76.000 38.000 0.692

7 0.6811 0.6976 194.13 114.51 0.8219

5.2. Dcontext Evaluation

This section describes the Dcontext experiment on the

collected dataset including 1500 images with five different

contexts, i.e., the sky at the airport in the daytime, the sky at

the airport at night time, the road scene captured by a drone

camera, the city scene captured from a drone camera, out-

door activity scene captured from drone camera. The result

of Dcontext is compared with different fine-tuned classi-

fiers, i.e., ViT, ResNet, and VGG on the same dataset. Table

4 shows the comparison of accuracy between the proposed

Dcontext and other classifier models. The comparison re-

sult has proven that Dcontext outperforms previous models.

Table 4. Performance Metrics for Different Contexts and Methods

Context/Method Dcontext
ViT

classifier

ResNet101

classifier

VGG19

classifier

daytime

airport
86.45 81.26 80.24 79.32

nighttime

airport
91.25 86.12 88.35 83.21

road by

drone
86.32 81.87 82.65 81.14

city by

drone
86.36 82.14 83.25 79.96

outdoor activity

by drone
88.58 84.26 83.65 83.97

Overall 87.79 83.13 83.63 81.52

5.3. Visibility Based On Base-line Comparison With
a Time-varying Fog

This section discusses visibility levels from images with

a time-varying fog. Figure 10 shows temporal image

changes from clear to fog changes. Visible several moun-

tains (a) are between nothing (b) and reducing (c) while

remaining most on-the-ground objects like a runway and

green fields. In order to utilize temporal changes of the

ridge curves, the initial ridge curve (a) in the sky is stored

as shown in Figure 11. All objects, i.e., runway, house,

and trees, below the mountains, have been merged into one

class, i.e., mountain. All mountains are covered by heavy

fog (b). Except for the sky region, all joint objects are

merged. Fog as St cloud type begins to appear and cover

part of mountains (c). In (b) and (c), the segmented moun-

tain becomes disappeared. Therefore, the area between the

Figure 10. Dvls results with different fog levels: (a) Clear. (b)

Heavy fog. (c) Light fog.

Figure 11. Ridge curve changes by merging several objects from

Dvls.

initial and final ridge curves increases. Standard edge de-

tection may be useful, but unstable edges are obtained due

to sunbeam changes over time. However, the proposed

join-object method by separating the sky region is robust

to such sunbeam changes due to the object-based boundary

detection method. Disappearing mountains have geo-data

as shown in Figure 12. Results in Figure 12 can readily cor-

respond to distances between 4.95 km and 1.22 km. There-

fore, about 3 km has changed in visibility. For a better un-

derstanding, a time-series change of visibility is illustrated

in Figure 13. In city scenes, Dvls is applied as shown in

Figure 14. Many tiny objects, i.e., vehicles and ships, are

recognized. Moreover, the far sky region is obtained. From

these, visibility is assumed to be clear.

Figure 12. Visibility estimation from far objects with known dis-

tances in a few km.

5.4. Dvls Evaluation

In this section, Dvls is estimated and compared with

Mask2former on the dataset using pixel-wise accuracy and

Intersection over Union (IoU). Table 5 shows that Dvls is
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Figure 13. Visibility changes over time.

Figure 14. Results of far tiny objects recognition and sky by Dvls

(a) input image (b) Dvls’s output (c) fog level and objects in an

input image.

better than Mask2former. In order to evaluate the robust-

Table 5. Comparison of Dvld and Mask2former
Dvld Mask2former

Accuracy 86.57 83.18

IoU 0.78 0.75

ness of Dvls in drone images and compare it with SOTA

methods, i.e., ODISE [49], and SAM [15], experiments

with various images in different altitudes, light conditions,

and viewing angles are carried out. As shown in Figure 15,

(c) ODISE [49], and (d) SAM [15] shows low performance

in high altitude and glare from sunlight, i.e., at strong il-

lumination conditions, where all objects on the ground are

combined into one category. Moreover, in high altitude and

frontal view, ODISE [49] and SAM [15] cannot detect tiny

objects from a distant view. On the other hand, (b) Dvls

performs better in recognition performance of major object

categories, i.e., roads, pedestrians, buildings, and vehicles.

It has been suggested that the proposed Dvls is robust to a

wide range of far objects with sizes, orientations, and colors

in spite of various camera angles. The results have proven

that Dvls has shown the best performance with tiny and far

objects.

5.5. Images Generation

Data augmentation enhances the power of our deep

learning model, while data labeling is labor-intensive. In

this experiment, we generate images from drones with di-

verse weather conditions using linguistic descriptions. Con-

sequently, the data is labeled in that language, eliminating

the need for manual labeling. This section describes the re-

sults of image generation chosen by combining the vision

language model and the stable diffusion model [54]. This

Figure 15. Comparison of recognition in (b) Dvls, (c) ODISE [49],

and (d) SAM [15] in variant scenes

section presents the results of image generation, achieved

by combining a vision language model with a conditional

stable diffusion model [54]. The conditional stable diffu-

sion model [54] is responsible for generating images from

prompts, while a vision language model, i.e., BLIP2 [18] is

utilized to assess the similarity between the generated im-

ages and the input prompts, ultimately selecting the high-

quality images. As shown in Figure 16, the image with the

highest similarity, chosen by BLIP2, is selected from the 4-

batch generated images by the diffusion model. Although

the objects in the generated images do not appear realistic,

the overall scene is similar to the text description.

(a) (b)

Figure 16. Generated images with various prompts selected by the

VL model, i.e., BLIP2. (a) Aerial view of a foggy city road cap-

tured by a drone. (b) Foggy sky captured by an airport camera.

6. Conclusion

This paper has presented complementary multiple Deep

Learning and Vision Language Models for enhancing seg-

mentation, captions, and visibility under adverse condi-

tions. Future UAVs will be required for disaster matters

more than now due to the increments of extreme weather

conditions all over the world.
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