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A. Learned Tokens: Nearest Neighbours in To-
ken Space

Following the observations detailed in section 4.5, we
show the nearest-neighbours by Euclidean distance in the
512-dimensional token-space in table A.1. To create this ta-
ble, the distances between the learned depth tokens along
with the pretrained and frozen CLIP word tokens are mea-
sured. These tokens are what are used for tokenizing a sen-
tence prior to running through the CLIP text transformer;
table 8 shows the similarities between embeddings in the
post-CLIP-transformer space.

It can be seen that, contrary to the CLIP embedding
space, the learned depth tokens are not near to any depth-or-
size related word tokens. In addition, there are many non-
English words, nonsense tokens, and punctuation mark to-
kens present as nearest neighbours. The lower-valued depth
tokens do appear to have some relationship to one another,
but it is considerably weaker than it is in CLIP embedding
space.

From this, we conclude that it is unlikely that the Eu-
clidean distance is a useful metric to measure similarity
of tokens in token-space. This is logical: the relationship
between token embeddings in CLIP embedding space is
strongly indicated when using Euclidean distance, and the
CLIP text transformer is nonlinear. It follows that the tokens
are not bound to lie in a contiguous region of space, even if
their meanings (and therefore their CLIP embeddings) do
lie in a similar region of latent space.

B. Comparison to State-Of-The-Art and
DepthCLIP for MDE

We emphasise that our work is not designed to com-
pete with the state-of-the-art methods in MDE, as the
architecture does not use a dense feature decoder. This is
to reduce confounding factors, and allow better understand-
ing of the prompting process itself. The lack of a learned
decoder naturally limits performance due to the low resolu-
tion, but without a learned decoder the learned tokens are

forced to be as expressive as possible. This has the added
effect of increased explainability.

With this in mind, we show table A.2 that compares some
of our experiments to state-of-the-art methods. Table A.3
shows comparisons to DepthCLIP. We also include an up-
per bound on performance for the 1

32× scale predictions
that we generate: the ground-truth depth maps are down-
sampled to 1

32× their original size to match the prediction
generated from our method, then bilinearly upsampled and
evaluated in the same way as our other experiments. To
handle the invalid depth values in the ground truth, mask-
ing of invalid values is applied by logical ANDing the mask
at different stages: the full-resolution ground-truth depth,
the downsampled ground-truth depth (converted to floating
point, upsampled bilinearly, then thresholded at 1.0 to con-
vert back to Boolean), and the ground truth that has been
both downsampled and re-upsampled.

We would like to emphasise again that there are only a
few thousand learnable parameters in our method, and that
the aim of our work is not to improve on SOTA MDE but
to understand the way in which language encodes the infor-
mation contained within CLIP, particularly as it relates to
depth.

C. Qualitative Examples

Some qualitative examples are provided in figures A.1
and A.2. While the resolution is necessarily low due to our
method deliberately excluding a decoder for the sake of in-
terpretability, we note that recognisable depth is still obtain-
able, despite the limited number of paramters in use.
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{depth 0} {depth 1} {depth 2} {depth 3} {depth 4} {depth 5} {depth 6}
Token Dist. Token Dist. Token Dist. Token Dist. Token Dist. Token Dist. Token Dist.
{depth 1} 1.256 kids</w> 1.245 {depth 3} 1.278 presenter</w> 1.240 {depth 3} 1.258 assembly</w> 1.276 âĻ©âĻ</w> 1.268
lestweforget</w> 1.272 doesn</w> 1.254 spx</w> 1.287 {depth 4} 1.258 apparently</w> 1.261 crouch</w> 1.282 ãł 1.270
concerned</w> 1.278 {depth 0} 1.256 gm 1.290 staffs</w> 1.270 spears</w> 1.262 buch 1.285 ç¥ 1.280
—</w> 1.286 watched</w> 1.264 Łĺ´Łĺ´</w> 1.290 ....</w> 1.271 credible</w> 1.276 assemb 1.289 (;</w> 1.283
approved</w> 1.286 and</w> 1.265 ı̆ 1.291 <—startoftext—> 1.272 wid</w> 1.287 surg 1.292 norms</w> 1.284
oxford</w> 1.287 breaks</w> 1.266 hobbit</w> 1.292 staff</w> 1.274 accepted</w> 1.289 spion 1.292 Łijı̃</w> 1.285
british 1.288 play</w> 1.267 Łĺ¬ 1.292 ]</w> 1.275 Ê 1.293 scicom 1.293 Ł¤Ń</w> 1.286
debate</w> 1.288 but</w> 1.269 Łi 1.295 .....</w> 1.277 favour</w> 1.294 cence</w> 1.293 â¬Ĩ 1.286
qs</w> 1.291 does</w> 1.270 refurbi 1.296 visitors</w> 1.278 fad</w> 1.295 aug 1.294 Ã¤ 1.286
loud</w> 1.291 doesnt</w> 1.274 talks</w> 1.296 {depth 2} 1.278 speake 1.295 willy 1.295 âĢĶâĢĶ</w> 1.288
ŁĻı</w> 1.294 dak</w> 1.277 âĨĴ</w> 1.297 ...</w> 1.283 loo</w> 1.295 sexu 1.296 Ł§IJ</w> 1.289
loose</w> 1.294 welcomed</w> 1.277 Łĺ 1.298 manager</w> 1.283 technological</w> 1.296 inaugu 1.296 Ł¤</w> 1.292
..</w> 1.295 starts</w> 1.278 hug 1.298 ,</w> 1.284 friction</w> 1.296 incense</w> 1.297 quins</w> 1.292
confuse</w> 1.296 break</w> 1.278 asleep</w> 1.298 nesses</w> 1.285 positive</w> 1.296 muse 1.297 geta 1.293

Table A.1. Nearest-neighbours in token space for each of the learned depth tokens. Does not include the human-language ordinal scales
from table 1 because token-space embeddings can only capture a single token. Learned tokens from 7 evenly-distributed bins on NYUv2
using ‘baseline’ template from table 2. ‘Distance’ is Euclidean distance. Token 0 corresponds to a bin centre of approx. 0.714m, and token
6 to approx. 9.29m. It can be seen that most of the tokens do not correspond to any recognisably-useful English tokens, though bins 0, 1,
2, 3, and 4 do relate to one another. This is in contrast to table 8 of the main paper, in which the learned token’s nearest neighbours in the
CLIP embedding space are seen to be closely related to one another and to size and depth related words, and to be positioned approximately
along a continuum of some kind.

Model ↓ Abs. Rel ↓ RMS ↓ Log10 δ1 δ2 δ3

Eigen et al. [4] 0.158 0.641 - 0.769 0.950 0.988
Laina et al. [6] 0.127 0.573 0.055 0.811 0.953 0.988
DORN [5] 0.115 0.509 0.051 0.828 0.965 0.992
BTS [7] 0.110 0.392 0.047 0.885 0.978 0.994
AdaBins [2] 0.103 0.364 0.044 0.903 0.984 0.997
DepthFormer [8] 0.096 0.339 0.041 0.921 0.989 0.998
BinsFormer (Sw-L) [9] 0.094 0.330 0.040 0.925 0.989 0.997
PixelFormer [1] 0.090 0.322 0.039 0.929 0.991 0.998
LocalBins [3] 0.099 0.357 0.042 0.907 0.987 0.998
AiT (SwinV2-L) [10] 0.076 0.279 0.033 0.953 0.993 0.999
Low-res. prediction Upper Bound† 0.023 0.146 0.010 0.986 0.998 1.000
Ours (7 bins, even dist., learned depth tokens) 0.319 0.970 0.128 0.465 0.776 0.922
Ours (7 bins, even dist., learned depth tokens,

ls4o4d learned context tokens) 0.317 0.955 0.126 0.474 0.782 0.925

Ours (256 bins, log dist., learned depth tokens) 0.298 0.933 0.122 0.485 0.796 0.934
Ours (256 bins, log dist., learned depth tokens,

ls4o4d learned context tokens) 0.298 0.928 0.121 0.487 0.798 0.935

Table A.2. Comparison of SOTA methods on NYUv2 to our results. Note that our method does not have a dense decoder and is
therefore neither intended nor expected to be competitive with SOTA methods. Our method predicts depth maps at 1

32
× resolution,

directly from the output of the feature encoder. †: Upper bound given by downsampling ground-truth depth maps then bilinearly upsam-
pling. Aggressive masking is applied to ensure that invalid pixels being interpolated into valid ranges by accident does not affect the final
“prediction”.

Method Abs RMS log10 δ1 δ2 δ3
Ours (7-bin even dist. ‘Baseline’) 0.319 0.970 0.128 0.465 0.776 0.922
Ours (256-bin log dist. 4o4d) 0.298 0.930 0.121 0.487 0.799 0.935
DepthCLIP 0.388 1.167 0.156 0.394 0.683 0.851

Table A.3. Comparison to DepthCLIP on NYUv2. We show im-
proved performance across all metrics with only 7 learned tokens
(3584 params). Comparison to SOTA is provided in table A.2.
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Figure A.1. Qualitative samples from NYUv2, using 256 learnable depth tokens with 256 log-distributed depth bins. Also used were 8
total learnable prompt context tokens (ls4o4d).
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Figure A.2. Qualitative samples from KITTI, using 7 learnable depth tokens with 7 evenly-distributed depth bins. Also used were 2 total
learnable prompt context tokens (ls1o1d).


