
The Change You Want to See (Now in 3D)
Supplementary Material

1. Outline
In Section 2 we provide python pseudo-code for our architecture and the forward pass. In Section 3 we provide some
examples of estimated registration in real world images. In Section 4 we outline some of the challenges with VIRAT-STD
annotations [2].

2. Architecture pseudo-code

class Architecture(nn.Module):
def __init__(self):

super().__init__()
self.feature_backbone = DinoViT() # returns dino features from the 3rd and 12th blocks
self.register_and_subtract = DFRM() # returns the difference of registered features
self.unet_encoder = UnetEncoder(

input_channels=[768, 512, 512, 512],
output_channels=[512, 512, 512, 512])

self.unet_decoder = UnetDecoder(
encoder_channels=[768, 512, 512, 512, 512],
decoder_channels=[256, 256, 128, 128, 64],
attention_type="scse")

self.feature_fusion = nn.Sequential(
create_conv_layer_with_kaiming_init(64 + 768, 256, kernel_size=3, stride=1, padding=1),
create_batch_norm_layer_with_custom_init(256), F.gelu(),
create_conv_layer_with_kaiming_init(256, 64, kernel_size=3, stride=1, padding=1),
create_batch_norm_layer_with_custom_init(64), F.gelu())

self.centernet_head = CenterNetHead(in_channel=64, feat_channel=64)

def forward(self, batch):
image1_dino_features = self.feature_backbone(batch["image1"])
image2_dino_features = self.feature_backbone(batch["image2"])
image1_encoded_features, image2_encoded_features = [image1_dino_features[1]], [

image2_dino_features[1]]
for layer in self.unet_encoder:

image1_encoded_features.append(layer(image1_encoded_features[-1]))
image2_encoded_features.append(layer(image2_encoded_features[-1]))

for i in range(len(image1_encoded_features)):
image1_encoded_features[i], image2_encoded_features[i] = self.register_and_subtract(

image1_encoded_features[i],
image2_encoded_features[i])

image1_decoded_features, image2_decoded_features = self.unet_decoder(*image1_encoded_features),
self.unet_decoder(*image2_encoded_features
)

image1_decoded_features = self.feature_fusion(image1_dino_features[0], image1_decoded_features)
image2_decoded_features = self.feature_fusion(image2_dino_features[0], image2_decoded_features)
return self.centernet_head([image1_decoded_features]), self.centernet_head([

image2_decoded_features])

1



3. Registration examples
In Figure 1, we show examples of estimated correspondences and depth used to register the input images, and additionally
the warped images. Please note that the depth maps (even “ground truth”) are not pixel-perfect, as evident by the “floating
points” in the warped images. This results in a false signal for multiple very small changes, which the model must ignore in
favour of the actual changes.

Figure 1. Examples of registration via DFRM on real world images, where correspondences are obtained using SuperGlue [3] and depth is
either obtained using built-in LiDAR in Apple iPhone/iPad or using monocular depth estimation methods [1]. Note: Here we warp RGB
input images for visualisation purposes only. In practise, we warp c-dimensional feature maps instead. Notice the black regions in the
warped images. These regions were not visible in the original image and therefore after warping are “empty”. We represent these using a
visibility mask.



4. Extremely small annotations problem
In Figures 2 and 3, we display sample images from the VIRAT-STD dataset and their corresponding “ground truth” annota-
tions in blue. Some annotations are so small that they remain difficult to see, even after resizing the images for visualization
purposes. Additionally, certain regions that have undergone changes are not annotated. These examples are not selectively
chosen; the entire test set is plagued by this issue, as can be verified. This presents a problem when the images are resized to
224× 224 from the original resolution.

Figure 2. Using 2x blue (solid) arrows, we show some zoomed-in regions that are in the “ground truth” changes. Using 1x red (dashed)
arrow, we draw attention to regions that are not part of the “ground truth” but in fact contain valid changes (a person in a white top just to
the left of the pole in image 1 is not there in image 2).

Figure 3. Using 1x blue (solid) arrow, we show some zoomed-in regions that are in the “ground truth” changes. Using 2x red (dashed)
arrows, we draw attention to regions that are not part of the “ground truth” but in fact contain valid changes (a car and a person, that do not
exist in image 1).

To partially address this issue, we remove any annotations where the area of the bounding box is less than 5× 5 px (in the
original image, i.e. before resizing). However, this is still a challenging task. In the paper, we only use the filtered annotations
for both our results and those of [2]. We did not attempt to resolve the problem of missing annotations. Figure 4 illustrates
examples of the annotations that we retained and those that we discarded after filtering.



Figure 4. We keep the annotations in blue (dashed) but remove the ones in red (solid). Note the images are resized here for visualisation
purposes, the actual input resolution is much smaller.

References
[1] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zero-shot transfer by combining relative

and metric depth, 2023. 2
[2] Ragav Sachdeva and Andrew Zisserman. The change you want to see. In Winter Conference on Applications of Computer Vision

(WACV), 2023. 1, 3
[3] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue: Learning feature matching with graph

neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4938–4947, 2020. 2


