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Abstract

We propose a technique for learning single-view 3D ob-
ject pose estimation models by utilizing a new source of data
— in-the-wild videos where objects turn. Such videos are
prevalent in practice (e.g. cars in roundabouts, airplanes
near runways) and easy to collect. We show that classical
structure-from-motion algorithms, coupled with the recent
advances in instance detection and feature matching, pro-
vide surprisingly accurate relative 3D pose estimation on
such videos. We propose a multi-stage training scheme that
first learns a canonical pose across a collection of videos
and then supervises a model for single-view pose estima-
tion. The proposed technique achieves competitive perfor-
mance with respect to the existing state-of-the-art on stan-
dard benchmarks for 3D pose estimation without requiring
any pose labels during training. We also contribute an Ac-
cidental Turntables Dataset, containing a challenging set
of 41,212 images of cars in cluttered backgrounds, motion
blur, and illumination changes that serve as a benchmark
for 3D pose estimation.

1. Introduction

Understanding object pose and its structure is a central

computer vision problem. Many images have been man-

ually annotated with pose information in multiple datasets

containing various types of objects. Still, this manual anno-

tation process is labor-intensive and prone to unavoidable

human annotation errors. On the other hand, mechanical de-

vices that precisely change an object’s pose are widely uti-

lized when performing high-precision 3D scanning. They

allow a particular object to have its pose modified in a con-

trolled manner while capturing its appearance through a va-

riety of image sensors. One of the simplest devices of this

kind is a turntable – a rotating platform that slowly changes

the pose of an object through an electric motor (Fig. 1a).

Unfortunately, despite its simplicity, turntables are not very

practical. They need to be as large as the object at hand, e.g.,

Website: https://zezhoucheng.github.io/acci-turn
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Figure 1. Classic turntable vs. accidental turntable. (a) Classic

turntables rotate and scan objects in a controlled environment to

estimate their 3D pose and shape. (b) A turning object in a video

leads to an accidental turntable. Structure-from-motion, coupled

with object detection [15] and feature matching [28], provides sur-

prisingly accurate relative 3D pose estimation (top) and 3D re-

construction (bottom) — the red pyramids indicate the estimated

relative poses of video frames. We utilize a collection of such

videos to train and evaluate models for single-frame 3D pose es-

timation in realistic settings. See more accidental turntables here:

https://youtu.be/8rFNRri8-TI

setting up turntables for cars or airplanes would require a lot

of work.

Fortunately, we don’t need to place those objects in ac-

tual turntables. Many are already performing similar mo-

tions on their own (Fig. 1b) — cars moving along round-

abouts, airplanes landing and parking, ships maneuvering

across canals, and so on. In the real world, video record-

ings of objects performing these types of motions depict

them in uncontrolled environments; i.e., cluttered back-

ground, occluders, changes in illuminations, motion blur,

unpredictable pose changes, and many other nuisance fac-

tors. Thanks to many recent advances in computer vision,

we show that we are able to bypass many of those nuisance

factors and apply Structure from Motion (SfM) to reliably

and precisely recover relative pose estimation from videos

of real objects (Fig. 1b). We call these types of videos Acci-
dental Turntables – objects presenting motion patterns that

allow us to observe them from (almost) all possible angles.

We demonstrate that these videos, after suitable automatic

pre-processing (Sec. 3), are an excellent source of supervi-

sion for pose estimation models and, perhaps more impor-

tantly, can be mined from the internet, enabling the creation

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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of bigger and more diverse datasets.

However, using the supervision from SfM does not al-

low us to directly perform pose estimation with respect to

a canonical object frame. To this end, we propose to learn

a relative pose estimation model and show that its training

leads to the emergence of a canonical object pose (§ 4.1).

In the second stage, we propose a calibration and training

procedure (§ 4.2) that allows pose estimation in a canonical

frame (§ 4.3). We show that models trained in this fash-

ion only using our newly collected dataset from real videos
significantly outperform other models trained on SfM and

perform on par with existing unsupervised approaches on

standard benchmarks, e.g., the Freiburg and ImageNet cars

datasets.

We summarize our contributions as follows. 1) a pro-

cedure for automatically processing accidental turntable

videos and annotating its frames with relative pose transfor-

mations; 2) a multi-stage training scheme that allows train-

ing accurate pose estimation models with respect to arbi-

trary canonical frames; and 3) a new dataset with 41,212

real images of cars from turntable videos with their corre-

sponding pose annotation.

2. Related Work
Datasets for pose estimation. A number of datasets pro-

vide 3D pose annotations for objects in the wild [1, 32,

34, 40, 39, 11] or in controlled environments [10, 37, 38,

41, 16]. These datasets have been widely used for train-

ing supervised pose estimation models [36, 21, 18, 13].

However, manually annotating 3D poses is very tedious

and thus not scalable. Unsupervised pose estimation mod-

els [31, 25, 24, 22] learn to predict 3D pose without any

human annotations. Videos [31, 26] that capture multi-

ple views of objects have been the main source of train-

ing data in prior works [31, 25, 22]. However, to acquire

such videos, a person needs to hold a camera and slowly

move around a static object. This is a time-consuming pro-

cedure, especially for large-size objects (e.g. cars, and air-

planes), and has limited the size of existing video datasets.

For example, the Freiburg Cars dataset [31] consists of 52

car videos, and EPFL car dataset [26] only provides 20 cars.

Such limited data may further constrain the performance of

prior methods. In this work, we identify a new source of

data for unsupervised pose estimation – videos where ob-

jects turn. The turning of objects (e.g., vehicles) is such a

natural phenomenon in daily life that these videos are quite

easy to collect. We build a new dataset consisting of 313

car videos with a total of 141,784 frames. Our 3D pose an-

notations are generated by SfM [29, 30] enhanced by recent

progress in object detection [15] and feature matching [28].

Supervised pose estimation. With groundtruth 3D pose

annotations, supervised pose estimation works have been

focusing on developing novel representations of 3D

pose [45, 18, 23], learning objectives [36, 18, 43, 42], or

network architectures [7, 8]. The difficulty in annotating

3D poses results in the scarcity of pose annotations. This is-

sue is partially relieved by augmenting the existing datasets

with synthetic data [33]. The integration of pose estima-

tion and object detection has been explored in the task of

3D object detection [11, 6]. Our models are built upon the

prior supervised learning methods [45, 43, 42], but we use

pose annotations automatically generated by SfM, instead

of human annotations.

Unsupervised pose estimation. Unsupervised pose esti-

mation models learn 3D object pose without any human

annotations. Prior works are either based on analysis-

by-synthesis [24, 22] or SfM [31, 25]. The analysis-by-

synthesis frameworks train a pose estimation model by

reconstructing the input images in a pose-aware manner.

The SfM-based methods start by estimating the pose la-

bels with SfM on videos that capture 360◦ views of static

objects. However, SfM only provides relative pose esti-

mations among video frames. The absolute pose estima-

tions from SfM are not consistent across videos (i.e., ob-

jects in the same pose from two videos may have quite dif-

ferent absolute pose representations). To tackle this issue,

Sedaghat et al. [31] calibrate the SfM pose estimations via

aligning 3D reconstructions of objects; Novotny et al. [25]

train a model to estimate the relative pose and observe that

canonical poses emerge in the models trained in this man-

ner. Similar to Novotny et al. [25], we train a model to

estimate the relative pose from SfM (Sec. 4.1). Differently,

we find that such a training strategy is not sufficient to learn

a high-quality pose predictor. We instead use the model

trained in this way as a tool to calibrate the SfM estimations

across videos (Sec. 4.2), followed by training a novel pose

estimator on the calibrated pose annotations (Sec. 4.3).

Accidental data in computer vision. Researchers have

discovered interesting phenomena that occur accidentally

but turn out to be useful for computer vision tasks in the lit-

erature. Torralba et al. [35] demonstrate that outdoor scenes

can be recovered from accidental pinhole images. Li et
al. [17] train a depth estimator on a collection of Internet

videos of people imitating mannequins, i.e., freezing in di-

verse poses. The depth information is obtained from SfM

and multi-view stereo algorithms. Similar to Li et al. [17],

we train a pose estimation model on a collection of Internet

videos and the 3D pose annotations are automatically gen-

erated from SfM. Unlike people imitating mannequins, we

only require the object turns in the video, which is a quite

natural behavior in practice (e.g., a car moving along round-

abouts).
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Figure 2. Samples from accidental turntable dataset. Accident

turntables are prevalent in practice. For instance, a car donuts (1st

row), a car moves along a roundabout (2nd and 3rd row), or a car

does not turn but passes by a camera (4th row). All car instances

exhibit at least 180◦ azimuth changes relative to the camera.

3. Accidental Turntable Dataset
In this section, we provide the details of our data collec-

tion and the generation of 3D pose annotations with SfM

algorithms on our dataset. We name the collected video

dataset as Accidental Turntable Dataset, highlighting its

connections to classic turntables (Fig. 1).

Data source. The main criterion of our data collection is

that the object turns in the video. Such videos are abundant

on the Internet and quite easy to acquire. In this work, we

focus on the car category which is one of the most common

moving objects in the wild (at least in America). We leave

the extension to other categories (e.g., airplanes and boats)

in our future work, but include some examples of the recon-

structions at the end of the paper. We collect 313 car video

clips from YouTube containing a total of 141,784 frames.

Each video consists of a single moving car instance that

exhibits multiple views in motion. Fig. 2 provides video

samples from our dataset. We provide a full list of YouTube

links to the collected videos in the Supplementary Material.

Challenges. Even though our dataset consists of a large

number of car videos serving as a new source of training

data for machine learning models, in-the-wild videos pose

technical challenges for automatic extraction of 3D pose us-

ing SfM. For example, to exploit the classical SfM algo-

rithms to estimate the object pose, object segmentation is re-

quired to remove the background; Motion blur and texture-

free object surfaces necessitate robust interest points detec-

tion; Discriminative feature description and robust feature

matching are needed to avoid the ambiguity of pose estima-

tion on symmetric objects (e.g., cars).

Pose estimation with SfM. To tackle the above-

mentioned challenges, we use the MaskRCNN [15] pre-

trained on MS-COCO dataset [19] to remove the back-

ground clutter. We find that the MaskRCNN provides

highly accurate object detection and segmentation on in-

the-wild car videos. We use SfM algorithms implemented

by COLMAP [30, 29] with SuperPoint [5] as the feature ex-

tractor and SuperGLUE [28] as the feature matcher to esti-

mate the object pose on cropped object images. We sequen-

tially match the next 10 frames per video frame, instead

of exhaustively matching every pair of frames in a video.

Sequential matching reduces the ambiguity in matching re-

peated patterns (e.g. left and right wheels of a car). SfM,

coupled with MaskRCNN, SuperPoint, and SuperGLUE,

provides surprisingly accurate pose estimation, in compari-

son with classical SIFT [20] and nearest neighbor matching.

We provide a detailed study on the effect of feature extrac-

tion and matching on SfM in Sec. 5.2.

Statistics. Our dataset consists of 313 car videos with

141,784 frames in total. SfM automatically samples frames

with sufficient large relative pose change and reliable fea-

ture matching. Adjacent frames in a video usually have tiny

differences in the pose. Thus, most of the frames are fil-

tered out by SfM. We end up collecting 41,212 frames with

SfM pose estimations. Our dataset covers cars with diverse

shapes, colors, textures, and poses (see examples in Fig. 2).

4. Methodology

This section introduces our framework for learning 3D

object pose from the proposed accidental turntable dataset.

Fig. 3 illustrates an overview of the proposed framework.

SfM estimates the relative pose of objects with respect to

the object in the first frame per video, followed by optimiz-

ing the pose parameters with the bundle adjustment. How-

ever, the object pose in the first frame may vary dramati-

cally across videos. It is thus meaningless to train a model

directly on the absolute pose labels from SfM. Instead, we

start by training a model to estimate the relative pose of

frame pairs (Fig. 3 left). We observe that a canonical pose

emerges in our pose estimation model train in this way (see

Sec. 5.2). This provides us a tool to calibrate the pose esti-

mation from SfM to a canonical frame (Fig. 3 middle). In

the second stage, we train a pose estimation model directly

on the calibrated absolute pose annotations similar to stan-

dard supervised learning methods [36, 33, 42] (Fig. 3 right).

We denote our model trained in the first stage as f(x) and

the model in the second stage as g(x), where x is the in-

put image. Our accidental turntable dataset is denoted by

{(xi, Ri)}, where R ∈ SO(3) is the SfM pose estimation.

4.1. Relative pose estimation

In this stage, we train a single-view pose estimation net-

work f(x) to predict the relative pose between pairs of
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Figure 3. Approach overview. Left: a pose estimation model

f(x) is trained to predict the relative pose of image pairs (denoted

by ΔRij). Middle: the emergence of the canonical pose in f(x)
enables us to calibrate the pose estimations from SfM to a uni-

form frame. The model f(x) is frozen in the pose calibration step.

Right: after the pose calibration, a pose estimation model g(x) is

trained on the absolute pose annotations.

video frames. The loss function is defined as

Lrelative =
N∑

(i,j)

dist(RiR
T
j , R̂iR̂

T
j ) with R̂i = f(xi)

(1)

where dist(·, ·) is a distance function between two rotation

matrices (e.g. L2 or geodesic distance). R̂i is a 3×3 rotation

matrix predicted from the model f(xi) on the input xi. The

frame pair xi and xj are sampled from the same video. N
is the total number of frame pairs sampled from our video

dataset. ΔRij = RiR
T
j is the relative rotation matrix that

transforms the pose of the frame xj to xi. We use the 6D

continuous rotation representation [45] as the intermediate

output of our model f(x), from which the 3 × 3 rotation

matrices R̂ are recovered by the Gram-Schmidt orthogonal-

ization [45]. Our first training stage is similar to the learn-

ing strategy proposed by Novotny et al. [25]. Differently,

we only use the model f(x) trained in this stage as a tool to

calibrate the SfM pose annotations (Sec. 4.2). Moreover, we

demonstrate that the model g(x) trained in our second stage

significantly outperforms the stage-one model f(x) as well

as Novotny et al. [25]. We provide detailed comparisons

between f(x) and g(x) in Sec. 5.2.

4.2. Pose calibration

The pose predictor f(x) trained in the first stage provides

us a tool to calibrate the pose annotations from SfM into

a uniform pose frame, thanks to the emergence of canon-

ical pose (see Sec. 5.2 for more details). If the pretrained

f(x) provides perfectly accurate pose estimation per input

x, there exists a global rotation ΔR for each video that

aligns our pose annotations {Ri} to the pose predictions

{R̂i}:

R̂i = ΔRRi ∀i ∈ 1, . . . ,K (2)

Where K is the number of frames in the target video, how-

ever, the pose predictions {R̂i} are inaccurate in practice

due to the limited performance of the pretrained pose pre-

dictor f(x). We thus target at a rotation matrix ΔR∗ that

aligns {Ri} and {R̂i} with minimal calibration error. We

define the calibration error as,

L∗
cali =

1

K

K∑

i

dist(R̂i,ΔR∗Ri) (3)

where dist(·, ·) is a distance function between two

rotation matrices. We adopt the geodesic distance

‖ logRT R̂‖F/
√
2 in our implementation. The pose cali-

bration is then formulated as an optimization problem:

min
ΔR

Lcali(R̂,ΔRR) (4)

s.t. ΔR ∈ SO(3) (5)

This problem can be solved by the classical Procrustes anal-

ysis [12]. In practice, we find that a simple search-based

optimization method works reliably. Concretely, the opti-

mal global rotation ΔR∗ is searched from the set {ΔRj :

ΔRj = R̂jR
T
j }. Moreover, the calibration error L∗

cali is

closely related to the noise level of the calibrated pose anno-

tations. Large calibration error typically means the failure

of calibration and a higher level of noise in the calibrated

pose annotations (see Sec. 5.2 for our empirical studies).

Therefore, the calibration error L∗
cali may serve as a heuris-

tic to filter out noisy pose labels.

4.3. Absolute pose estimation

We now could apply any supervised learning methods

for pose estimation on our calibrated dataset {(xi, R
cali
i )}.

In this work, we adopt the framework proposed by Xiao et
al. [43, 42] to train our pose estimator. Concretely, we use

three Euler angles as our pose representation, including az-

imuth α ∈ [−π, π], elevation β ∈ [−π/2, π/2], and roll

γ ∈ [−π, π]. The Euler angles are decomposed from the

rotation matrices Rcali and divided into Zθ disjoint angular

bins with bin size Bθ = π/12. The model is trained to pre-

dict the bin indices yθ ∈ {1, . . . , Zθ} via a classification

loss and within-bin offsets δθ via a regression loss:

Labs =
∑

θ∈α,β,γ

Lcls(yθ, pθ) + λLreg(δθ, δ̂θ) (6)

where pθ is the probability of the object pose in the bin

yθ; δ̂θ ∈ [0, 1] is the predicted offsets within the bin yθ;

(pθ, δ̂θ) = g(x) are both outputs of our pose estimation

2116



model g(x). We use the cross-entropy loss as the classifi-

cation loss Lcls and the smooth-L1 loss as the regression

loss Lreg; λ is the weight on the regression loss (λ = 1 by

default).

At the inference time, the pose prediction θ̂ on the input

x is obtained by combining the prediction of the bin classi-

fier and the offsets within the predicted angular bin:

θ̂ = (j + δ̂θ,j)Bθ with j = argmax
i

pθ,i (7)

where pθ,i is the probability of object pose in the i-th bin,

and δ̂θ,j is the predicted offsets within the i-th bin.

5. Experiments
Implementation details. We use a standard ResNet50

network with three fully-connected layers as our pose es-

timation model. We initialize our model with ImageNet

pretrained weights and fine-tune it during training. In the

first training stage, we do not apply any data augmenta-

tion. In the second training stage, we use standard data

augmentations including in-plane rotation and flipping. We

conduct hyperparameter search and checkpoint selection

on a validation set separate from our training and test set.

The validation set consists of 338 non-truncated and non-

occluded car images from PASCAL3D+ [40]. Similar to

prior work [24, 22, 43, 42], we use a tightly cropped object

image as the input to our pose estimation model. The input

image is resized and padded to 224×224. We use the Adam

optimizer with a learning rate of 1E-4 and weight decay of

5E-4. In the second training stage, we train our model on

videos with a calibration error L∗
cali (Eqn. 3) lower than 7◦.

Benchmarks. We evaluate the performance of our model

on the PASCAL3D+ dataset [40] which is a standard bench-

mark for 3D pose estimation. The test split in the PAS-

CAL3D+ dataset consists of 308 non-occluded and non-

truncated car images collected from the PASCAL VOC

dataset [9]. More recently, Mariotti et al. [22] reports their

results on the ImageNet validation set included in PAS-

CAL3D+ which consists of 2712 test images of cars. To

make a comparison with Mariotti et al., we provide re-

sults on both test splits. Following prior works, we mea-

sure the prediction error using the standard geodesic dis-

tance ΔR = ‖ logRT
gtRpred‖F/

√
2 between the estimated

rotation matrix Rpred and the groundtruth Rgt. We report

the median geodesic error (Med.) and the percentage of

predictions with error less than π/6 (Acc.) relative to the

groundtruth.

Pose calibration for evaluation. The pose predictions

from our model align with human annotations up to a global

rotation, due to the difference between the coordinate frame

of our model and that of pose annotation tools adopted by

the benchmarks. To evaluate our model on the benchmarks,

similar to prior unsupervised learning methods [22, 24], we

need to calibrate our pose estimations to the groundtruth

annotations. Such pose calibration for evaluation is exactly

the same as our pose calibration step described in Sec 4.2.

Specifically, we estimate a global calibration matrix ΔR
such that ΔRRpred equals the human annotations Rgt. We

formulate the pose calibration as an optimization problem

and solve it via a simple search-based method (see more

details in Sec 4.2). The calibration matrix ΔR is obtained

by solving the optimization problem on 100 car images ran-

domly sampled from the training set of PASCAL3D+.

5.1. Pose estimation

Quantitative results. Tab. 1 provides quantitative com-

parisons with prior unsupervised pose estimation works on

PASCAL3D+ test set. Our method significantly outper-

forms the existing SfM-based methods [31, 25]. Similar

to ours, these models are trained on video data with pose

annotations from SfM. However, they rely on SfM with

SIFT [20] and nearest neighbor (NN) matching, which fails

to provide high-quality pose estimations (see more details

in Sec 5.2). For this reason, prior SfM-based models col-

lect videos by slowly moving a camera around static cars

to avoid large motion blur. This tedious procedure lim-

its the size of existing car video datasets. For example,

the FreiburgCars dataset [31] consists of 52 car videos;

the EPFL car dataset [26] provides only 20 car videos. In

comparison, our video dataset (consisting of 313 videos) is

easy to collect and prevalent on the Internet. SfM, coupled

with the recent progress in object detection [15] and feature

matching [28], provides robust and accurate pose estima-

tions on our in-the-wild videos, which is the key to the suc-

cess of our framework. Our model trained on the accidental

turntable dataset achieves higher pose prediction accuracy

than when trained on the FreiburgCars dataset.

In comparison with analysis-by-synthesis frame-

works [24, 22], our prediction accuracy is significantly

higher than that of SSV model [24] which is trained on

the CompCars dataset [44] (consisting of 137,000 real car

images). ViewNet [22] achieves the highest performance

on PASCAL3D+ among existing unsupervised learning

methods. However, this method relies on 3D models from

ShapeNet [2] to generate a highly curated dataset with

controlled variations in viewpoint, translation, lighting,

background, etc. In contrast, ViewNet has a harder time

learning from real videos (e.g. FreiburgCars [31]) where its

performance drops remarkably. We’re unable to train the

ViewNet on our dataset as the source code was not publicly

available at the time of this study.
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Table 1. Pose estimation on PASCAL3D+ test sets. We make comparisons with supervised learning methods trained with human

annotations (dubbed Anno.) and unsupervised pose estimation models based on Structure-from-Motion (dubbed SfM) or Analysis-by-

Synthesis (dubbed AbS). ∗ViewNet ignores the in-plane rotation in the evaluation and reports the results on the ImageNet validation set.

Methods Supervision Trainset Testset Acc.(%) ↑ Med.(◦) ↓
S

u
p

er
.

Tulsiani et al. [36] Anno. PASCAL3D+ VOC 89 9.1

Mahendran et al. [21] Anno. PASCAL3D+ VOC – 8.1

Liao et al. [18] Anno. PASCAL3D+ VOC 93 5.2

Grabner et al. [13] Anno. PASCAL3D+ VOC 94 5.1

U
n

su
p

er
v

is
ed

VPNet [31] SfM FreiburgCars VOC – 49.6

VpDRNet [25] SfM FreiburgCars VOC – 29.6

SSV [24] AbS CompCars VOC 67 10.1

Ours SfM FreiburgCars VOC 72 15.7

Ours SfM Acci.Turn. VOC 75 15.8

ViewNet∗ [22] AbS ShapeNet ImageNet 88 5.6

ViewNet∗ [22] AbS FreiburgCars ImageNet 61 16.1

Ours SfM FreiburgCars ImageNet 84 15.0

Ours SfM Acci.Turn. ImageNet 86 14.8

Figure 4. Pose prediction on Pascal3D+ test set. Left: our model

achieves high accuracy of pose estimation on cars in diverse ap-

pearances, poses, and shapes. Right: the performance drops on

large, occluded objects (1st row), low-resolution images (2nd row)

or out-of-domain data (last two rows). The solid arrows indicate

the pose predictions from our model and the dashed arrows are

the groundtruth annotations. The blue arrow directs towards the

frontal side of cars and the red points toward the right side. The

angular distances between the predictions and the groundtruth are

less than 7◦ for examples on the left while higher than 90◦ on the

failure cases.

Qualitative results. Fig. 4 visualizes our pose predictions

on the Pascal3D+ test set. Our model provides accurate

pose estimation on diverse cars in terms of appearance,

poses, and shapes. The performance of our model drops

in several cases: the object is highly occluded; the image

is in low resolution; the domain gap between the input and

our dataset is large (e.g. cartoon cars, snow-covered cars).

These issues can be potentially relieved by collecting more

videos to further enrich the diversity of cars in our dataset.

5.2. Analysis

The emergence of canonical pose. The key to the suc-

cess of the proposed model is the emergence of the canon-

ical pose in our first training stage. Fig. 5 provides images

from our dataset with similar pose annotations after the cal-

ibration step (Sec. 4.2). On the one hand, Fig. 5 clearly

demonstrates that the calibrated pose annotations well align

in a uniform frame. On the other hand, the calibration fails

on several videos due to the limited performance of our

stage-one model (Fig. 5 bottom). A typical failure case is

that the pose predictor misidentifies the frontal view of a car

as the rearview. Such failure cases of pose calibration intro-

duce noisy pose annotations into our dataset. Fortunately,

we find that the noise level of the annotations is closely cor-

related with the calibration error L∗
cali (Eqn. 3). We thus use

the calibration error L∗
cali as a heuristic to filter out noisy

annotations in our second training stage. We provide a de-

tailed analysis below.

The effect of the noise level in the annotations. We use

the calibration error L∗
cali (Eqn. 3) as an indicator of the

noise level of the pose annotations. A higher threshold

on the calibration error corresponds to a larger number of

training images yet more noisy annotations, and vice versa.

Fig. 6 presents the performance of our model under different

noise levels of the annotations. It demonstrates that neither

clean-yet-small data nor large-yet-noisy data lead to higher

performance than mid-size data with mid-level noise.

The effect of two-stage training. As demonstrated in

Fig 5, the model trained in the first stage provides a tool to

calibrate the pose annotations of our dataset. However, the

performance of the stage-one model lags behind the state-

of-the-art analysis-by-synthesis frameworks (e.g. SSV [24]

and ViewNet [22]). We hypothesize that training to pre-

dict the relative pose is a suboptimal learning strategy for
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Figure 5. Canonical pose emerges in our first training stage
(Sec. 4.1). For each reference image (top), we present four

matches (including one failure case) of which the pose annotations

have less than 5◦ angular distance to that of the reference frame.

The calibration error L∗
cali (Eqn. 3) is higher than 25◦ on these

failure cases while lower than 10◦ on the well-calibrated video

instances. This provides us with a heuristic to filter out noisy an-

notations.

Figure 6. The effect of annotation noise level on 3D pose pre-
diction. We report the performance of our pose estimation model

under different noise levels of pose annotations. A higher level

of annotation noise corresponds to a larger number of training im-

ages. We report both prediction accuracy (left panel) and median

error (right panel) on two test splits included in PASCAL3D+.

the task of absolute pose estimation. As shown in Tab. 2,

the model trained in our second training stage significantly

outperforms the one trained in the first stage. This suggests

that learning with absolute pose annotations is a more effec-

tive training method. However, our stage-two training is not

possible without the pose calibration and stage-one model.

Therefore, the proposed two training stages are complemen-

tary and both play an important role in our framework.

The effect of network initialization. The recent self-

supervised learning (SSL) [14, 3] has significantly im-

proves the unsupervised pose estimation [4] and part dis-

covery [27]. We initialize our pose estimation network with

ImageNet-pretrained models by default. However, Ima-

geNet classification labels require extensive human labor.

A natural question is how the recent SSL methods help us

further reduce the requirement of human annotations. Tab. 3

provides a comparison of different initialization strategies.

Supervised ImageNet pretraining and unsupervised con-

trastive pretraining [14, 3] have similar performance in the

Table 2. The effect of two-stage training on 3D pose predic-
tion. The second stage trains the model to regress to absolute pose

after using the first stage model to calibrate the relative pose an-

notations. This procedure leads to a significant improvement in

pose estimation accuracy (%) and median error (◦), in spite of the

training datasets.

Trainset Stage
PASCAL VOC ImageNet

Acc. ↑ Med. ↓ Acc. ↑ Med. ↓
Acci. Turn.

1 42 38.8 46 32.9

2 75 15.8 86 14.8

FreiburgCars
1 36 44 47 31.9

2 72 15.7 84 15.0

Table 3. The effect of network initialization on 3D pose predic-
tion. ImageNet pretrained models provide a significant improve-

ment over random initialized ones but self-supervised counterparts

are competitive alternatives without having to resort to extra hu-

man annotations.

Initialization
PASCAL VOC ImageNet

Acc. ↑ Med. ↓ Acc. ↑ Med. ↓
Random 58 25 70 20.2

Contrastive [14] 74 15.7 85 14.3
ImageNet 75 15.8 86 14.8

task of pose estimation, while both outperform the random

initialization in a large margin.

Pose distribution. Figure 7 compares the pose distri-

bution of the Acci- dental Turntables dataset and PAS-

CAL3D+. The distribution of azimuth is more balanced in

our dataset, where PASCAL3D+ has more cars with large

elevations.

Figure 7. Distribution of the poses in the proposed accidental

turntable dataset and the PASCAL3D+.

Feature extraction and matching for SfM. Feature ex-

traction and matching is the core of SfM algorithms. The

classical SIFT [20] and simple nearest neighbor matching

(NN) remain the default components in popular SfM pack-

ages (e.g. COLMAP [29, 30]), despite of the recent success

of learning-based methods [5, 28]. We observe that SfM

with SIFT and NN does not work reliably on our in-the-

wild video dataset. Fig. 8 compares the 3D reconstruction

and pose estimation from COLMAP under different fea-

ture extraction and matching algorithms on two videos from
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our dataset. SfM with SIFT and NN only provides partial

3D reconstruction and pose estimation on a small subset of

frames. Its performance drops significantly on texture-free

objects (Fig. 8 bottom). Simply replacing SIFT with Super-

point [5] leads to more complete 3D reconstruction and pose

estimations. SfM with Superpoint and SuperGlue [28] pro-

vides the highest quality of shape reconstruction and pose

estimations. Our experimental results can be explained by

the following observations: SIFT detects few interest points

on most cars due to the texture-free surface; SIFT extracts

features in a small local region, which results in large am-

biguity in matching duplicated patterns (e.g. frontal and

rear wheels of a car); large motion blur further destabilizes

the feature-matching process; In comparison, Superpoint

provides rich interest points even in texture-free regions;

Lastly, SuperGLUE aggregates long-range contextual in-

formation via an attention mechanism, which we find sig-

nificantly reduces the ambiguity in matching repeated pat-

terns. Fig. 9 provides more examples from our accidental

turntable dataset. The performance of SfM may drop on

highly-occluded objects (e.g. the car is occluded by smoke

in Fig. 9 bottom).
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Figure 8. Feature extraction and matching for structure-from-
motion. Left: video samples from the proposed accidental

turntable dataset. Right: pose estimations (top) and dense 3D re-

construction (bottom) under different feature extraction (SIFT [20]

or Superpoint [5]) and matching (nearest neighbor (NN) or Super-

Glue (S.G.) [28]) algorithms. The red square pyramids indicate

the location of the estimated camera pose. Each video consists of

more than 200 frames and the car turns around 720◦.

Extension to other categories. There are a fair number of

turntable videos for other categories on Youtube. For exam-

ple, airplanes turn along the runway1; landing or takeoff of

airplanes usually induces more than 90-degree pose changes

relative to the camera2; cruises turn3. Fig. 10 shows SfM

1https://youtu.be/khesztRJKUw
2https://youtu.be/Z7CutgNEMfA?t=30
3https://youtu.be/CgaJgRdI3FQ
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Figure 9. More examples from the Accidental Turntables
dataset. SfM provides accurate 3D reconstructions and pose esti-

mations on either texture-rich (1st row) or texture-free (2nd row)

objects, as well as objects moving along a straight line without any

turns (3rd row). The performance drops on highly-occluded ob-

jects (bottom).

Figure 10. Accidental turntables for airplanes and cruise. Left:
video frame samples. Right: pose estimation and 3D reconstruc-

tion from structure-from-motion.

with Superpoint, and SuperGlue provides reasonable pose

estimation and 3D reconstruction on these categories. Even

though we focus on cars in this work, our dataset is much

larger, easier to collect, and more useful to train a pose esti-

mator than existing car datasets (e.g., FreiburgCars).

6. Discussion and Conclusion

We propose to learn 3D pose estimation models from a

new source of data: videos where objects turn. We demon-

strate that classical structure-from-motion algorithms, cou-

pled with the recent advances in feature matching and object

detection, provide surprisingly accurate pose estimations

and 3D reconstructions on in-the-wild car videos. We also

provide a novel learning framework that successfully trains

a high-quality 3D pose predictor on the collected video

datasets. We plan to release our Accidental Turntable
dataset along with the pose estimations and 3D reconstruc-

tions from the enhanced SfM for the research community.
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