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Abstract

Recent works on 6D object pose estimation focus on
learning keypoint correspondences between images and ob-
ject models, and then determine the object pose through
RANSAC-based algorithms or by directly regressing the
pose with end-to-end optimisations. We argue that learn-
ing point-level discriminative features is overlooked in the
literature. To this end, we revisit Fully Convolutional Ge-
ometric Features (FCGF) and tailor it for object 6D pose
estimation to achieve state-of-the-art performance. FCGF
employs sparse convolutions and learns point-level fea-
tures using a fully-convolutional network by optimising a
hardest contrastive loss. We can outperform recent com-
petitors on popular benchmarks by adopting key modifi-
cations to the loss and to the input data representations,
by carefully tuning the training strategies, and by employ-
ing data augmentations suitable for the underlying prob-
lem. We carry out a thorough ablation to study the con-
tribution of each modification. The code is available at
https://github.com/jcorsetti/FCGF6D.

1. Introduction
Object 6D pose estimation is the problem of finding the

Euclidean transformation (i.e. pose) of an object in a scene

with respect to the camera frame [15]. This problem is im-

portant for autonomous driving [29], augmented reality [30],

space docking [19], robot grasping [7], and active 3D classi-

fication [38]. The main challenges are handling occlusions,

structural similarities between objects, and non-informative

textures. Different benchmarks have been designed to study

these challenges, such as LineMod-Occluded (LMO) [1],

YCB-Video (YCBV) [40], and T-LESS [14]. LMO includes

poorly-textured objects in scenarios with several occlusions.

In YCBV, well-textured objects appear in scenarios with

fewer occlusions but more pose variations. T-LESS includes

poorly-textured and geometrically-similar objects in indus-

trial scenarios with occasional occlusions.

Object 6D pose estimation approaches based on deep

learning can be classified as one-stage [17, 26, 24] or two-

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

C
o
m

p
et

it
o
r

tw
o
-s

ta
g
e

ap
p
ro

ac
h
es

3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud3D point cloud

Cropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD imageCropped RGBD image

Sparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondencesSparse correspondences

3D DNN

2D DNN

P
n
P

+
R

A
N

S
A

C∙

∙

∙

∙

∙

∙

∙

∙

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

O
u
r

ap
p
ro

ac
h

3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds3D point clouds Dense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense featuresDense features

3D DNN

Non-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weightsNon-shared weights

3D DNN

P
o
se

es
ti

m
.

Figure 1: Top: Typically, two-stage 6D pose estimation

methods process the input (RGBD image, 3D object) with

different deep neural networks (2D, 3D) to learn keypoint

correspondences [39], or directly predict the keypoint pro-

jections on the image [13, 12]. They also rely on detectors

to crop the input image, and estimate the final pose with

RANSAC-based PnP [9]. Bottom: Our method processes

the whole scene and the object point clouds with 3D deep

neural networks, optimises the output point-wise (dense) fea-

tures by using ground-truth correspondences, and estimates

the final pose with a point cloud registration algorithm.

stage [18, 13, 12, 39]. One-stage approaches can directly

regress the object pose [17, 26, 24]. Two-stage approaches

can predict 3D keypoints [13, 12] or point-level correspon-

dences between the scene and the object [39]. Correspon-

dences can be computed through point-level features [39].

One-stage approaches are typically more efficient than their

two-stage counterpart, as they require only one inference

pass. However, rotation regression is a difficult optimisa-

tion task because the rotation space is non-Euclidean and

non-linear, and the definition of correct orientation is am-

biguous in case of symmetric objects [34]. On the other

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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hand, correspondence-based approaches have to be coupled

with registration techniques, such as RANSAC, PnP, or least

square estimation [39].

We argue that the problem of learning discriminative

point-level features is overlooked in the related literature.

Moreover, we believe that working at intermediate levels of

representation learning, rather than regressing the pose di-

rectly, facilitates interpretability and enables us to effectively

debug algorithms. Literature on representation learning for

point cloud registration has made great advances [4, 32], and

none of the object 6D pose estimation methods have deeply

investigated the application of these techniques to the under-

lying problem (Fig. 1). In a landscape dominated by complex

networks, our work stands as the first to comprehensively

explore and quantify the benefits of this formulation with a

simple yet effective solution. Our research addresses funda-

mental and previously unanswered questions:

i) How to learn features of heterogeneous point clouds (ob-
jects and scenes) that align in the same representation space
and exhibit cross-domain generalisation (synthetic to real)?
ii) What training strategies are optimal for this approach?
iii) What degree of improvement can these strategies bring?
To answer these questions, we revisit Fully Convolutional

Geometric Features (FCGF) [4] and show that its potential to

achieve state-of-the-art results lies in an attentive design of

data augmentations, loss negative mining, network architec-

ture, and optimisation strategies. FCGF is designed to learn

point-level features by using a fully-convolutional network

optimised through a hardest contrastive loss. Compared to

the original FCGF setting, our setting is asymmetric, i.e. the

two input point clouds have different sizes and resolutions.

Therefore, we modify the hardest contrastive loss to take into

account the size of each point cloud for the mining of the

hardest negatives. We use separate architectures to learn spe-

cific features for the two (heterogeneous) input data (object

and scene), but unlike several state-of-the-art methods we

train only a single model for all the objects of each dataset.

We use specific augmentations to tackle occlusions, which

are the main challenge in real-world scenarios and in the con-

sidered datasets. We name our approach FCGF6D. FCGF6D

outperforms state-of-the-art methods (+3.5 ADD(S)-0.1d on

LMO, +0.8 ADD-S AUC on YCBV), even when comparing

with methods that train one model for each object. Our ab-

lation study suggests that most of the performance gain is

obtained thanks to our changes to the loss, the addition of

the RGB information and our changes to the optimizer. In

summary, our contributions are:

• We tailor FCGF for object 6D pose estimation in order

to i) process entire scenes rather than cropped regions

as competitors, ii) learn a single model for all objects

instead of a model for each object, iii) process both

photometric and geometric information with a single

unified deep network model.

• A modified version of the hardest contrastive loss that

is applied to heterogeneous point clouds and that con-

siders a geometric constraint when mining the hardest

negative.

• We study data augmentations that enable FCGF to im-

prove generalisation between synthetic and real data.

2. Related work
6D pose estimation approaches can be designed to use

different input data. RGB methods [18, 17, 6, 35] rely on

photometric information only, while RGBD methods [13, 12,

11, 26, 39] also use range information in addition to RGB.

RGB-based 6D pose estimation. SO-Pose [6] proposes

an end-to-end method that explicitly models self-occlusion

maps (i.e., portions of the object that are hidden by camera

orientation). It computes 2D-3D correspondences for each

visible point of the object, and feeds them with self-occlusion

maps to a pose regression module. ZebraPose [35] proposes a

strategy to learn surface descriptors on the image, by training

a neural network to predict pixel features which correspond to

predefined descriptors on the object model. At inference time,

it finds correspondences by similarity, and solves the PnP

problem with RANSAC. The authors show that the vertex

encoding process is crucial for performance improvement.

RGBD-based 6D pose estimation. PVN3D [13] extends

PVNet [31] by incorporating 3D point cloud information.

The core of this approach is a keypoint voting mechanism,

in which for each pixel the offset to a reference keypoint is

regressed. A semantic segmentation module is also used

to identify the points belonging to each object in the scene.

PVN3D is a two-stage method, as it passes the final cor-

respondences to a RANSAC-based [9] algorithm for 6D

pose estimation. FFB6D [12] adopts an analogous method

to PVN3D [13], but introduces a novel convolutional ar-

chitecture with Fusion Modules. These modules enable

the model to combine photometric (RGB) and geometrical

(D) features for learning a better point cloud representation.

E2EK [26] proposes an end-to-end trainable method by ex-

tending FFB6D [12]. It clusters and filters the features com-

puted by FFB6D based on confidence, and then processes

them by an MLP-like network that regresses the pose. Wu et

al. [39] addresses the problem of objects that are symmetric to

rotation with a two-stage method. They extend FFB6D [12]

by introducing a novel triplet loss based on geometric con-

sistency. Symmetry is leveraged by considering symmetric

points as positives, thus forcing them to have similar features.

Feng et al. [8] proposes a method to solve a related prob-

lem. In this work, FCGF is applied to align different point

clouds of objects belonging to the same category. However,

the authors do not introduce task-specific modifications to

FCGF, and unlike our case of application, the target object

is assumed to be already segmented from the scene.

Unlike methods that employ sophisticated combinations
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of deep network architectures to process RGB and depth

modalities [12, 39], our approach uses deep networks based

on sparse convolutions to process coloured point clouds with

a single framework. Sparse convolutions are designed to

process point clouds efficiently [3]. We also split the pose

estimation problem into two subproblems, i.e. feature learn-

ing and point cloud registration. This allows us to evaluate

the quality of the learned features by using metrics such as

Feature Matching Recall [5], which fosters interpretability of

our model. Unlike Wu et al. [39], we do not rely on a detector

to crop the region with the candidate object before processing

the point cloud with our network. Our experiments show

that we can outperform the nearest competitors E2EK [26]

and Wu et al. [39] by 5.7 and 1.9 ADD(S)-0.1d on the LMO

dataset, respectively, without using a detector.

3. Preliminary: A review of FCGF
Input data representation. FCGF takes as input a quantised

version of the original point cloud  ∈ ℝ𝑉 ×3. The quantisa-

tion procedure splits the volume occupied by  into a grid

of voxels of size 𝑄 and assigns a single representative vertex

x𝑖 ∈ ℝ3 to each voxel 𝑖. This reduction is typically computed

with random sampling or by average pooling (barycenter) [3].

The resulting sparse representation is obtained by discarding

voxels corresponding to a portion of the empty space and is

significantly more efficient in terms of memory utilisation.

Feature extractor. The fully-convolutional feature extrac-

tor 𝚽Θ is a parametric function with learnable parameters

Θ designed as a UNet [33]. Given x𝑖, 𝚽Θ produces a 𝐹 -

dimensional feature vector defined as 𝚽Θ(x𝑖) = f𝑖 ∈ ℝ𝐹 .

FCGF processes pairs of point clouds using a Siamese ap-

proach, i.e. feature extractors with shared weights. FCGF is

implemented in PyTorch using Minkowski engine [3].

Hardest contrastive loss. The hardest contrastive (HC)

loss is defined as 𝓁HC = 𝜆𝑃𝓁𝑃 + 𝜆𝑁𝓁𝑁 , where 𝓁𝑃 pro-

motes similarity between features of positive samples, 𝓁𝑁
promotes dissimilarity between features of negative sam-

ples, and 𝜆𝑃 , 𝜆𝑁 are hyperparameters. Given a pair of 3D

scenes (1,2) as input, the set of positive pairs is defined

as  = {(𝑖, 𝑗) ∶ x𝑖 ∈ 1, x𝑗 ∈ 2, 𝜙(x𝑖) = x𝑗}, where

𝜙∶ 1 → 2 is a correspondence mapping between 1 and

2 voxels. 𝓁𝑃 is defined as

𝓁𝑃 =
∑

(𝑖,𝑗)∈

1|| (‖f𝑖 − f𝑗‖ − 𝜇𝑃
)2
+ , (1)

where || is the cardinality of  , 𝜇𝑃 is a positive margin

to overcome overfitting [25], and (⋅)+ = max(0, ⋅). For each

pair (𝑖, 𝑗) ∈  , two sets of candidate negatives are defined

as 𝑖 = {𝑘 s.t. x𝑘 ∈ 1, 𝑘 ≠ 𝑖}, 𝑗 = {𝑘 s.t. x𝑘 ∈ 2, 𝑘 ≠

𝑗}. Computing 𝑖,𝑗 scales quadratically with the mini-

batch size, therefore random subsets of 𝑖 and 𝑗 with fixed

cardinalities are instead used in practice. 𝓁𝑁 is defined as

𝓁𝑁 =
∑

(𝑖,𝑗)∈

1
2|𝑖|

(
𝜇𝑁 − min

𝑘∈𝑖

‖f𝑖 − f𝑘‖)2

+

+ 1
2|𝑗|

(
𝜇𝑁 − min

𝑘∈𝑗

‖f𝑗 − f𝑘‖
)2

+

,

(2)

where |𝑖|, |𝑗| are the numbers of valid negatives mined

from the first and second term, respectively. Unlike metric

learning losses that randomly mine a certain number of neg-

atives from 𝑖,𝑗 [10, 37], the HC loss mines the most

similar features within a batch, i.e. the hardest negatives.

4. Tailoring FCGF for 6D pose estimation
In this section, we describe how we modified FCGF. We

focus on manipulating heterogeneous representations of input

data, improving the HC loss, and modernising the training

strategy. Fig. 2 shows the block diagram of FCGF6D.

4.1. Input data

Heterogeneous representations. FCGF was designed for

scene registration, where its input data is 3D scan pairs of the

same scene captured from different viewpoints. Therefore,

their input data belongs to the same distribution, i.e. real-

world data captured with the same LiDAR sensor. This is

why authors in [4] use a Siamese approach. Unlike FCGF,

our input data is heterogeneous, therefore we process it with

two independent deep networks. Formally, given an object 𝑂

and a scene 𝑆, the input of our pipeline is the pair (𝑂,𝑆 ),
where 𝑂 is a textured 3D model of 𝑂 and 𝑆 is an RGBD

capture of 𝑆 from a viewpoint. We transform (𝑂,𝑆 ) into

a pair of point clouds. For 𝑂, we produce a point cloud

𝑂 ∈ ℝ𝑉𝑂×6 by sampling 𝑉𝑂 vertices on the triangular faces

of 𝑂 and extracting the corresponding RGB colours from

its texture. For 𝑆, we use the intrinsic parameters of the

RGBD sensor to map 𝑆 into a coloured point cloud and

sample 𝑉𝑆 points from it. Let 𝑆 ∈ ℝ𝑉𝑆×6 be the point

cloud of𝑆. We quantise𝑂 and𝑆 by a factor𝑄 and process

the pair with two networks implemented with Minkowski

engine [3]. 𝑉𝑂, 𝑉𝑆 , and 𝑄 are hyperparameters.

Processing geometric and photometric data. Minkowski

engine [3] is designed to process optional input features in ad-

dition to the 3D coordinate of each point. However, authors

in [4] show that, in the context of scene registration, adding

the photometric information associated to each point leads to

overfitting. We found instead that this addition significantly

improves the performance. Colour information helps in i)

discriminating objects of different categories but with sim-

ilar geometric shape (e.g. pudding box and gelatin box in

YCBV [40]), and ii) selecting the correct pose of symmetric

objects among the set of geometrically-equivalent ones (i.e.
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Figure 2: FCGF6D training pipeline consists of four logical parts. Given a scene 𝑆 and an object 𝑂 we take as input the pair

(𝑆,𝑂). In the first part, we compute 3D point cloud representations (𝑆,𝑂) of (𝑆,𝑂), where 𝑆 is obtained by lifting

𝑆 using the intrinsic parameters of the camera that acquired it, and then quantise them. In the second part, we mine positives

by computing the correspondences between 𝑆 and ̃𝑂 = R𝑂𝑂 + t𝑂, where R𝑂, t𝑂 is the ground-truth 6D pose of 𝑂. In

the third part, we perform point-wise feature extraction with two independent UNets Φ𝑆,Φ𝑂. In the fourth part, the hardest

contrastive loss with safety thresholds is applied to guide the feature learning process.

the 6D pose of a box or a can cannot be uniquely defined

unless we consider their texture patterns).

4.2. Loss function

Positive mining. We define  (Eq. 1) as the set of valid

correspondences between 𝑂 and 𝑆 . Let (𝐑𝑂, 𝐭𝑂) be 𝑂

ground-truth 6D pose in 𝑆 and ̃𝑂 = 𝐑𝑂𝑂 + 𝐭𝑂 be the

rigidly transformed version of 𝑂 into the reference frame

of 𝑆 . We compute all the correspondences by searching

for each point of ̃𝑂 its nearest neighbouring point in 𝑆 .

Due to occlusions with other objects and/or self-occlusions,

some of the correspondences may be spurious, e.g. associ-

ating points of different surfaces. Therefore, we consider a

correspondence valid if the distance between x̃𝑖 ∈ ̃𝑂 and

x𝑗 ∈ 𝑆 is less than a threshold 𝜏𝑃 and if the other points

on the scene are farther away, i.e. (𝑖, 𝑗) ∈  ⇔ ‖x̃𝑖 − x𝑗‖ <

𝜏𝑃 and ‖x̃𝑖 − x𝑗‖ < ‖x̃𝑖 − x𝑘‖ for every 𝑘 = 1,… , 𝑉𝑆 .

Negative mining. We experienced that mining the hard-

est negatives from the negative sets 𝑖, 𝑗 (Eq. 2) can

lead to loss instability and collapsing. This occurs because

the hardest negative in 𝑖 = {𝑘 ∶ x𝑘 ∈ 𝑂, 𝑘 ≠ 𝑖}, i.e.

the sample with the closest feature to 𝐟𝑖 ∈ ℝ𝐹 , is likely

to be a point spatially close to x𝑖 ∈ 𝑂, because their lo-

cal geometric structure is nearly the same. Hence, Eq. 2

tries to enforce features corresponding to the same local

geometric structure to be distant from each other. This

problem can be mitigated by replacing 𝑖,𝑗 in Eq. 2

with ̃𝑖 = {𝑘 ∶ x𝑘 ∈ 𝑂, ‖x𝑘 − x𝑖‖ > 𝜏𝑁𝑂} and

̃𝑗 = {𝑘 ∶ x𝑘 ∈ 𝑆, ‖x𝑘 − x𝑗‖ > 𝜏𝑁𝑂}, where 𝜏𝑁𝑂 is

a safety threshold, i.e. the radius of spheres on object and on

scene where mining is forbidden.

The choice of 𝜏𝑁𝑂 is key because it determines which

points on the point clouds can be used for negative min-

ing. We found beneficial to choose 𝜏𝑁𝑂 as a function of the

dimension of the input object. Given 𝑂, we define its diam-

eter as 𝐷𝑂, and set 𝜏𝑁𝑂 = 𝑡scale𝐷𝑂. In Fig. 3, we illustrate

the safety thresholds. In this way, we can maintain a good

quantity of negatives while avoiding the mining of spurious

hardest negatives. Using different thresholds for the object

and the scene points clouds underperformed our final choice.

Therefore, our loss is defined as

𝓁HC = 𝜆𝑃𝓁𝑃 + 𝜆𝑁𝑂𝓁𝑁𝑂 + 𝜆𝑁𝑆𝓁𝑁𝑆,

where 𝜆𝑃 , 𝜆𝑁𝑂 and 𝜆𝑁𝑆 are weight factors. 𝜏𝑃 , 𝑡scale, 𝜆𝑃 ,

𝜆𝑁𝑂, and 𝜆𝑁𝑆 are hyperparameters.

4.3. Training strategy

Data augmentation. FCGF combines scaling and rotation

augmentations to enhance feature robustness against varia-

tions in camera pose [4]. These are effective in the context of

point cloud registration, but in our specific scenario, the point

cloud of the objects always belongs to a known set. Avoid-

ing these augmentations helps the deep network in learning

specialised features for each object. Our data augmentations

consist of the following:

(i) Point re-sampling of 𝑂 and 𝑆, i.e. unlike FCGF, we

randomly downsample point clouds at each epoch to mitigate

overfitting. This allows the model to be more robust to depth

acquisition noise; (ii) Colour jittering on 𝑂, i.e. we randomly

perturb brightness, contrast, saturation, and hue of 𝑂; (iii)

Random erasing on 𝑆, i.e. unlike FCGF, we simulate occlu-

sions at training time. For each point of ̃𝑂 we compute its

nearest neighbour in 𝑆 and randomly select a point on 𝑆

within such correspondence set. We then erase all the points

that fall within a distance threshold 𝜌 from it. This allows

the model to be more robust to occlusions in the input scene.
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(a) (b) (c)

Figure 3: Examples of different mining strategies. (a) Hardest contrastive loss as proposed in FCGF: no constraints are enforced

on the location of the hardest negative (red point) with respect to the correspondent point (green point). (b) A vanilla choice of

the safety thresholds: the radii 𝜏𝑁𝑆 , 𝜏𝑁𝑂 are proportional to the diameters 𝐷𝑆 , 𝐷𝑂 of the respective point clouds. (c) Our

choice: the value of the thresholds is proportional to the diameter of the object, i.e. 𝜏𝑁𝑆 = 𝜏𝑁𝑂.

Optimisation techniques. FCGF uses an SGD optimiser

with an initial learning rate lrinit = 10−1 decreased during

training with an exponential scheduler with 𝛾 = 0.99. In our

setting, these hyperaparameters do not lead to convergence.

Instead, we set lrinit = 10−3. We experiment with Adam [21]

and AdamW [28], and notice improvements in both cases.

We also switch to a Cosine Annealing scheduler [27] that

lowers the learning rate from 10−3 to 10−4 across the epochs.

5. Experiments
5.1. Datasets

We evaluate FCGF6D on the LineMod-Occluded

(LMO) [1] and the YCB-Video (YCBV) [40] datasets.

LMO [1] contains RGBD images of real scenes with differ-

ent configurations of objects placed on a table. It provides

the ground-truth 6D pose of eight of these objects, which are

always present in the scene. Objects are poorly textured, of

varying dimensions and placed in a cluttered scene, featuring

a variety of lightning conditions. We use the original test set

of 1,213 real images, while for the training set the works we

use as comparison use different combinations of synthetic

and real images: the methods they use to generate the syn-

thetic images and the number of samples for each type are

not always clearly defined [13, 12, 26, 39]. Differently, we

only use the Photo Realistic Rendering (PBR) set of 50,000

synthetic images provided by the BOP challenge [16] as it

contains a large variety of pose configurations. Following

[13], we adopt an hole filling algorithm [22] to improve the

depth quality on both training and test images.

YCBV [40] contains RGBD images of real scenes with dif-

ferent configurations of 21 objects taken from the YCB

dataset [2]. Objects have similar geometry (e.g. boxes and

cans) and are placed in various poses (e.g. some objects are

placed on top of others). Unlike LMO, the objects are placed

in different contexts. We use the original test set of 20,738

real images. As for LMO, state-of-the-art methods use differ-

ent combinations of synthetic and real data [13, 12, 26, 39].

For training, we choose 4,000 synthetic, 4,000 real, and 4,000

PBR images provided by the BOP challenge [16] because we

found that using only the PBR images leads to unsatisfactory

results. Also for YCBV we adopt a hole filling algorithm [22]

on both train and test depth images as done in [13].

5.2. Implementation details

LMO setting. Experiments on LMO share the following

hyperparameters. The input pair (𝑂,𝑆) is first sampled to

𝑉𝑂 = 4,000 and 𝑉𝑆 = 50,000 points, respectively, and then

quantised with a step of 𝑄 = 2mm. As feature extractor we

use a MinkUNet34 [3] with output dimension 𝐹 = 32. The

correspondence estimation threshold used for the positive

mining is 𝜏𝑃 = 4mm, and the maximum number of corre-

spondences extracted is set to 1,000. The safety threshold

𝜏𝑁𝑂 is defined proportionally to the object 𝑂 diameter by

setting 𝑡scale = 0.1 (see Fig. 3). The hardest negative min-

ing on 𝑂 is performed in ̃𝑖. When mining the hardest

negatives on 𝑆 , instead of considering the full candidates

set ̃𝑗 we randomly sample 10,000 points from it to reduce

the spatial complexity. HC loss margins are set as 𝜇𝑃 = 0.1,

𝜇𝑁 = 10, and coefficients are set to 𝜆𝑃 = 1, 𝜆𝑁𝑂 = 0.6,

and 𝜆𝑁𝑆 = 0.4. The feature extractor is trained on 50,000

PBR images for 12 epochs. The pose is obtained by using

the TEASER++ [41] algorithm.

YCBV setting. Experiments on YCBV share the same LMO

hyperparameters except in the following cases. We set 𝑉𝑆 =
20,000, as we found that it works on par with the original

𝑉𝑆 of LMO. We believe this happens because YCBV objects

are less occluded and their geometries are less complex than
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Table 1: Comparison of RGB and RGBD methods performance on LMO [1] evaluated in terms of ADD(S)-0.1d. Key: ∗:

symmetric object, DNNs: number of Deep Neural Networks used, n.a.: information not available, Det: object detections are

used as prior, Seg: object segmentation masks are used as prior, bold: best result, underline: second best result.

Input Method DNNs Prior Ape Can Cat Drill Duck Eggbox∗ Glue∗ Holepuncher Avg
R

G
B SO-Pose [6] 1 Det 48.4 85.8 32.7 77.4 48.9 52.4 78.3 75.3 62.3

ZebraPose [35] 8 Det 57.9 95.0 60.6 94.8 64.5 70.9 88.7 83.0 76.9

R
G

B
D

PVN3D [13] 1 – 33.9 88.6 39.1 78.4 41.9 80.9 68.1 74.7 63.2
PR-GCN [42] n.a. Det 40.2 76.2 57.0 82.3 30.0 68.2 67.0 97.2 65.0
FFB6D [12] 1 – 47.2 85.2 45.7 81.4 53.9 70.2 60.1 85.9 66.2
DCL-Net [23] n.a. Det 56.7 80.2 48.1 81.4 44.6 83.6 79.1 91.3 70.6
E2EK [26] 8 Seg 61.0 95.4 50.8 94.5 59.6 55.7 78.3 91.4 73.3
Wu et al. [39] 8 Det 66.1 97.4 70.7 95.4 70.1 61.2 59.8 95.7 77.1
FCGF6D (ours) 1 – 65.4 96.7 64.8 97.8 71.7 54.1 83.2 97.9 79.0
FCGF6D (ours) 1 Det 63.6 94.8 63.4 97.4 73.4 74.6 80.4 97.3 80.6

LMO objects. As feature extractor we use a MinkUNet50

model [3], trained on 12,000 mixed images for 110 epochs.

The pose is obtained with a RANSAC-based algorithm from

Open3D [43]. Experimentally, on YCBV we found that

RANSAC yields better results than TEASER++. We be-

lieve that this happens because TEASER++ is heavily based

on correspondences [41] and for YCBV we use a lower reso-

lution for the scene compared to LMO, which in turn reduces

the number of correspondences.

5.3. Evaluation metrics

We use the ADD and ADD-S metrics that are defined as

ADD = 1
𝑉𝑂

∑
x∈𝑂

‖‖‖(Rx + t) − (R̂x + t̂)‖‖‖ ,
ADD-S = 1

𝑉𝑂

∑
x1∈𝑂

min
x2∈𝑂

‖‖‖(Rx1 + t) − (R̂x2 + t̂)‖‖‖ ,
where 𝐑, 𝐭 and 𝐑̂, 𝐭̂ are the translation and rotation com-

ponents of the predicted and the ground-truth poses of

𝑂 ∈ ℝ𝑉𝑂×3, respectively. ADD(S) computes the ADD for

non-symmetric objects and the ADD-S for symmetric ones.

Performance on LMO is assessed in term of the ADD(S)-

0.1d metric [13, 12, 26, 39], which computes the percentage

of ADD(S) errors lower than 10% of the object diameter [15].

Performance on YCBV is assessed in term of the ADD-S

AUC metric [40, 13, 12]. The area-under-the-curve (AUC) of

ADD-S is obtained by computing the cumulative percentage

of ADD-S errors lower than a threshold varying from 1mm

to 100mm. Note that in ADD(S)-0.1d the success thresholds

are relative to the object diameters, while in ADD-S AUC

they are absolute.

5.4. Quantitative results

Tab. 1 reports the results on LMO [1] in term of ADD(S)-

0.1d: for completeness we added the two best performing

RGB methods (top), while the other ones are RGBD methods

(bottom). As reported in the Prior column, most methods

rely on additional priors, either in the form of object detec-

tions (Det) or of object segmentation masks (Seg). FCGF6D

outperforms all the other methods by a large margin with-

out using any prior (penultimate row): it outperforms Wu et

al. by 1.9%, E2EK by 5.7%, DCL-Net by 8.4%, FFB6D by

12.8%, PR-GCN by 14.0%, and PVN3D by 15.8%. Note that

Wu et al. [39] and E2EK [26] train a different deep neural

network for each object (DNNs column), whereas we train

only a single deep neural network, saving learning param-

eters and training time. Moreover, when we use the object

detections obtained with YOLOv8 [20] (last row), the per-

formance of FCGF6D further improves, outperforming Wu

et al. by 3.5%, E2EK by 7.3%, and all the other methods by

more than 10.0%. Note that detectors are prone to errors:

when detections are wrong, the object pose will be wrong

too. We can observe that the detector is more effective with

Duck and Eggbox. The first is a particularly small object,

therefore more likely to be occluded. The second undergoes

frequent occlusions (other objects are on top of it in several

images), thus making localisation difficult without a detector.

To further understand the negative impact of the detector, we

compute the percentage of poses which are wrong when we

use detections and correct when we do not use detections. For

Ape, Can and Glue, this percentage is 3.3%, 1.7%, and 5.1%,

respectively. Please refer to the Supplementary Material for

a comprehensive analysis of the detector impact.

Tab. 2 reports the results on YCBV [40] in ADD-S AUC

compared with other RGBD-based methods. The row Prior

indicates eventual additional priors used by each method.

The default configuration of FCGF6D does not require any

input prior and uses a deep neural network for all the objects.

FCGF6D outperforms recent competitors that do not use in-

put priors: it outperforms FFB6D by 0.8% and PVN3D by

1.7%. E2EK [26] and Wu et al. [39] instead consider input

priors in the form of object segmentation masks and object

detections, respectively, and train a model for each object

(DNNs row). When we use input priors in the form of de-

tections, FCGF6D outperforms E2EK by 2.4% and slightly

underperforms Wu et al. by −0.6%. We also observe that,

thanks to multi-scale representation provided by the UNet,

we obtain good performance also on symmmetric objects
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Table 2: Performance of RGBD methods on YCBV [40]

evaluated in ADD-S AUC. Key: ∗: symmetric object, DNNs:

number of Deep Neural Networks used, Det: object detec-

tions are used as prior, Seg: object segmentation masks are

used as prior, bold: best result, underline: second best result.

Method
PVN3D FFB6D FCGF6D E2EK Wu et al. FCGF6D

[13] [12] (ours) [26] [39] (ours)

DNNs 1 1 1 21 21 1
Prior – – – Seg Det Det

master chef can 80.5 80.6 96.1 79.6 100.0 96.3
cracker box 94.8 94.6 96.4 95.1 98.8 96.7
sugar box 96.3 96.6 98.1 96.7 100.0 98.1
tomato soup can 88.5 89.6 93.1 89.8 97.5 95.8
mustard bottle 96.2 97.0 98.3 96.5 100.0 98.3
tuna fish can 89.3 88.9 82.8 90.7 99.9 97.6
pudding box 95.7 94.6 95.2 96.9 100.0 97.3
gelatin box 96.1 96.9 98.7 97.5 100.0 98.7
potted meat can 88.6 88.1 79.9 90.8 84.1 89.8
banana 93.7 94.9 98.3 94.4 100.0 98.3
pitcher base 96.5 96.9 97.9 95.6 100.0 97.9
bleach cleanser 93.2 94.8 95.9 94.0 99.9 96.7
bowl∗ 90.2 96.3 97.3 96.0 94.5 98.2
mug 95.4 94.2 97.4 95.3 100.0 97.7
power drill 95.1 95.9 98.2 96.6 100.0 98.2
wood block∗ 90.4 92.6 95.2 93.8 98.0 96.4
scissors 92.7 95.7 93.9 97.9 100.0 95.9
large marker 91.8 89.1 97.5 95.0 99.9 98.3
large clamp∗ 93.6 96.8 80.6 97.2 91.1 93.8
extra large clamp∗ 88.4 96.0 77.4 96.7 81.0 94.7
foam brick∗ 96.8 97.3 94.6 97.2 99.8 97.6

Avg 91.8 92.7 93.5 94.4 97.4 96.8

without the need of specific techniques to handle symme-

try. Note that we employed detections in both Tabs. 1&2

to illustrate their potential use in improving registration ef-

ficacy, though not obligatory. Specifically in Tab. 2, when

we compare with methods based on the same assumptions

as ours, FCGF6D achieves state-of-the-art performance, see

comparison with PVN3D [13] and FFB6D [12]. When we

compare with methods that use 21 models instead of 1 (as

ours), we fall slightly behind the best (see comparison with

E2EK [26] and Wu et al. [39]).

5.5. Qualitative results

Fig. 4 shows some examples of successes and failures on

the test set of LMO dataset. The upper row shows the ground-

truth poses, and the bottom one shows the poses predicted by

our model. Note how FCGF6D is capable of estimating the

correct pose even in case of partial objects (i.e. the glue in

the first image). However, our model fails in case of partial

objects with ambiguities (the duck in the second image), or

of atypical occlusions (the eggbox in the second image: the

training set do not contain this degree of occlusions).

Fig. 5 shows some examples of successes and failures

on the test set of YCBV. FCGF6D appears prone to rotation

errors (the large clamp in the first image), especially in case of

partially occluded objects (the bleach cleanser in the second

image). However, the poses are generally accurate.
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Figure 4: Qualitative results on LMO [1]. Colour key:

∙ Ape, ∙ Can, ∙ Cat, ∙ Drill, ∙ Duck, ∙ Eggbox, ∙ Glue,

∙ Holepuncher.
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Figure 5: Qualitative results on YCBV [40]. Colour key:

∙ master chef can, ∙ sugar box, ∙ tomato soup can, ∙ tuna

fish can, ∙ bleach cleanser, ∙ mug, ∙ wood block, ∙ large

clamp, ∙ extra large clamp.

5.6. Ablation study

We conduct an ablation study on the Drill object of the

LMO dataset by training FCGF6D for five epochs. We

choose the closest setting to FCGF as baseline: no safety

threshold in the loss, shared network weights, no RGB in-

formation, SGD optimiser with lrinit = 10−3, exponential

scheduler with 𝛾 = 0.99. We perform a single experiment

for each added component to assess their individual con-

tribution. As metrics, we use ADD(S), Relative Rotation

Error (RRE), Relative Translational Error (RTE), and Fea-

ture Matching Recall (FMR) [4, 32]. RRE and RTE show

how the two pose components (rotation and translation) are

2109



Table 3: Ablation study on the Drill object of LMO. Perfor-

mance is compared in RRE [radians] and RTE [cm] errors,

FMR and ADD(S)-0.1d (shortened to ADD) scores. Δ shows

the improvement of each contribution in terms of ADD(S)-

0.1d with respect to the previous row.

Improvements RRE ↓ RTE ↓ FMR ↑ ADD ↑ Δ
Baseline 2.2 9.6 0 0.2 –

L
o
ss + 𝜏𝑁𝑆 = 0.1𝐷𝑆 1.8 12.2 0 0.4 +0.2

+ 𝜏𝑁𝑆 = 0.1𝐷𝑂 1.1 5.3 0.2 18.2 +17.8

A
rc

h
. + Independent weights 1.2 3.7 0 29.1 +10.9

+ Add RGB information 0.6 2.2 38.5 63.3 +34.2

A
u
g
. + Colour augmentation 0.6 2.2 32.0 65.4 +2.1

+ Random erasing 0.3 1.8 78.4 75.6 +10.2

O
p
ti

m
. + SGD → Adam 0.1 1.1 93.4 95.8 +20.2

+ Adam → AdamW 0.1 0.9 93.9 96.4 +0.6
+ Exp → Cosine 0.1 0.9 93.6 96.6 +0.2
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Figure 6: Feature Matching Recall (FMR) as a function of

𝜏1 and 𝜏2. When varying 𝜏1 (top) we set 𝜏2=5%, and when

varying 𝜏2 (bottom) we set 𝜏1=10 voxels.

affected. FMR indirectly measures the number of iterations

required by a registration algorithm, e.g. RANSAC, to esti-

mate the transformation between two point clouds. We set

the inlier distance threshold as 𝜏1 = 5 voxels, and the inlier

recall ratio as 𝜏2 = 5%.

Tab. 3 shows that the largest contributions in ADD(S)-

0.1d are: introducing the safety threshold in the loss (+17.8),

adding RGB information (+34.2), and adopting Adam opti-

miser (+20.2). We also note that the gain in ADD(S)-0.1d is

not always consistent with the FMR: when RGB augmenta-

tion is added, there is a gain in ADD(S)-0.1d of 2.1, but the

FMR drops by 6.5. A more detailed analysis of FMR with

different values of 𝜏1 and 𝜏2 is shown in Fig. 6.

5.7. Training and inference time

The training time is about one week for each dataset using

two NVIDIA A40 GPUs. Tab. 4 reports the comparison of

Table 4: Inference time and memory footprint. Time is for

a single image, and includes network inference (inf.) and

registration (reg.) times. 𝑁 is the number of trained models.

Method DNNs Params [M] Memory [GB] Time [ms] (inf.+reg.)

PVN3D [13] 1 38.6 3.17 417 (154 + 263)
FFB6D [12] 1 33.8 2.46 285 (146 + 139)
Wu et al. [39] 𝑁 23.8×𝑁 2.04×𝑁 144 (143 + 1)

Ours 1 63.5 1.3 156 (118 + 38)

the number of parameters, inference GPU memory footprint,

and inference time (using a GeForce RTX 3050 GPU) on

YCBV. We were unable to test E2EK [26] as the code is un-

available, whereas we used the authors’ original code for the

other papers. FCGF6D has a significantly smaller memory

footprint than the main competitors, and the inference time

is comparable. In a scenario where multiple objects are ex-

pected, our closest competitor [39] uses a different model for

each object, thereby requiring more memory. Our method

requires less memory because we train only a single model.

Note that using the whole scene as input is advantageous in

a practical scenario where 𝑁 instances of the same object

are present. Here, we need a single forward pass, followed

by 𝑁 registrations. Instead, methods that rely on image

crops [42, 23, 39] require a forward pass for each instance.

6. Conclusions
We revisited the Fully Convolutional Geometric Feature

(FCGF) approach to tackle the problem of object 6D pose es-

timation. FCGF uses sparse convolutions to learn point-wise

features while optimising a hardest contrastive loss. Key

modifications to the loss, input data representations, train-

ing strategies, and data augmentations to FCGF enabled us

to outperform competitors on popular benchmarks. A thor-

ough analysis is conducted to study the contribution of each

modification to achieve state-of-the-art performance. Future

research directions include the application of our approach

to generalisable 6D pose estimation [36].

Limitations. Minkowski engine is computational efficient

but has a large memory footprint at training time. We mit-

igated this by downsampling the scene point cloud and by

adopting quantisation. It would be interesting to understand

how not to lose the input point cloud resolution while main-

taining a modest memory footprint.
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