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Abstract

Object pose estimation is an essential computer vision
problem in many robot systems. It is usually approached
by estimating a single pose with an associated score, how-
ever, a score conveys only little information about uncer-
tainty, making it difficult for downstream manipulation tasks
to assess risk. In contrast to pose scores, pose distribu-
tions could be used in probabilistic frameworks, allowing
downstream tasks to make more informed decisions and ul-
timately increase system reliability. Pose distributions can
have arbitrary complexity which motivates unparameter-
ized distributions, however, until now they have been limited
to rotation estimation on SO(3) due to the difficulty in train-
ing on and normalizing over SE(3). We propose a novel
method, SpyroPose, for pose distribution estimation using
an SE(3) pyramid: A hierarchical grid with increasing reso-
lution at deeper levels. The pyramid enables efficient train-
ing through importance sampling and real time inference by
sparse evaluation. SpyroPose is state-of-the-art on SO(3)
distribution estimation, and to the best of our knowledge,
we provide the first quantitative results on SE(3) distribu-
tion estimation. Pose distributions also open new opportu-
nities for sensor-fusion, and we show a simple multi-view
extension of SpyroPose. Project page at spyropose.github.io

1. Introduction

Many tasks in robotics involve manipulation of rigid ob-

jects and require that objects’ rotations and translations, re-

ferred to as the objects’ poses, are known. Vision systems

are often relied upon to estimate object poses when the en-

vironment is relatively uncontrolled, such as when objects

lie cluttered on a table or in a bin.

Most of the pose estimation literature has been dedicated

to algorithms which provide a single best guess of the pose.

Estimating a single pose can be adequate if the estimate is

always good enough for the downstream task to succeed,

or if the task is allowed to fail sometimes. However, even

Figure 1. Visualization of SE(3) distributions at different levels

of resolution in the pyramid. Bottom: Input image (left) and ren-

ders in green of poses weighted by their estimated probabilities for

pyramid level three (middle) and five (right). Top: Marginalized

SO(3) distribution with two dimensions shown by a Mollweide

projection and the last dimension by hue. To show both resolution

levels in the same plot, level three is shown in grayscale. The true

rotation is indicated by a circle.

with an ideal method, there may be too much inherent visual

ambiguity in an image to reliably perform the task, and for

some tasks, failing is detrimental.

Representing uncertainties from vision can facilitate not

only sensor-fusion, but also more informed, principled in-

teractions between computer vision and robotics. This has

e.g. been shown in [7], where the vision uncertainty, as-

sumed to be normal, and success thresholds on a grasping

task are combined to estimate the success of a grasp in a

constrained environment. However, visual uncertainties are

not always independent and normal, and making these as-

sumptions inhibits probabilistic frameworks at the intersec-

tion of robot control and computer vision.

There are many ways to model probability distribu-

tions, including mixture models of parameterized functions,

histograms, weighted ensembles of particles, and implicit
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functions. Implicit functions are especially interesting due

to their ability to express arbitrary distributions and they

have been used successfully to estimate distributions on

SO(3) [21] using a contrastive loss with uniformly sampled

negatives during training and a uniform grid during infer-

ence. Due to the curse of dimensionality, there are two

problems with extending this method to SE(3). Firstly, uni-

formly sampled negatives provide less information as the

space grows from SO(3) to SE(3), and secondly, evaluation

of a uniform grid on SE(3) becomes prohibitively expensive

at any practical resolution.

We present SpyroPose, a novel method for pose distribu-

tion estimation, using an SE(3) pyramid, a hierarchical grid,

with higher resolution at deeper levels of the pyramid. An

example of an estimated pose distribution under a six-fold

symmetry ambiguity is shown in Fig. 1.

Our method is based on three key ideas:

• Importance sampling during training, enabled by the

pyramid, providing harder negatives and lower vari-

ance estimates of the partition function.

• Sparse evaluation of the pyramid at inference, reduc-

ing the number of required evaluations by several or-

ders of magnitude, enabling real time pose distribution

estimation, even on a CPU.

• Keypoint feature extraction, inducing a camera model

bias into the model to enable translational equivariance

and to avoid relying on a single latent embedding to

represent complex, high-resolution distributions.

We present state-of-the-art rotation distribution estimation

results on SYMSOL [21] and TLESS [12], and to the best

of our knowledge, we present the first quantitative results

on SE(3) distribution estimation.

2. Related Work
Handling visual ambiguities is a challenging part of ob-

ject pose estimation. Most work [30, 26, 24, 19] on pose

estimation uses manual annotations to explicitly handle one

cause of visual ambiguity, symmetries, and infers a “best

guess” pose estimate without expressing uncertainty. The

defacto pose estimation benchmark, BOP [13], is also cen-

tered around point estimates and known object symmetries.

Some methods [11, 8] that provide point estimates do

however handle visual ambiguities in a principled way.

EPOS [11] regresses dense, per pixel, histograms of ob-

ject surface regions to obtain 2D-3D correspondences and

use them in a PnP-RANSAC framework to provide pose

estimates without knowing about symmetries a priori.

SurfEmb [8] extends this idea and estimates dense full 2D-

3D correspondence distributions. However, the dense corre-

spondence histograms and -distributions have not yet shown

to be useful to model pose distributions.

There are also pose estimation methods which address

pose uncertainties. In [28], model ensembles are used to

estimate epistemic uncertainty which indicates a degree of

generalization uncertainty caused by insufficient training

data or a domain gap. This however does not help repre-

sent the inherent aleatoric ambiguities in pose estimation.

Work on modeling the aleatoric uncertainty has tradi-

tionally been approached with parametric distributions. The

most common parametric model of uncertainty is the mul-

tivariate normal distribution. Early work has focused on

propagating correspondence uncertainties to pose space for

classical pose estimation methods such as for ICP in [1] and

for PnP in [4]. They assume that the correspondence ambi-

guities are independent and Gaussian, however, even simple

symmetries and occlusions can break this assumption.

Rotation and position are defined on different manifolds,

SO(3) and R
3, respectively, and it has been custom to as-

sume them to be decoupled and treat the two parts sepa-

rately, usually assuming the position to be normal. For rota-

tional uncertainty, Bingham is the most popular parametric

distribution model. Estimating the parameters of a Bing-

ham mixture model has been done in various ways, includ-

ing deep learning based regression [22, 2, 5] and fitting a

Bingham mixture model to an ensemble of pose hypothe-

ses [20]. Additionally, [25] shows that the parameters of a

von Mises mixture model can be estimated.

Finally, there are works on unparametric distributions on

SO(3). [22, 17] directly regress a rotation histogram which

is able to represent arbitrary distributions at a coarse resolu-

tion, but the generalization across bins is limited, requiring

all bins to be well represented in the training data, making

it difficult to scale the histogram to higher resolution, not to

mention SE(3). [29, 3] trains a denoising autoencoder on

image crops and uses cosine similarities on the learnt latent

embeddings to estimate visual ambiguities. However, since

the loss is a reconstruction loss rather than a probabilistic

loss, and the distribution is designed rather than learnt, the

resulting distributions are heuristic.

Recently, a number of methods has been proposed which

model the unparametric distributions implicitly. In [15], the

marginal distributions of keypoint projections are estimated

across the image which can provide a conservative estimate

of unnormalized pose likelihoods, however, the capacity of

the model is limited because the joint distribution of key-

points is not modeled. Their method could also be used

for pose distribution estimation, however, they only present

results on rotation distribution estimation due to the lack

of a method to normalize over SE(3). ImplicitPDF [21],

which has inspired this work, trains a Multi Layer Percep-

tron (MLP) to map an image embedding and a rotation to

an unnormalized likelihood. They show a single qualitative

result on SE(3) distribution estimation on simple synthetic

data in their supplementary material, however, no quanti-
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tative results nor results on real data are shown. Hyper-

PosePDF [14] is similar, but instead of estimating a latent

embedding from an image and feeding it to an MLP, they

learn a mapping from an image to the weights of an MLP

which maps rotations to unnormalized likelihoods. I2S [18]

is also similar, but maps features from the image domain

to SO(3) followed by SO(3) equivariant layers, before map-

ping to the unnormalized rotation likelihood. They present

good generalization capabilities but lower resolution than

the related methods.

Like [21, 14, 18], we also use an implicit formulation to

estimate unnormalized log likelihoods, however, we use an

SE(3) pyramid, a hierarchical grid, which enables impor-

tance sampling during training, allowing efficient learning

of unparameterized SE(3) distributions. The same pyramid

is used at inference for sparse evaluation to enable real time

pose distribution estimation. We also make use of the spa-

tial dimensions of the image in our latent pose distribution

embedding, to relieve a single image embedding to repre-

sent complex, high-resolution distributions.

3. Methods
At its core, our method is based on learning pose dis-

tributions at different levels of resolution. Given a pose hy-

pothesis, we project object keypoints into the image, extract

image features at the projected points and feed the sampled

features to resolution-specific MLPs. At inference, this al-

lows a sparse top-down evaluation of a pyramid of poses,

only expanding the most likely poses to the next, higher-

resolution level. During training, having models at different

resolutions allows sampling negatives with known probabil-

ities from a pose distribution which is closer to the model

distribution than uniform, enabling importance sampling.

3.1. Problem Definition

Given an image crop, I ∈ R
H×W×C , of an object of in-

terest, we aim to estimate an unparameterized distribution,

p(x|I), of the object’s six-dimensional pose, x ∈ SE(3).

3.2. SE(3) Pyramid Definition

We use an equivolumetric hierarchical grid in SE(3),

which we’ll refer to as an SE(3) pyramid. Each layer of

the pyramid is the cartesian product between a positional

grid in R
3 and rotational grid in SO(3).

For the rotational part of the pyramid, we use the HealPix

grid [6] extended to SO(3) by [31]. Like previous work

[21, 14, 15], we use the grid for its equivolumetric property,

but we also use its hierarchical structure. Let R(r) ⊂ SO(3)

denote the grid of rotations at recursion r, and let R
(r)
i ∈

R(r) denote a cell in the grid, represented by its center. The

coarsest level, level 0, consists of 72 cells, |R(0)| = 72,

and for each recursion, each cell is split into eight cells,

|R(r)| = 72 · 8r. The volume of the grid is V (R(r)) = π2

and because the grid is equivolumetric, a rotation cell has

volume V (R
(r)
i ) = π2/(72 · 8r).

For the positional part, the bounds of the grid need to

be defined, since R
3 is unbounded. We define the bounds

in two steps. In the first step, the positional error is mod-

eled using a conservative estimate of visual ambiguity to

ensure that the true pose is within the estimated bounds.

In the second step, a hierarchical grid is defined such that

it fully encompasses the conservatively estimated bounds.

Let t̂ ∈ R
3×1 be a coarse estimate of the object’s position,

t. Depending on the application, this estimate could come

from a detector, be known a priori, or obtained otherwise.

In this work, we assume t̂ to come from a detector. We then

define a convservative bound on t based on t̂. Specifically,

we presume that the maximum perceived positional ambi-

guity is equal to the object’s radius. Let d be the diameter

of the object of interest. Then parallel to the image plane,

we let the error be up to d/2. Along the view direction,

we let the object’s distance to the camera be down to half,

which assuming a pinhole camera model would cause the

appeared size to be approximately doubled.

Formally, we define a bound which meets the above cri-

teria by introducing a truncated multivariate normal vari-

able, ẽ = N (0, σI, 1/2), where ”1/2” indicates, that its

truncated at ||ẽ||2 = 1/2, and then define our random er-

ror variable e as

e = Aẽ, A =

⎡
⎣d 0 t̂x
0 d t̂y
0 0 t̂z

⎤
⎦ . (1)

The resulting bound of t̃ = t̂ + e is a sphere centered

around t̂ and elongated along the view direction, encom-

passing more depth- than in-plane ambiguity. We represent

a positional cell by its center, and define the positional grid,

p(r) ∈ R
3×N , with N = 8r at recursion r as

p(r) = t̂+Ag(r), (2)

where g(r) ∈ R
3×N consists of the centers of the cubes in

the 2r by 2r by 2r regular grid inside an origo-centered unit

cube. Note that p(r) encompasses t̃, since g(r) encompasses

ẽ. Also note, that p(r) is hieararchical and equivolumetric,

since g(r) is hieararchical and equivolumetric and g(r) �→
t̂ + Ag(r) is an affine transformation. The volume of the

grid is V (p(r)) = det(A), since the volume of g(r) is 1.

The volume of a cell in p(r) is thus V (p
(r)
i ) = det(A)/8r.

The SE(3) pyramid is simply the cartesian product of the

positional and rotational grid, however, it must be chosen

at which recursion to align them. At R(0), the angular dis-

tance to the nearest neighbour is approximately φ = 1 rad,

causing a visual distance of up to approximately d/2. Since

p(1) has the same visual resolution, we define recursion 0
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of the SE(3) pyramid, x(0), to be the cartesian product of

R(0) and p(1): x(0) = R(0) × p(1). Since x(r) is also an

equivolumetric grid, it follows that

V (x
(r)
i ) =

V (x(r))

|x(r)| =
det(A)π2

(72 + 8)64r
. (3)

To prevent our models from learning the structure of a

fixed SE(3) grid, we randomly offset and rotate p(1) and

rotate R(0) during training.

3.3. Contrastive Loss

The InfoNCE loss was presented in [23], inspired by

Noise Contrastive Estimation,

LInfoNCE = − E
x,I,X

[
log

fθ(x, I)

fθ(x, I) +
∑

xj∈X fθ(xj , I)

]
,

(4)

where (x, I) is sampled from the data distribution p(x, I),
X is a set of N samples from a noise distribution, xj ∼
pn(x), and θ are the parameters of the model. They show

that for any N , the loss leads to approximating fθ(x, I) ∝
p(x|I)pn(x)−1, and it follows that letting the noise distri-

bution be uniform, fθ approximates an unnormalized distri-

bution, fθ(x|I) = p̃(x|I; θ) ∝ p(x|I).
Note that the last term in the denominator of Eq. (4),

Ẑ =
∑

xj∈X fθ(xj , I), is proportional to an unbiased es-

timate of the partition function, EX Ẑ ∝ ∫
fθ(x, I)dx.

An inherent problem with scaling the noise contrastive loss

with uniform sampling of negatives to higher dimensions is

that the variance of the partition function estimate becomes

higher, due to the curse of dimensionality.

Importance sampling could be used to lower the vari-

ance of the estimate of the partition function, but it requires

a heavy-tailed distribution close to p(x|I; θ) which can be

sampled from with known sample likelihoods, and such a

distribution is generally not available.

3.4. Pyramid Models & Importance Sampling

We use the loss in Eq.(4) and let the positive sample be

the cell in x(r) which encompasses the true pose, x. Instead

of learning p̃(x|I; θ) at one, high resolution, we learn the

distribution at different resolutions, one for each level in the

pyramid, p̃(x
(r)
i |I; θ(r)). For a model at recursion r, the

coarser models can then be used to provide an estimate of

p(x
(r)
i |I; θ(r)) which can be used for importance sampling.

Let P (x
(r)
i ) = x

(r−1)
i\64 be the parent of x

(r)
i in the pre-

vious recursion, where \ denotes integer division, and let

C(x
(r)
i ) =

{
x
(r+1)
64i+0, . . . , x

(r+1)
64i+63

}
be the set of children of

x
(r)
i in the next recursion. The siblings of x

(r)
i , including it-

self, is thus S(x
(r)
i ) = C(P (x

(r)
i )), and let S(x

(0)
i ) = x(0).

In the following notation, the parameters, θ(r), and con-

ditioning on I is assumed and left out for clarity. We denote

the relative probabilities among siblings as

q(x
(r)
i ) =

p̃(x
(r)
i )∑

x
(r)
j ∈S(x

(r)
i )

p̃(x
(r)
j )

, (5)

and applying them recursively across resolutions results in a

generative coarse-to-fine Markov chain model, similar to an

auto-regressive model, but where the models are dedicated

to resolutions rather than dimensions,

p(x
(r)
i ) ≈ p̄(x

(r)
i ) = q(x

(0)
i\64r )q(x

(1)
i\64r−1) · · · q(x

(r)
i ).

(6)

In the InfoNCE loss in Eq. (4), p̄ can thus be used as an

importance sampling distribution,

ẐIS =
∑

x
(r)
i ∈X

p̃(x
(r)
i )

p̄(x
(r)
i )

, x
(r)
i ∼ p̄(x

(r)
i ), (7)

which is proportional to an unbiased estimate of the parti-

tion function, like Ẑ, but with lower variance.

Note that we could maximize the log likelihood directly,

normalized by the importance sampling partition function

estimate, but initial experiments showed that the additional

term in the denominator of Eq. (4) led to more stable train-

ing. One intuitive reason is that if the negatives are easy,

and fθ(x, I) is the dominating term in the denominator of

Eq. (4), the gradient is close to zero, ∇θLInfoNCE ≈ 0. With-

out fθ(x, I) in the denominator, this would not be the case.

3.5. Inference with Pyramid Models

At inference, only a sparse tree of the pyramid is eval-

uated, obtaining highest resolution where the probability is

highest. Initially, a distribution over all of the coarsest grid

cells is obtained by the coarsest model, p(x(0)|I; θ(0)). Let

x
(0)
k denote the top k cells with respect to estimated proba-

bilities, and let p0k denote the sum of probabilities for x
(0)
k .

The top k cells are then expanded to their children, C(x
(0)
k ),

which are evaluated by the next model to redistribute the

probability p0k with higher resolution:

p̂(x
(r)
i ) = p

(r−1)
k

p̃(x
(r)
i )∑

x
(r)
j ∈C(x

(r−1)
k )

p̃(x
(r)
j )

. (8)

This process is repeated until the last recursion, and the cells

which have not been expanded, including all cells of the

last recursion, are leaf nodes in the sparse tree. The leaf

node probabilities sum up to one and make up the estimated

distribution. The estimated likelihood of a continuous pose,

x, is determined by the leaf node, x
(r)
i , encompassing x,

p̂(x) = p̂(x
(r)
i )V (x

(r)
i )−1. (9)
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Table 1. Rotation distribution estimation results on SYMSOL. The table entries are estimated log likelihoods ↑ of the true rotation averaged

over 5 k test images per object. Results below the gray line is on our implementation of SYMSOL I. For verification, we show Ours w/o

KP for both the original and our implementation of the dataset. IS: Importance Sampling. KP: Keypoints.

SYMSOL I SYMSOL II

Method avg. cone cyl. tet. cube ico. avg. sphX cylO tetX

Prokudin et al. [25] (2018) -1.87 -3.34 -1.28 -1.86 -0.50 -2.39 0.48 -4.19 4.16 1.48

Gilitschenski et al. [5] (2019) -0.43 3.84 0.88 -2.29 -2.29 -2.29 3.70 3.32 4.88 2.90

Deng et al. [2] (2020) -1.48 0.16 -0.95 0.27 -4.44 -2.45 2.57 1.12 2.99 3.61

ImplicitPDF [21] (2021) 4.10 4.45 4.26 5.70 4.81 1.28 7.57 7.30 6.91 8.49

I2S [18] (2023) 3.41 3.75 3.10 4.78 3.27 2.15 4.84 3.74 5.18 5.61

HyperPosePDF [14] (2023) 5.78 5.74 4.73 7.04 6.77 5.10 7.72 7.73 7.12 8.53

Ours w/o KP & IS 5.65 6.77 6.07 6.04 6.23 3.12 7.16 6.96 7.59 6.92

Ours w/o KP 7.33 7.62 6.46 8.69 8.63 5.23 9.27 9.07 9.32 9.41

Ours w/o KP 7.12 7.37 6.54 8.39 8.62 4.70

Ours w/o IS 8.19 7.40 6.69 10.04 8.82 7.99

Ours w/ cube KP 8.86 7.55 7.06 9.60 10.58 9.50
Ours 8.97 7.67 6.96 11.04 10.10 9.06

Note that in contrast to the importance sampling distri-

bution from Eq. (6), which is used during training, during

inference, relative probabilities among cells at a given re-

cursion are entirely decided by the model at that recursion

and are not affected by the probabilities at earlier recursions.

This allows cell-border ambiguities at low resolution to be

resolved at higher resolutions.

3.6. Network architecture

We use a UNet [27] with a ResNet18 [10] backbone to

obtain a 64 dimensional feature map with the same spatial

resolution as the image. From the 3D mesh of the object,

16 approximately evenly spread keypoints are sampled with

farthest point sampling. Given a pose at the center of a

pose cell, the keypoints are projected into the image and

features are extracted from the feature map at the projected

points with bilinear interpolation. Keypoints that are pro-

jected outside the image receive a learnt out-of-image em-

bedding. The sampled keypoint features are concatenated

and fed to a three-layer MLP with 256 hidden neurons. The

output of the network is a scalar, representing the estimated

unnormalized log likelihood of the pose cell.

4. Experiments
We show results on SO(3) distribution estimation, com-

paring with previous work, and then to the best of our

knowledge, we show the first quantitative results on SE(3)

distribution estimation. We show SO(3) results on SYM-

SOL I, SYMSOL II and TLESS; and SE(3) results on

TLESS and HB. Lastly, we show a straight forward multi-

view extension of SpyroPose which provides drastic im-

provements over single-view results, indicating the poten-

tial of sensor-fusion using unparameterized distributions.

4.1. SO(3) Results

SYMSOL. ImplicitPDF [21] introduced the synthetic

dataset, Symmetric Solids (SYMSOL), for evaluation of

distribution estimation on SO(3). The dataset includes a va-

riety of geometric primitives with different kinds of symme-

tries. The dataset has two parts: SYMSOL I with texture-

less objects, and SYMSOL II with markers which are only

visible in certain rotations, causing dynamic ambiguities.

The dataset does not include camera intrinsics or 3D

models of the objects, and while the translation of the ob-

jects is fixed, the translation is unknown. Since our method

is based on projection of keypoints, we cannot apply it di-

rectly to the original SYMSOL dataset. Instead, we apply a

modified version of our method without keypoints on the

original dataset, and implement SYMSOL I with known

camera intrinsics, translation and 3D models, to evaluate

our full method.

For our method without keypoints, we use a similar ar-

chitecture as ImplicitPDF [21], with a ResNet50 [10] to ob-

tain a latent image embedding, a positional encoding of the

rotation, and pass both embeddings to a small MLP. See

[21] for details. While the architecture of our method with-

out keypoints is similar to ImplicitPDF, our method still has

an MLP for each level in the SO(3) pyramid, and results are

shown with and without importance sampling. For our im-

plementation of SYMSOL I, we approximately match per-

spective, scale and shader of the original dataset. Since

SYMSOL II has textures, it is not as easy to implement for

a fair comparison.

In our full method, we sample keypoints with farthest

point sampling from the 3D model, however in some appli-

cations, 3D models may not be available, so we also show

results where keypoints are chosen at the corners of two
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a) b)

Figure 2. Qualitative SYMSOL I results. We visualize the rotations at the last pyramid level (level 6) and their likelihoods as alpha,

normalized for viewing. Circles, or for continuous symmetries donut-like shapes, indicate the correct rotation up to symmetry. a) and b)

are from the same image, but b) shows our method w/o KP. Our method accurately captures all 60 modes of the icosahedron.

cubes with side lengths of 1 and 0.5 of the object diameter.

We train object-specific models with seven MLPs rang-

ing from R(0) to R(6), and 1024 negatives per recursion

per image. For the models with importance sampling this

is obtained with 128 sample trajectories, which with sib-

lings at each recursion amounts to 1024 per MLP, because

the branching factor is eight in the rotation pyramid. See

Section 3.2 and 3.4. Note that while the training set con-

tains multiple rotation annotations due to symmetry, only

the first of the provided annotations per image is used dur-

ing training, assuming no knowledge about the symmetries.

For our full method, we use a batch size of 4. Because the

models without keypoints are computationally cheaper, we

use a batch size of 16 for those to obtain similar training

times. We train all our SO(3) models for 50 k iterations,

approximately 2 hours per object on a single RTX 2080.

The results are provided in Table 1, and qualitative ex-

amples are shown in Fig. 2. We provide state-of-the-art re-

sults on SYMSOL I and SYMSOL II across all objects. Our

method predicts 24 and 130 times higher likelihoods on av-

erage for the true rotation than HyperPosePDF [14] and Im-

plicitPDF [21], respectively. Sampling keypoints from the

surface of objects assumes that 3D models are available, but

our results with cube keypoints perform almost as well, get-

ting rid of this assumption.

Using keypoints provides a big improvement. For our

models without keypoints, with architectures similar to Im-

plicitPDF, a non-spatial latent embedding from the vision

model has to express complex and high-resolution distri-

butions. Extracting keypoint features allows the model to

use the image-space as an intermediate representation of the

distribution and obtain translational equivariance.

Because the evaluation of the SO(3) pyramid is sparse, a

distribution down to recursion 6 with 18.8 M rotations only

requires 21 k evaluations with k = 512, almost three orders

of magnitude fewer evaluations than evaluating the full grid.

This allows our method to be run in real time, even on CPU,

Table 2. Inference time comparison for a single image. For our

method we use an Intel i9-9820X CPU and an Nvidia RTX 2080

GPU. Batching improves fps further, obtaining 241 fps on SO(3)

for Ours w/o KP on GPU. #eval: number of function evaluations.

Space Method grid size #eval dev. fps

SO(3)

ImplicitPDF 2.3 M 2.3 M gpu 2.4

Ours w/o KP

18.9 M 21 k

cpu 16.9

gpu 53.5

Ours
cpu 3.3

gpu 48.3

SE(3) Ours 618 B 164 k
cpu 0.5

gpu 16.1

where it runs faster than ImplicitPDF on GPU. See Table 2.

While the pyramid allows us to efficiently evaluate be-

yond recursion 6, we are also SOTA if we evaluate at re-

cursion 5 as ImplicitPDF, with avg. log likelihoods at 8.58,

8.42 and 8.80 for sphX, cylO and tetX, respectively.

Both keypoints and importance sampling improves

learning at deeper recursions. See Fig. 3. The log likeli-

hoods without keypoints and importance sampling flatten

out around recursion 5, however, our full method could pre-

sumably benefit from even more recursions.

ImplicitPDF and HyperPosePDF train one model across

all SYMSOL I objects, while we train a model per ob-

ject, however, we use fewer function evaluations per object

during training, and we provide similar improvements on

SYMSOL II, where they also train a model per object.

Generalization. I2S [18] applies their method and Im-

plicitPDF’s method in a low-data regime, training on SYM-

SOL with only 10k images instead of 45k. I2S’s Implic-

itPDF models perform poorly and seem to have severely

overfit, so instead of re-reporting I2S’s ImplicitPDF results,

we note that Ours w/o KP & IS is very similar to Implic-

itPDF and performs similarly on the full dataset. We train

2087



Figure 3. Log likelihoods on SYMSOL I, averaged over objects,

at different recursion levels of the pyramid. Both keypoints and

importance sampling improves learning at deeper levels.

Table 3. Rotation distribution estimation on SYMSOL II in a low-

data-regime with 10k training images instead of 45k. LL ↑.

Method avg. sphX cylO tetX

I2S [18] (2023) 3.61 3.12 3.87 3.84

Ours w/o KP & IS 3.95 3.56 4.68 3.60

Ours w/o KP 5.47 5.38 6.82 4.19

Table 4. Rotation distribution estimation on TLESS.

Method LL ↑
Prokudin et al. [25] (2018) 8.8

Gilitschenski et al. [5] (2019) 6.9

ImplicitPDF [21] (2021) 9.8

Ours w/o KP & IS 10.3

Ours w/o KP 11.9

our models with and without importance sampling on 9.5k

of the training images, using the remaining 500 for early

stopping. The results are shown in Table 3. Our method

outperforms I2S.

TLESS. We follow ImplicitPDF and train a single model

across all 30 objects. Results are presented in Table 4.

Our method provides almost an order of magnitude higher

likelihoods than ImplicitPDF. Note that recursion 5 of our

method w/o KP & IS provides an average log likelihood

of 9.9, similar to ImplicitPDF. This benchmark uses tight

crops of the Kinect training images of singled-out objects,

uniform backgrounds and no occlusions, for both training

and testing using a random split. The benchmark thus con-

tains no domain gap, no need to generalize wrt. translation

or handle occlusions or background clutter. This is in con-

trast to the experiments in the following section.

4.2. SE(3) results on TLESS and HB

We train SE(3) pyramid models on TLESS [12] and

HB [16] down to recursion level 5, selecting four objects

from TLESS, representing different levels of symmetries,

and four objects from HB, which are common in the pose

estimation community. We train on the Physically Based

Renders (PBR) from [13] and show results on both held out

PBR scenes as well as real images. For TLESS, we show

results on the real test images, and for HB, we show results

on the real validation images, since test annotations are not

publicly available. The results are presented in Table 5, and

qualitative examples on TLESS are shown in Fig. 4.

The chosen objects for TLESS have 16 k, 19 k, 23 k and

24 k image crops for training, and for HB: 25 k, 25 k, 24 k

and 23 k. Note that we have fewer images per object than

in SYMSOL, there’s a sim2real gap, and we’re attempting

to learn distributions on SE(3). For the above reasons, we

regularize the models using dropout in the MLPs and heavy

data augmentation during training. We use 2048 negatives

per recursion corresponding to 32 trajectories through the

pyramid using Eq. (6).

Since we are the first to present quantitative results on

SE(3) distributions, there are no direct baselines to com-

pare with, but we show results with and without importance

sampling as well as results for a uniform distribution on the

SE(3) grid. We considered comparing with point estima-

tors, adding gaussians around point estimates, but this could

easily be worse than uniform, since they would be punished

severely for estimating a wrong mode.

We attempted to compare our joint distribution with a

decoupled version, but we were not able to successfully

train a rotation model without keypoints, similar to Implicit-

PDF, on these more challenging images. In fact, marginaliz-

ing SO(3) in our SE(3) distributions from our full method,

we get 5.8 avg. log likelihood for the true rotation across

the four T-LESS objects, while w/o KP and w/o KP & IS

(similar to ImplicitPDF), we get 0.5 and 0.1, respectively.

For comparison, -2.3 corresponds to a uniform distribu-

tion. Learning joint distributions thus allows an architec-

ture which significantly improves even the marginal distri-

butions on this more challenging benchmark.

On the held out PBR images, our model predicts 220

times higher likelihood of the true pose with importance

sampling than without, compared to only 2 times higher

on SYMSOL I. This is consistent with Fig. 3, which in-

dicates that importance sampling becomes more beneficial

when the probability is more concentrated, since evaluation

of uniform samples then provides less information.

4.3. Multi-view

Lastly, we show a straight forward application: multi-

view pose estimation. Since uncertainty is represented in

pose space rather than image space, it is well-suited for prin-

cipled sensor-fusion, combining information from multiple

sources. With multi-view crops and known extrinsics, we

let A = dI , such that p(r) is a cubic grid, and use the same
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Table 5. SE(3) distribution estimation on four representative objects from each of TLESS and HB. Models are trained on synthetic data

(PBR), and we present results on both held out PBR images and real images. Entries are avg. log likelihoods of the ground truth poses.

TLESS HB

Data Method avg. 1 14 25 27 avg. 2 7 9 21

PBR

Uniform 2.7 3.5 3.2 2.4 1.7 0.8 0.4 0.5 1.4 0.9

Ours w/o IS 16.7 16.5 16.6 17.8 16.0 15.9 16.3 15.1 16.4 15.8

Ours 21.6 22.4 20.5 22.6 20.9 21.7 21.7 21.2 21.8 21.9

Real

Uniform 2.7 3.5 3.3 2.4 1.7 0.9 0.6 0.6 1.5 1.0

Ours w/o IS 16.6 14.1 15.9 19.2 17.2 16.0 18.6 16.5 13.2 15.8

Ours 18.8 16.9 17.5 20.8 20.0 18.9 21.3 20.6 16.4 17.3

a) b) c)

d) e) f)

g) h) i)

Figure 4. SE(3) distributions on TLESS. First row shows distributions for object 1. a) Six-fold rotational symmetry. b) Continuous

rotational symmetry. c) No symmetry. Second row shows distributions for object 14. d) Continuous rotational symmetry. e) The object

of interest is behind the foreground object. Two-fold and continuous rotational symmetry. Note that the two discrete modes have different

depths, which can only be represented by a joint distribution. f) The continuous rotational symmetry is disambiguated by now visible

features at the end of the object, and only a two-fold rotational symmetry along the same axis remains. g) and h) shows no symmetry and

a two-fold rotational symmetry, respectively, for object 25. i) shows a four-fold rotational symmetry for object 27.

Table 6. SE(3) distribution estimation results on TLESS. LL↑.

Method avg. 1 14 25 27

Ours 18.8 16.9 17.5 20.8 20.0

Ours w/ A = dI 18.4 16.4 16.6 20.9 19.9

Ours w/ Multi-view 25.2 23.7 23.6 28.2 25.2

grid in a common frame across views. For each recursion in

the pyramid at inference, the unnormalized log likelihoods

are simply averaged across views. We show multi-view

pose distribution estimation results on TLESS in Table 6

with the same sets of up to four views as in [19, 9]. We note

that A = dI alone do not improve performance. In fact,

it can be harmful to have too much resolution along depth

at inference, as most nodes are then spent on representing

depth ambiguity. This simple extension increases the likeli-

hood of the true pose by almost three orders of magnitude.

5. Conclusion

This work has proposed SpyroPose, a novel method for

pose distribution estimation on SE(3). Our method is based

on learning pose distributions at different levels of resolu-

tion using a hierarchical SE(3) grid, a pyramid, which en-

ables importance sampling for efficient learning at train-

ing time and sparse evaluation at inference, allowing real

time pose distribution estimation. Our method outperforms

state-of-the-art methods for rotation distribution estimation

on SO(3) on the SYMSOL and TLESS datasets, and to the

best of our knowledge, we provide the first quantitative re-

sults on pose distribution estimation on SE(3). Lastly, with

a straight forward multi-view extension of SpyroPose, we

have shown how easily pose distributions allow information

to be fused from multiple sources, showing great potential

for our method as a core component of future work.
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