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Abstract

We propose a simple yet powerful method to segment
novel objects in RGB images from their CAD models.
Leveraging recent foundation models, Segment Anything
and DINOv2, we generate segmentation proposals in the in-
put image and match them against object templates that are
pre-rendered using the CAD models. The matching is real-
ized by comparing DINOv2 cls tokens of the proposed re-
gions and the templates. The output of the method is a set of
segmentation masks associated with per-object confidences
defined by the matching scores. We experimentally demon-
strate that the proposed method achieves state-of-the-art re-
sults in CAD-based novel object segmentation on the seven
core datasets of the BOP challenge, surpassing the recent
method of Chen et al. by absolute 19.8% AP.

1. Introduction

Object pose estimation plays a critical role in robotics

and augmented reality applications. While supervised deep

learning methods have achieved remarkable performance,

they rely on extensive training data specific to each target

object [16, 23, 24]. Introducing objects unseen during train-

ing therefore requires a significant effort to synthesize or

annotate data and retrain the model. This restricts the appli-

cation of the supervised methods in industry. For instance,

in a logistic warehouse, it appears impractical to retrain the

pose estimation method for every new product.

Performing object pose estimation typically involves two

main steps: (1) the target objects are detected/segmented in

the input image, and (2) the 6D object poses are then esti-

mated from the detected regions [23]. Recent works such

as template-pose [19] and MegaPose [17] introduced effec-

tive CAD-based object pose estimation methods. However,

these methods mainly focus on the second step and require

input 2D bounding boxes, which restricts their applicability

to scenarios where precise 2D bounding boxes are available.

To address the gap, we propose a simple method for

object detection and segmentation that only requires CAD
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Figure 1. Performance on the seven core BOP datasets [23].
Our method, CNOS, relies on FastSAM [28] for generation of seg-

mentation proposals and on DINOv2 [20] for visual description.

CNOS outperforms the unsupervised method of Chen et al. [2]

and even the supervised method Mask R-CNN [10], which was

trained on tens of thousands of images per BOP dataset and used

in CosyPose [16]. Similarly to Mask R-CNN [10], the runtime of

CNOS is dominated by the proposal stage.

models of the target objects. The method is dubbed CNOS
for CAD-based Novel Object Segmentation.

In CNOS, new objects are onboarded by rendering their

CAD models and describing each rendered template by

the DINOv2 cls token [20]. Given an RGB input im-

age, segmentation proposals are extracted from the image

by Segment Anything (SAM) [15] or Fast Segment Any-

thing (FastSAM) [28] and matched against the templates

based on the similarity between their DINOv2 cls tokens.

Rendering the templates takes less than 2 seconds per CAD

model which is much faster than retraining of supervised

methods, which typically requires several hours. The choice

of DINOv2 for measuring the similarity between templates

and proposals is mainly motivated by its ability to effec-

tively address the domain gap between real and synthetic

images. We also demonstrate that photo-realistic render-

ing techniques of BlenderProc [3], which require approxi-

mately 1 second to render an image, can be leveraged to fur-

ther mitigate this domain gap and enhance accuracy. Exper-

iments on the seven core datasets of the BOP challenge [23]

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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demonstrate the state-of-the-art performance of CNOS.

As shown in Figure 1, CNOS outperforms the recent un-

supervised method for CAD-based segmentation by Chen

et al. [2] and even Mask R-CNN [10], a supervised method

that was trained on tens of thousands of images per BOP

dataset and used in CosyPose [16].

2. Related work
This section provides a brief overview of existing meth-

ods for object detection and segmentation that are com-

monly used in 6D object pose estimation pipelines.

Segmentation of seen object. Many object pose estima-

tion methods [16, 24] employ object segmentation methods

such as Mask R-CNN [10], typically fine-tuned on exten-

sive training data specific to each target object [23]. Such

supervised methods have been demonstrated robust in chal-

lenging scenarios with heavy occlusions and lighting varia-

tions. However, these methods cannot deal with new objects

without retraining, which is a deal-breaker for many appli-

cations. In this work, we address this limitation by focusing

on the segmentation of previously-unseen objects from their

CAD models without retraining.

Segmentation of unseen objects. Object segmentation

methods traditionally focus on scenarios known as “closed-

world” settings, where the training and test sets share the

same object classes. Nevertheless, recent observations by

Du et al. [6,7] suggest that class-agnostic instance segmen-

tation networks can effectively generalize to previously un-

seen object classes. Building upon this insight, Zhao et
al. [29] leverage saliency detection models to solve the

novel class discovery task in 2D segmentation. Nguyen et
al. [18] propose a two-stage 6D tracking approach based on

these observations. Their approach assumes the availabil-

ity of an initial bounding box to segment object using [6]

and then propagates the box to next frames using optical

flow. Subsequently, 6D tracking of novel objects is per-

formed based on predicted object masks. In contrast, our

objective solely focuses on segmenting objects in images

derived from CAD models without initial boxes.

Commonly used in robotics, UOIS-Net [27] employs a

two-stage approach to segment novel objects. It operates on

the depth channel of captured RGB-D images to generate

object instance center votes and assembles them into rough

initial masks. These masks are subsequently refined using

the RGB channels. Xiang et al. [26] also propose an RGB-

D based method that uses learned feature embeddings and

applies a mean shift clustering algorithm to discover and

segment unseen objects. To avoid using depths, Durner et

al. [8] use horizontal correlation to extract disparity RGB-

based features and segment novel objects from stereo RGB

images. It is worth noting that UOIS-Net [27], Xiang et

al. [26], and Durner et al. [8] are RGB-D or stereo RGB

approaches, while our method targets the segmentation of

unseen objects from only a single RGB image and CAD

models, which is more applicable.

Recently, Segment Anything (SAM) [15] has introduced

a powerful foundation model for image segmentation ca-

pable of segmenting all objects in a given RGB image.

Chen et al. [2] utilize SAM to extract object proposals,

which are then combined with visual clues extracted by Im-

ageBlind [9]. Feature matching is subsequently applied for

CAD-based novel object segmentation. Experiments pre-

sented in this paper show that CNOS surpasses the method

of Chen et al. by absolute 19.8% AP.

3. Method
In this section, we provide a detailed description of our

three-stage approach for CAD-based novel object segmen-

tation. We first describe the onboarding stage in Section 3.1,

where we extract visual descriptors from renderings of the

CAD models. In Section 3.2, we explain the proposal stage,

which involves obtaining all possible masks and their de-

scriptors. Finally, in Section 3.3, we discuss the matching

stage, where object masks are retrieved and labeled based

on visual descriptors of their CAD models.

3.1. Onboarding stage

In the onboarding stage, we render a set of RGB syn-

thetic templates and extract their visual descriptors using

DINOv2 [20]. To ensure robust object segmentation un-

der different orientations, we render CAD models under 42

viewpoints as shown in Figure 3. These 42 viewpoints are

defined by the icosphere primitive of Blender 1 which has

been shown in [19] to provide well-distributed view cov-

erage of CAD models for robust template matching. Ad-

ditionally, we experiment with denser viewpoints by divid-

ing each triangle of the icosphere into four smaller trian-

gles. The rendering process results in a total of NoV tem-

plates, where No is the number of CAD models and V is

the number of viewpoints. We then crop the templates with

the ground-truth bounding boxes and use the DINOv2 cls
tokens as their visual descriptors Dr of size No ×V×C. By

default, we use V = 42 and C = 1024.

3.2. Proposal stage

For each testing RGB image, we use SAM [15] or Fast-

SAM [28] with a default configuration to generate a set of

Np unlabeled proposals, where each proposal i is defined

by a mask Mi. Np is not fixed and varies depending on the

content of the input RGB image.

To compute the visual descriptor for each proposal i, we

first remove the background of the input image using the

corresponding mask Mi. Subsequently, we crop the image

1bpy.ops.mesh.primitive ico sphere add()
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Figure 2. CNOS overview. Given CAD models of the target objects, the objects are onboarded by (i) rendering a set of templates showing

the models from different viewpoints, and (ii) describing the templates by the DINOv2 cls token (Section 3.1). At inference time,

segmentation proposals are generated from the input RGB image using SAM or FastSAM (Section 3.2), and the proposals are matched

against the templates by comparing their DINOv2 cls tokens (Section 3.3).

using the model bounding box derived from Mi. Since each

proposal mask Mi has a different bounding box size, par-

allel processing becomes unfeasible. To overcome this, we

add a simple image processing step including scaling and

padding in order to resize all proposals to a consistent size

of 224×224. This standardization enables efficient parallel

processing of proposals in a single batch. Then, we extract

the DINOv2 cls tokens from the processed proposals and

use them as their visual descriptors Dp of size Np × C.

3.3. Matching stage

The goal of the matching stage is to assign each proposal

i an object ID oi and a confidence score si. To this end, we

compare each proposal descriptor in Dp with each template

descriptor in Dr using the cosine similarity. This compari-

son step produces a similarity matrix of size Np × No × V.

View aggregation. By aggregating the similarity scores

over all V templates for each CAD model, we obtain a ma-

trix of size Np × No. This matrix represents the similarity

between each proposal pi and each CAD model. We exper-

iment with different aggregation functions, such as Mean,

Max, Median, and Mean of top k highest, noted Meank,

and find that Meank yields the best results.

Object ID assignment. To assign the object ID oi and

confidence score si to each proposal, we simply apply the

argmax and max functions on the similarity matrix Np ×No

over the No objects. This yields a similarity matrix of size

Np defining the confidence score for Np proposals.

Output. At the end of the matching stage, we obtain a

set of labeled proposals, where each proposal is defined as

{Mi, oi, si}, where Mi is the modal mask (i.e., a mask cov-

ering the visible part of the object surface [23]), oi is the

object ID, and si is the confidence score. Some of these

proposals may still be incorrectly labeled. To address this,

it is possible to apply a threshold δ on the confidence score

threshold. The figures in Section 4.2 show CNOS’s seg-

mentation results with δ = 0.5.

4. Experiments

In this section, we describe the experimental setup (Sec-

tion 4.1), compare our method with previous works [2, 10,

22] on the seven core datasets of the BOP challenge [23]

(Section 4.2), and conduct an ablation study focused on the

accuracy under different aggregating functions and different

numbers of rendering viewpoints, and on the run-time (Sec-

tion 4.3). Finally, we discuss the use of CNOS in a pipeline

for 6D pose estimation of novel objects (Section 4.4) or in

CAD-free novel object segmentation.

4.1. Experimental setup

Datasets. We evaluate our method on the test set of seven

core datasets of the BOP challenge [23]: LineMod Occlu-
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Method Rendering

BOP Datasets

LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Mean

S
u

p
er

v
is

ed 1 Mask R-CNN [10] (Synth) - 37.5 51.7 30.6 31.6 12.2 47.1 42.9 36.2

2 Mask R-CNN [10] (Real) - 37.5 54.4 48.9 31.6 12.2 47.1 42.9 39.2

3 ZebraPose [22] (Synth) - 50.6 62.9 51.4 37.9 36.1 64.6 62.2 52.2

4 ZebraPose [22] (Real) - 50.6 70.9 70.7 37.9 36.1 64.6 74.0 57.8

U
n

su
p

er
v

is
ed 5 Chen et al. [2] - 17.6 9.6 24.1 18.7 6.3 31.4 41.9 21.4

6 CNOS (SAM) Pyrender [21] 33.3 38.3 35.8 27.2 14.8 45.9 57.6 36.1

7 CNOS (SAM) BlenderProc [3] 39.6 39.7 39.1 28.4 28.2 48.0 59.5 40.4

8 CNOS (FastSAM) BlenderProc [3] 39.7 37.4 48.0 27.0 25.4 51.1 59.9 41.2

Table 1. Comparison of CNOS with [2, 10, 22] on the seven core datasets of the BOP challenge [23]. Mask R-CNN and ZebraPose

are retrained specifically on the target objects with renderings of the CAD models (noted as “Synth”) or real images of the object (noted as

“Real”). We classify these methods as “supervised”. CNOS and Chen et. al. [2] are classified as “unsupervised” as these methods require

no retraining for novel objects. We report the AP metric (higher is better) using the protocol from [23]. The best supervised results are

highlighted in blue and the best unsupervised results in yellow . CNOS not only significantly outperforms [2] under the same settings

but also surpasses the supervised method Mask R-CNN, highlighting its ability to generalize.

Figure 3. Visualization of templates for the “benchwise” object
from LM-O [11] rendered with Pyrender [21]. 42 templates

were rendered from viewpoints defined by the icosphere [19].

sion (LM-O) [1], T-LESS [12], TUD-L [13], IC-BIN [4],

ITODD [5], HomebrewedDB (HB) [14] and YCB-Video

(YCB-V) [25]. In total, the datasets include 132 different

objects shown in cluttered scenes with occlusions. The ob-

jects are of verious types: textured or untextured, symmetric

or asymmetric, household or industrial.

Evaluation metric. We evaluate our method using the Av-

erage Precision (AP) metrics, following the COCO metric

and the BOP challenge evaluation protocol [23]. The AP

metric is calculated as the mean of AP values at different

Intersection over Union (IoU) thresholds ranging from 0.50

to 0.95 with an increment of 0.05.

Baselines. We compare our method with Chen et al. [2],

the most relevant work to ours. They use a three-stage

CAD-based object segmentation approach, incorporating

SAM [15] for image segmentation and ImageBlind [9] for

visual descriptor extraction. Their use of 72 templates per

CAD model resulted in the best performance according to

their paper. Additionally, we compare our method with two

relevant supervised methods from the BOP challenge [23]:

Mask R-CNN [10], which was trained on real or synthetic

training images specific to each dataset and used in Cosy-

Pose [16], and ZebraPose [22], which is currently the state-

of-the-art for this task in the BOP challenge.

Implementation details. For the proposal stage, we use

the default ViT-H SAM [15] or the default FastSAM [28],

which has demonstrated promising results in terms of run-

time efficiency. For extracting visual descriptors, we use the

default ViT-H model of DINOv2 [20].

To further evaluate the performance of our method, we

conducted a comparison using two sets of templates. The

first set of templates was generated using Pyrender [21]

from 42 pre-defined viewpoints. It is worthy to note that

Pyrender computes the Direct Illumination and it is ex-

tremely fast, takes on average 0.026 second per image.

The second set of templates comprised 42 realistic ren-

dering templates selected from the available synthetic im-

ages of the PBR-BlenderProc4BOP training set provided

in the BOP challenge. These realistic templates were

specifically chosen to closely match the orientations of

the 42 predefined viewpoints in the first set. Since the

PBR-BlenderProc4BOP training images possibly have oc-

clusions, we chose only images where the target objects

are fully visible. The templates of target objects are fi-

nally obtained by making the background black using the

ground-truth mask and cropping regions with the ground-

truth bounding box.
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LMO

(8 objects)

HB

(33 objects)

YCB-V

(21 objects)

Input CAD models Input RGB CNOS (SAM) CNOS (FastSAM)

Figure 4. Qualitative results on LM-O [1], HB [14] and YCB-V [25]. The first column shows the input CAD models. In cases where

there are more than 16 models, we only show the first 16 to ensure better visibility. The second column show the input RGB image and

the last two columns depict the detections produced by CNOS (SAM) and CNOS (FastSAM) with confidence scores greater than 0.5.

Interestingly, in the last row, even though the segmentation proposals in CNOS (SAM) and CNOS (FastSAM) are very similar, their final

labels differ for a few objects. This inconsistency arises from DINOv2-based classification of the proposals as discussed in Section 4.2.

In order to maintain a consistent run-time across all

datasets, we resize the images while preserving their aspect

ratio. Specifically, we ensure that the width of each input

RGB testing image is fixed at 640 pixels. All our experi-

ments were conducted on a single V100 GPU.

4.2. Comparison with the state of the art

In Table 1, we show that CNOS outperforms Chen et
al. [2] by a significant margin of absolute 19.8% AP. Fur-

thermore, despite not being trained on the testing objects

of the BOP datasets, our method surpasses the performance

of Mask R-CNN [10] used in CosyPose [16], which was

specifically trained on these objects. This highlights the

generalization capability of our method.

We qualitatively found that the generated segmentation

proposals usually include ones that are very well aligned

with the target object instances, and that most mistakes are

due to erroneous DINOv2-based classification of the pro-

posals. Improving the proposal classification would be cru-

cial to close the gap between CNOS and supervised state-

of-the-art approaches such as ZebraPose.

In Figure 4, we show qualitative results of our method

on LM-O [1], HB [14] and YCB-V [25] datasets.

4.3. Ablation study

Model size vs. run-time. We present the results for Fast-

SAM and DINOv2 using various base models in Table 2,

highlighting the trade-off between accuracy and run-time.

Rendering. Table 1 demonstrates the performance of our

method using two types of rendering: Pyrender [21] in row

6 and BlenderProc [3] in row 7. The results indicate that

incorporating realistic rendering significantly reduces the

domain gap between synthetic and real images, yielding a

4.3% improvement in the AP metric.

Number of viewpoints. As shown in Table 3, using more

viewpoints does not bring any improvement compared to

the coarse viewpoints. This can be explained by the fact

that the current set of 42 coarse viewpoints already provides

sufficient coverage of the 3D objects.

Aggregating function. In Table 4, we explore different

types of the function for aggregating the similarities be-

tween descriptors of templates and proposals. Among the

tested functions, Meank (k=5), which is the average of the

k highest similarity, achieves the best performance.
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Segmentation model Descriptor model AP Run-time (s)

FastSAM-s ViT-s 32.1 0.18

FastSAM-s ViT-l (default) 33.8 0.25

FastSAM-x (default) ViT-s 38.0 0.27

FastSAM-x (default) ViT-l (default) 39.7 0.33

Table 2. Ablation study of different FastSAM segmentation
models [28] and DINOv2 descriptor models [20] on LM-O.

Method

Viewpoint density

Coarse (42) Dense (162)

CNOS (SAM) 39.6 39.5

CNOS (FastSAM) 39.7 39.7

Table 3. Ablation study of the number of viewpoints on LM-O.
The denser viewpoints are created by subdividing each triangle of

the icosphere (used to create coarse viewpoints) into four triangles.

Method
Aggregating function

Mean Median Max Meank

CNOS (SAM) 36.6 34.9 39.1 39.6
CNOS (FastSAM) 36.2 33.8 39.7 39.7

Average 36.40 34.40 39.40 39.65

Table 4. Ablation study of aggregating functions on LM-O.
Using the Meank function, which calculates the average of the top

k (k = 5) highest values, yields the best accuracy.

Method

Run-time (second)

Onboarding Proposal Matching

CNOS (SAM, Pyrender) 1.22 1.58 0.13

CNOS (FastSAM, Pyrender) 1.22 0.22 0.12

CNOS (FastSAM, PBR) 42.1 0.22 0.12

Table 5. Run-time. We report the run-time of each stage of CNOS

on a single V100 GPU. The run-time of the onboarding stage in-

cludes both the rendering time and the visual descriptor extraction

time for each CAD model.

Run-time. In Table 5, we present the average run-time of

each stage in our method for a given CAD model. In the

onboarding stage, the average rendering time for one im-

age with Pyrender [21] is 0.026 second while with Blender-

Proc [3] is around 1 second per image on a single V100

GPU. It is important to note that the onboarding stage is

performed once for each CAD model. In terms of run-time,

the onboarding stage is clearly bottlenecked by the genera-

tion of templates, while the proposal stage is currently bot-

tlenecked by the segmentation algorithm.

4.4. Discussion

Pose intialization. Our intention was originally to use the

DINOv2 cls token not only to recognize the object but

also to estimate its initial pose that could be refined in a

subsequent step. However, as illustrated in Figure 5, this

Proposal Top 1 Top 2 Top 3 Top 4 Top 5

Figure 5. Visualization of the nearest neighbors. We show pro-

posals along with five retrieved templates with the most similar

DINOv2 cls tokens. The retrieved templates correspond to the

same object but to poses that do not match the pose in the propos-

als – this suggests that the DINOv2 cls token can be effectively

used to recognize the objects, but not to estimate the pose.

approach did not yield successful results, as the DINOv2

cls token seems to carry sufficient information about the

object identity but not about the object pose.

CAD-free novel object segmentation. In this work, we

focus on CAD-based novel object segmentation. However,

the proposed CNOS method could be seamlessly adapted

to address one-shot or few-shot novel object segmentation

settings, where only one or a few reference images are avail-

able and CAD models are unknown. Specifically, the refer-

ence descriptors could be extracted directly from the avail-

able reference image(s), while the rest of the pipeline could

be kept untouched.

5. Conclusion

We presented a simple yet powerful method for novel ob-

ject segmentation solely based on their CAD models, with-

out the need of any training. The method achieves a sur-

prisingly high accuracy, comparable to previous supervised

methods trained on large-scale annotated datasets. We hope

that CNOS will serve as a standard baseline for CAD-based

novel object segmentation and will be employed as the ini-

tial stage of novel object pose estimation pipelines.
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