
Diff3DHPE: A Diffusion Model for 3D Human Pose Estimation

Jieming Zhou1, Tong Zhang2, Zeeshan Hayder3, Lars Petersson3, Mehrtash Harandi4
1Australian National University, 2EPFL, 3CSIRO, 4Monash University

jieming.zhou@anu.edu.au, tong.zhang@epfl.ch,

{zeeshan.hayder, Lars.Petersson}@data61.csiro.au, mehrtash.harandi@monash.edu

Abstract

Accurately estimating 3D human pose (3D HPE) and
joint locations using only 2D keypoints is challenging. The
noise in the predictions produced by conventional 2D hu-
man pose estimators often impeded the accuracy. In this
paper, we present a diffusion-based model for 3D pose es-
timation, named Diff3DHPE, inspired by diffusion models’
noise distillation abilities. The proposed model takes a tem-
poral sequence of 2D keypoints as the input of a GNN back-
bone model to extract the 3D pose from Gaussian noise us-
ing a diffusion process during training. The model then re-
fines it using a reverse diffusion process. To overcome over-
smoothing issues in GNNs, Diff3DHPE is integrated with
a discretized partial differential equation, which makes it a
particular form of Graph Neural Diffusion (GRAND). Ex-
tensive experiments show that our model outperforms cur-
rent state-of-the-art methods on two benchmark datasets,
Human3.6M and MPI-INF-3DHP, achieving up to 39.1%
improvement in MPJPE on MPI-INF-3DHP. The code is
available at https://github.com/socoolzjm/Diff3DHPE.

1. Introduction
Human pose estimation (HPE) estimates the configura-

tion of human body parts from data collected by various

sensors such as RGB and depth cameras. This task has

been widely studied due to its relevance to real-world appli-

cations such as augmented reality, virtual reality, and mo-

tion analysis [50]. Notably, 3D human pose estimation (3D

HPE) from 2D imagery captured by a monocular RGB cam-

era is attracting attention. A single image or a video se-

quence can then provide a cost-efficient way of estimating

the coordinates of human joints in 3D space. Recent works

have demonstrated that approaches using 2D keypoints gen-

erated by off-the-shelf 2D human pose estimators are supe-

rior to end-to-end methods that instead take images as the

inputs [3, 25, 28, 19, 52]. However, due to the ill-posed

nature of predicting 3D from 2D, we can only predict accu-

rate 3D poses by imposing priors, and occlusions of body

Figure 1. General framework of the diffusion model. In the for-

ward diffusion process, the diffusion model learns the Gaussian

noise that distorts a clean 3D pose y0. Then, the diffusion model

reconstructs the clean 3D pose from a Gaussian noise after T iter-

ations during the reverse diffusion process.

parts deteriorate this situation. Therefore, leveraging tem-

poral information, the current state-of-the-art works use a

sequence of images from a video as the input to enforce the

temporal smoothness and estimate more accurate 3D poses

[33, 8, 1, 43, 24].

Given the 2D keypoints of a person in a video, the in-

put data can be represented as a spatial-temporal graph

where nodes are joints. Edges are bones between dif-

ferent joints and connections across frames of the same

joint. Therefore, Graph Neural Networks (GNNs) natu-

rally fit the 3D HPE task. Approaches like [6], [7],

[23], and [49] illustrate the effectiveness of GNNs on 3D

HPE. Recently, the transformer [42] is introduced to the 3D

HPE task [51, 48, 37, 44, 21, 9], which achieves extraor-

dinary improvement due to the ability to aggregate long-

range information. However, the performance of all these

approaches still heavily relies on the quality of the input

2D keypoints. Current approaches could be more robust

to noisy inputs, such as unstable 2D pose estimations and

missing body parts, which commonly exist in the real world.

To relieve the influence of the imperfect input 2D key-

points, we propose the Diff3DHPE that uses 2D keypoints

as conditions of the diffusion model [39] and reconstructs

3D poses from Gaussian noise through iterations of sam-

pling. Fig. 1 illustrates a general framework for applying

the diffusion model to the 3D HPE task. Instead of predict-

ing the parameters of Gaussian noise, we modify the target
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of the backbone model inside the diffusion model, which

directly predicts the ground truth 3D poses given noisy 3D

poses and 2D keypoint conditions during the training stage.

By doing so, we effectively reduce the computational cost

and increase the accuracy in the sampling stage in prac-

tice. In this paper, we evaluate MixSTE [48] and Pose-

Former [51] as backbone models to demonstrate the flex-

ibility of our proposed diffusion model scheme in 3D HPE.

Furthermore, by slightly modifying the attention function

inside, we use a partial differential equation (PDE) to con-

trol the message-passing speed between joints and suppress

the over-smoothing issue caused by aggregation of highly

similar features. We illustrate that this modification trans-

forms the sampling function of the diffusion model into a

particular form of Graph Neural Diffusion (GRAND) [2]

and further boosts performance in practice.

Our contributions are summarized as follows:

• We propose a novel diffusion model scheme for 3D

HPE, Diff3DHPE, which uses various transformer-

based backbone models to aggregate information in

the spatial-temporal space, and generates 3D pose pre-

dictions under 2D keypoint conditions from Gaussian

noise.

• We modify the target of the backbone model inside

the diffusion model. By directly predicting the orig-

inal ground truth 3D pose and iteratively refining

it, Diff3DHPE dramatically accelerates the sampling

time of the diffusion model.

• We bridge the diffusion model and GRAND by mod-

ifying the transformer used in the backbone model,

making the sampling function a discretized explicit

solver of a PDE.

• We evaluate Diff3DHPE on two popular 3D HPE

datasets: Human3.6M [16] and MPI-INF-3DHP [27],

which empirically proves its state-of-the-art perfor-

mance and outstanding robustness to noisy 2D key-

point inputs.

2. Related Work
3D Human Pose Estimation. Reconstructing the 3D

coordinates of a person’s joints captured from a single

view is one of the most widely studied 3D HPE tasks

[20, 32, 3, 28, 19, 52, 22, 43]. Generally, these approaches

are divided into two categories. The first approach employs

an end-to-end network to predict 3D poses from the input

images directly. Li and Chan [20] use multi-task learning

to train a convolutional neural network (CNN) where the

model detects body parts and simultaneously estimates 3D

pose from an input image. To simplify the problem, the sec-

ond approach, 2D-to-3D lifting, takes 2D keypoints gener-

ated by an off-the-shelf 2D pose estimator, such as CPN [5]

and HRNet [41], as the input. As a result, 2D-to-3D lifting

methods benefit from high-quality 2D pose estimations and

perform better than end-to-end designs. To make up for the

missing depth of a given 2D keypoint, Chen and Ramanan

[3] match it to the closest 3D pose exemplar from a known

3D pose library and camera projection matrices. Thus, their

method can obtain a highly accurate 3D pose estimation in

a short amount of time. Even though using more priors, it

is very likely that a single 2D pose can be mapped to multi-

ple 3D poses. Moreover, occlusions of body parts within an

image make this issue worse.

Because of the constraints of the physical world, the

human poses should follow the time consistency given a

continuous time. Thus, state-of-the-art methods tend to

use a fix-frame-length video as their input to overcome the

multiple-mapping issue. The temporal information con-

tained in the 2D poses reduces the number of possible 3D

poses and dramatically increases the accuracy of the 3D es-

timators. Normally, a seq2frame method takes a sequence

as the input and only predicts the 3D pose of the central

frame. VideoPose3D [33] employs a series of dilated con-

volution layers to aggregate long-term dependencies in the

temporal dimension. Dabral et al. [8] first use a structure-

aware network to estimate a 3D pose for each frame in the

input sequence. To complement the spatial information with

the temporal correlations, they pass the 3D poses to a tem-

poral network to output a refined 3D pose for the central

frame. Some approaches aim to make the 3D estimator fur-

ther coherent and efficient. Using the seq2seq style, these

estimators simultaneously predict 3D poses for all frames in

the input sequence. [22] and [14] use LSTM [13] to recur-

rently predict the 3D poses of the input sequence. However,

their methods suffer from the low computational efficiency

caused by the LSTM. To avoid the computational efficiency

issue, UGCN [43] adopts the spatial-temporal graph con-

volution proposed by [46] to model motion in multiple time

scales in the input sequence. In this paper, we separately se-

lect seq2frame and seq2seq based backbone models to eval-

uate our proposed 3D HPE scheme comprehensively.

GNN and Transformer Recently, message-passing-

based GNNs have shown their efficiency and capacity to

learn graph representations by gradually aggregating node

and edge features between neighbors through stacking lay-

ers [45]. Since the input 2D keypoint sequence can be repre-

sented as a spatial-temporal graph, it is natural to introduce

GNNs to the 3D HPE task. LCN [7] combines fully con-

nected and graph convolutional network designs (GCNs)

characteristics. Each node in LCN has an individual filter

to learn a representation flexibly. As a trade-off between

using a shared weight filter and individual filters for each

node, Zou and Tang [53] apply different modulation vectors

to a shared weight filter, which reduces the number of net-

work parameters. In addition, they use a learnable affinity

2093



matrix to explore additional joint correlations further. No-

tably, the transformer is a particular form of GNN where

the input graph is a complete graph. [42] first proposes

the transformer to solve natural language processing (NLP)

tasks in which self-attention can aggregate long-range de-

pendency. Benefiting from the self-attention, PoseFormer

[51] uses the Transformer to aggregate spatial and temporal

features across all joints. Because the residual connections

and normalization components in the Transformer can re-

duce the impact of over-smoothing, MixSTE [48] designs a

deeper and more powerful 3D pose estimator by alternately

stacking spatial and temporal Transformers. Moreover, as

a seq2seq method, MixSTE achieves faster inference time

compared to other seq2frame methods, such as PoseFormer,

when having similar number of parameters.

Diffusion Models. First proposed by [39], diffusion

models have become state-of-the-art methods for various

generative tasks. From Gaussian noise, diffusion models

gradually remove the noise through iterations, generating

an output that obeys the target distribution. Combining with

conditions such as corrupted images or text, diffusion mod-

els can output high-quality results for super-resolution [36],

inpainting [17], and text-to-image synthesis tasks [35, 34].

These applications show that diffusion models are adapt-

able to tasks in which people commonly use regression-

based methods. Thus, we propose a diffusion-model-based

scheme for the 3D HPE task in which 2D keypoints are used

as the condition. Although diffusion models have advan-

tages in stable training compared to other generative meth-

ods, such as Generative adversarial networks (GAN) [11], it

suffers from high computational costs caused by many iter-

ations for high-quality results. DDIM [40] samples a subset

from the original iteration steps, which makes a trade-off

between quality and speed. However, we find that directly

applying DDIM to the 3D HPE task will cause an insuffi-

cient accuracy issue when using a small step subset. In con-

trast, increasing the number of steps is infeasible for large-

scale datasets like Human3.6M [16]. Therefore, we propose

our alternative design of diffusion models, which can signif-

icantly reduce the iteration steps while keeping high-quality

results.

Graph Diffusion. Graph diffusion focuses on how the

information of each node diffuses on a graph according to a

diffusion equation [10]. Random walks are often used as a

diffusion equation, which depicts the transition probabilities

among the nodes [26]. [30] reveals that GNNs are low-pass

filters that perform the diffusion on graphs. This character-

istic raises the problem of over-smoothing, in which node

features tend to be similar as the depth of the GNNs grow.

GRAND [2] proposes a broad new class of GNNs that mod-

ifies the self-attention to a PDE as the diffusion equation.

Using Runge-Kutta to solve the discretized PDE, GRAND

turns GNNs into band-pass filters, significantly relieving the

over-smoothing issue. We apply the design of the diffusion

equation in GRAND to transformer-based backbone mod-

els and show that our proposed diffusion model scheme is a

particular form of GRAND.

3. Method
Given a 2D keypoint sequence of one person x =

[x(1),x(2), ...,x(F )] ∈ R
F×J×2, a typical frame2seq 3D

HPE approach predicts the middle frame’s 3D coordinates

y(F/2) ∈ R
J×3, where F is the number of frames, and J is

the number of joints. We begin by introducing the diffusion

model to this basic framework. We then present an alterna-

tive design for the diffusion model that reduces the sampling

time while maintaining accuracy. To ensure our method

matches the performance of state-of-the-art techniques, we

adopt Transformer-based models as our backbone. Addi-

tionally, we address the over-smoothing issue caused by ex-

cessive iterations by introducing a PDE-based modification

to the backbone models. Finally, our approach, Diff3DHPE,

integrates all these innovations into a cohesive scheme.

Specifically, as Fig 2 shows, Diff3DHPE can predict 3D co-

ordinates of all frames y = [y(1),y(2), ...,y(F )] ∈ R
F×J×3

at the same time when the backbone model is designed in

seq2seq style.

3.1. 3D HPE via Diffusion Model

Dealing with 3D HPE using 2D keypoints can be diffi-

cult since depth information is lost in the input. However,

the diffusion model is a viable solution to this problem. It

can gradually convert a Gaussian distribution to the target

distribution, ultimately generating the missing information.

We first define the diffusion process q by adding Gaus-

sian noise to a ground truth 3D coordinate y0 over T -step

iterations as [12]:

q(y1:T |y0) =
T∏

t=1

q(yt|yt−1), (1)

q(yt|yt−1) = N (
yt|√αtyt−1, (1− αt)I

)
, (2)

where the scalars α1:T are either predefined or learned vari-

ances, s.t. 1 > α1 > α2 > ... > αT > 0. To simplify the

training process, we sample yt arbitrarily:

yt =
√
ᾱty0 +

√
1− ᾱtε, (3)

where ᾱt =
∏t

i=1 αi, and ε ∼ N (0, I).
Therefore, the target of the backbone model fθ under-

lying the diffusion model is to predict the Gaussian noise

when given the 2D keypoint sequence x and the noisy 3D

coordinate yt at step t. The objective function is formulated

as follows:

Ldiff = Et∼[1,T ],x,y0,ε

[ ‖ε− ε̂t‖2
]
, (4)
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Figure 2. Overall framework of Diff3DHPE during the reverse diffusion process in seq2seq style. In the iteration step t, a 2D keypoint

sequence x is concatenated with its corresponding noisy 3D predicted sequence ŷt along the channel dimension as the input (x, ŷt). The

backbone model takes (x, ŷt) and t to predict a final 3D sequence ŷ0,t at the step t. Then, ŷt−1 is obtained from a predefined reverse

diffusion function and sent to the next iteration for refining. To note, the backbone model is MixSTE in this example.

ε̂t = fθ(x,yt, t). (5)

Commonly, T is larger than 1000 to make the model

smoothly learn the diffusion process in practice. However,

this approach, in turn, dramatically increases the compu-

tation for the reverse diffusion process. Thus, we choose

DDIM [40] to estimate the reverse diffusion process to re-

duce the iteration as:

ŷτi−1
=

√
ᾱτi−1

(
ŷτi −

√
1− ᾱτi ε̂τi√
ᾱτi

) +
√

1− ᾱτi−1 ε̂τi ,

(6)

ŷ0 =
ŷτ1 −

√
1− ᾱτ1 ε̂τ1√
ᾱτ1

, (7)

where τi is sampled every �T/S� steps from {t1, t2, ..., tT },

τ1 < τ2 < ... < τS ∈ [1, T ], S < T , ŷt is the estimated 3D

coordinates at step t, and ŷτS ∼ N (0, I).

3.2. Alternative Design of Diffusion Model

3D HPE typically focuses on the pose of the human body

instead of its position in the global space. Thus, we remove

the global offsets of 3D coordinates of joints in the sequence

by centering a joint to (0, 0, 0). We further normalize the

value of 3D coordinates to [−1, 1] because the ŷτS is initial-

ized with a Gaussian noise during the reverse diffusion pro-

cess. Given a centralized 3D coordinate of a human joint,

we hypothesise that the value is between −1000 mm and

1000 mm. When αt is generated by the cosine schedule

[29], we find that S must be larger than 1.55× 105 to make

the noise value introduced by
√
1− ᾱτ1 ε̂τ1 in the Eq. 7 has

95% probability smaller than 1 mm.

To address this issue and further reduce the number of

iterations of DDIM, we change the target of the backbone

model in Eq. 5 to directly predict the y0 at step t during

training:

ŷ0,t = fθ(x,yt, t). (8)

Figure 3. Curve of variable weight kt throughout the training stage

of Diff3DHPE. We clip the maximum value at kclip = 2 to avoid

extreme gradients.

To note, we switch yt in Eq. 8 to ŷt during the reverse dif-

fusion process. In the previous works [39, 40], the objective

function uses the error between the target Gaussian noise εt
and the predicted noise ε̂t. Following Eq. 3, we have:

εt − ε̂t =
yt −√

ᾱty0√
1− ᾱt

− yt −√
ᾱtŷ0,t√

1− ᾱt

= kt(ŷ0,t − y0),

(9)

kt =

√
ᾱt

1− ᾱt
, (10)

during the training stage. Therefore, we propose a new ob-

jective function formulated with the variable weight kt as

follows:

Ldiff = Et∼[1,T ],x,y0,ε

[(
1+Min(kt, kclip)

) ‖y0 − ŷ0,t‖22
]
.

(11)

The curve of kt is shown as Fig. 3. The intuition is that a

more significant penalty should be applied to the prediction

at an earlier step where the noise variance is small. We

clip the maximum kt at kclip = 2 to avoid an overly large

gradient. By adding a constant 1, we punish the network
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even though the input 3D poses are very noisy because the

input 2D poses are still relatively clean.

According to Eq. 3, the prediction of the Gaussian noise

at step τi during the reverse diffusion process can be formu-

lated as:

ε̂τi =
ŷτi −

√
ᾱτi ŷ0,τi√

1− ᾱτi

. (12)

Combining Eq. 12 with 6 and 7, our alternative design of

diffusion model has the following reverse diffusion process:

ŷτi−1 =
√
ᾱτi−1 ŷ0,τi +

√
1− ᾱτi−1

ŷτi −
√
ᾱτi ŷ0,τi√

1− ᾱτi

,

(13)

ŷ0 = ŷ0,τ1 , (14)

where no Gaussian noise term is introduced to the final pre-

diction.

Figure 4. Feature aggregation in a simplified GNN layer. The red

dot is the central node. Dots in other colors are neighbors. Solid

lines are edges. Longer dash lines indicate lower feature similar-

ities between central node and neighbors. Bolder dash lines in-

dicate larger weights. Compared to attention, PDE-based graph

diffusion suppresses highly similar information passed to the cen-

tral node.

3.3. Bridge between Diffusion Model and GRAND

Given a graph G = (V,E), V is a node set, E is an edge

set, |V| = N , yt ∈ R
N×C is the node feature matrix at step

t output by a GNN in the reverse diffusion process, and C
is the number of channels. Let a simplified attention block

be the GNN. The output yout,t is generated by:

yout,t = A(yt) · yt, (15)

where A(yt) is the N × N attention matrix. As Fig. 4 il-

lustrates, neighbors with high similarity to the central node

have a large weight in the aggregation, which causes the

over-smoothing problem when the depth of the GNN in-

creases. To overcome this issue, we adapt the graph diffu-

sion equation proposed by GRAND [2]. Here, we define

the PDE of the graph diffusion equation as:

∂ŷt

∂t
=

(
A(ŷt)− I

) · ŷt. (16)

GRAND learns to produce node embeddings ŷ = φ(ŷ0),

ŷ0 = yT +

∫ 0

T

∂ŷt

∂t
dt, (17)

where φ is a learnable network.

In the 3DHPE task, features of nearby nodes from the

same joint in the temporal dimension are highly similar

because position differences are insignificant among the

nearby frames. By introducing the GRAND, highly similar

information is suppressed during the aggregation. Mean-

while, the function of ŷτ1 can be derived from Eq. 13:

ŷτ1 = ayτS +

S∑
i=2

biciŷ0,τi , (18)

yτS ∼ N (0, I), (19)

a =

√
1− ᾱτ1

1− ᾱτS

, (20)

bi =
√
ᾱτi−1

−
√

ᾱτi(1− ᾱτi−1
)

1− ᾱτi

, (21)

ci =

√
1− ᾱτS−i+1

1− ᾱτS−i

. (22)

And, the clean 3D pose prediction is:

ŷ0 = fθ(x, ŷτ1 , t). (23)

Thus, the reverse diffusion process of our alternative design

of the diffusion model becomes a particular discretized form

of GRAND when the backbone model fθ consists of PDE-

based graph diffusion defined in Eq. 16.

In the final design of our Diff3DHPE, we select

Transformer-based models as backbones and apply the

PDE-based graph diffusion equation to their transformer

blocks.

4. Experiments
4.1. Datasets

We evaluate our Diff3DHPE and other state-of-the-art

3D HPE methods on Human3.6 [16] and MPI-INF-3DHP

[27].
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Human3.6M is a large-scale dataset widely used for the

3D HPE task. This dataset has 3.6 million human poses

captured by four cameras from different views in an in-

door environment providing highly accurate measurements.

Following previous works [51, 48, 24, 33], we select the

subjects S1, S5, S6, S7, and S8 as the training set that

contains 15 actions in each subject and 17 joints in each

frame. We use the mean per joint position error (MPJPE)

and Procrustes MPJPE (P-MPJPE) [50] to measure the per-

formance of methods on this dataset. MPJPE calculates the

average Euclidean distance between estimated joint 3D co-

ordinates and their ground truth in millimetres. P-MPJPE

computes the post-processed MPJPE after rigid alignment

between the estimation and ground truth.

MPI-INF-3DHP contains more than 1.4 million frames

captured from 14 cameras in indoor and outdoor environ-

ments. Eight actors in the dataset perform eight activities,

such as walking, sitting, complex exercise poses, and dy-

namic actions. We report the percentage of correct key-

points (PCK) within 150 mm and the area under curve

(AUC) along with MPJPE for evaluating methods on this

dataset.

4.2. Experimental Setup

We implement our models using Pytorch [31] and run on

eight NVIDIA GeForce RTX 2080 Ti. Following [51, 48],

we horizontally flip poses as data augmentation for train-

ing and testing. We train each mode for 200 epochs with

the Adam [18] optimizer and 0.1 weight decay. After each

epoch, the learning rate will multiply with the decay fac-

tor 0.99. The dropout rate is 0.1. The number of forward

diffusion steps T = 1000. We follow the procedure used

in [51] to select other hyper-parameters, i.e. learning rate

and the number of the reverse diffusion steps S. The hyper-

parameter search space and final selections are listed in the

supplementary material.

4.3. Results and Analysis

To showcase the effectiveness of Diff3DHPE, we em-

ploy MixSTE as the backbone model, which is currently

state-of-the-art. To ensure a fair comparison, we use the

same number of frames, F , as used in MixSTE for Hu-

man3.6 (F = 81, 243) and MPI-INF-3DHP (F = 27). For

evaluation, we input 2D keypoints detected by CPN [5] and

ground truth 2D keypoints separately when evaluating on

Human3.6M. On MPI-INF-3DHP, we adopt the protocol

used in [51, 48, 37, 4] and use ground truth 2D keypoints of

17 joints as input, evaluating our networks on valid frames

in the test set.

Results on Human3.6M. Table 1 compares our mod-

els and the most recent state-of-the-art using CPN input.

For the F = 81 configuration, Diff3DHPE-M outperforms

other methods on most actions in terms of MPJPE. Notably,

Diff3DHPE-M achieves the best results across all actions

and surpasses MixSTE by 1.2 mm on average when eval-

uating P-MPJPE. Furthermore, in the F = 243 setting,

Diff3DHPE-M widens the overall MPJPE gap between the

second-best model from 0.4 mm to 0.9 mm. Finally, Table 2

showcases the results of models using ground truth 2D key-

points. In this case, Diff3DHPE-M outperforms MixSTE in

terms of MPJPE by a more considerable margin of 1.7 mm

and 1.4 mm in F = 81 and F = 243 settings, respectively.

Results on MPI-INF-3DHP. Typically, models using

more frames as the input can achieve better results. How-

ever, our Diff3DHPE-M exceeds the second-best model by

39.1% in MPJPE when only using 1/3 length of its input

on MPI-INF-3DHP, which is shown in Table 3. This re-

sult further demonstrates Diff3DHPE-M’s superiority over

other methods.

4.4. Ablation Study

4.4.1 Effect of PDE-based Diffusion model

To demonstrate the effectiveness of our PDE-based diffu-

sion model, we conducted additional experiments on Hu-

man3.6M with CPN input by training Diff3DHP mod-

els without the PDE-based design. During training, all

Diff3DHPE models use the same number of forward diffu-

sion steps, T = 1000. We then ran the reverse diffusion pro-

cess with varying reverse steps, S. As shown in Fig. 5, the

PDE-based graph diffusion models outperformed the cor-

responding models without this design, with a smaller per-

formance drop as the number of iterations increased. Since

increasing the number of iterations can be considered as in-

creasing the depth of the backbone GNN model, the PDE-

based graph diffusion design effectively mitigated the im-

pact of over-smoothing.

Figure 5. Performance changes when Diff3DHPE-M uses different

number of reverse diffusion iterations on Human3.6M, CPN input.
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Table 1. Results on Human3.6M with CPN detected 2D keypoints. The best and second-best results of the same number of frames setting

are in Bold and underlined, respectively. ↓: lower is better. Diff3DHPE-M: Diff3DHPE with MixSTE backbone.

MPJPE↓ Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Chen et al. [4] (F=81) TCSVT2021 42.1 43.8 41.0 43.8 46.1 53.5 42.4 43.1 53.9 60.5 45.7 42.1 46.2 32.2 33.8 44.6

Poseformer [51] (F=81) ICCV2021 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3

MixSTE [48] (F=81) CVPR2022 39.8 43.0 38.6 40.1 43.4 50.6 40.6 41.4 52.2 56.7 43.8 40.8 43.9 29.4 30.3 42.4

P-STMO-S [37] (F=81) ECCV2022 41.7 44.5 41.0 42.9 46.0 51.3 42.8 41.3 54.9 61.8 45.1 42.8 43.8 30.8 30.7 44.1

Diff3DHPE-M (F=81) 40.2 42.7 38.6 40.8 42.6 50.0 40.3 40.2 52.5 55.1 43.6 41.3 42.9 29.5 29.5 42.0

SRNet [47] (F=243) ECCV2020 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8

Liu et al. [24] (F=243) CVPR2020 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1

Shan et al. [38] (F=243) MM2021 40.8 44.5 41.4 42.7 46.3 55.6 41.8 41.9 53.7 60.8 45.0 41.5 44.8 30.8 31.9 44.3

MixSTE [48] (F=243) CVPR2022 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9

P-STMO [37] (F=243) ECCV2022 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8

Diff3DHPE-M (F=243) 37.3 40.6 36.3 38.0 41.8 46.6 38.3 39.4 51.3 53.0 42.1 39.5 40.7 27.3 28.2 40.0

P-MPJPE↓ Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Chen et al. [4] (F=81) TCSVT2021 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6

Poseformer [51] (F=81) ICCV2021 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

MixSTE [48] (F=81) CVPR2022 32.0 34.2 31.7 33.7 34.4 39.2 32.0 31.8 42.9 46.9 35.5 32.0 34.4 23.6 25.2 33.9

Diff3DHPE-M (F=81) 31.1 32.9 30.5 32.5 32.7 38.4 30.7 30.0 41.3 43.4 35.2 31.2 33.2 23.1 24.1 32.7

Liu et al. [24] (F=243) CVPR2020 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6

Shan et al. [38] (F=243) MM2021 32.5 36.2 33.2 35.3 35.6 42.1 32.6 31.9 42.6 47.9 36.6 32.1 34.8 24.2 25.8 35.0

MixSTE [48] (F=243) CVPR2022 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6

P-STMO [37] (F=243) ECCV2022 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4

Diff3DHPE-M (F=243) 29.8 33.0 29.2 30.8 32.0 36.7 29.5 30.0 40.4 41.6 33.8 30.6 32.2 22.0 23.1 31.6

Table 2. Results on Human3.6M with ground truth 2D keypoints. The best and second-best results of the same number of frames setting

are in Bold and underlined, respectively. ↓: lower is better. Diff3DHPE-M: Diff3DHPE with MixSTE backbone.

MPJPE↓ Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Poseformer [51] (F=81) ICCV2021 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3

MixSTE [48] (F=81) CVPR2022 25.6 27.8 24.5 25.7 24.9 29.9 28.6 27.4 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9

Diff3DHPE-M (F=81) 25.5 24.8 23.6 22.4 25.4 26.2 25.9 24.5 27.7 27.1 25.2 22.7 23.9 18.6 19.9 24.2

SRNet [47] (F=243) ECCV2020 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0

Liu et al. [24] (F=243) CVPR2020 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7

Shan et al. [38] (F=243) MM2021 29.5 30.8 28.8 29.1 30.7 35.2 31.7 27.8 34.5 36.0 30.3 29.4 28.9 24.1 24.7 30.1

MixSTE [48] (F=243) CVPR2022 21.6 22.0 20.4 21.0 20.8 24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.7 21.6

P-STMO [37] (F=243) ECCV2022 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3

Diff3DHPE-M (F=243) 20.4 20.8 19.4 19.3 20.5 21.6 21.6 20.9 24.2 23.3 21.1 19.3 19.4 14.5 16.1 20.2

Table 3. Results on MPI-INF-3DHP. The best and second-best re-

sults are in Bold and underlined, respectively. ↑: higher is bet-

ter. ↓: lower is better. Diff3DHPE-M: Diff3DHPE with MixSTE

backbone.

Method PCK↑ AUC↑ MPJPE↓
PoseFormer [51] (F=9) ICCV2021 88.6 56.4 77.1

MixSTE [48] (F=27) CVPR2022 94.4 66.5 54.9

Chen et al. [4] (F=81) TCSVT2021 87.9 54.0 78.8

P-STMO [37] (F=81) ECCV2022 97.9 75.8 32.2

Hu et al. [15] (F=96) MM2021 97.9 69.5 42.5

Diff3DHPE-M (F=27) 99.1 84.8 19.6

4.4.2 Effect of Noisy 2D Keypoints

To evaluate the robustness of Diff3DHPE under more chal-

lenging conditions, we design two types of artificial noise.

The first type of noise is Gaussian noise with 0 mean and

standard deviation σ = 0.005, 0.01, 0.05, 0.1, and 0.5. This

noise is used to simulate inaccurate 2D pose detectors. The

second type of noise is randomly setting 2D keypoints to

(0, 0) with probabilities of drj = 0, 0.1, 0.2, 0.4, and 0.8.

This random drop is used to simulate occlusions in the in-

put. We train models with CPN input on Human3.6M and

separately added the two types of noise to the CPN input

during the test stage. To ensure a fair comparison, We train

models with the normalized CPN input on Human3.6M and

separately add the two types of noise to the normalized CPN

input during the test stage. To ensure a fair comparison, we

train the baseline MixSTE with only L2 loss of 3D pose

prediction error and normalize the training target 3D pose

ground truth to [−1, 1], the same as our Diff3DHPE mod-

els. Additionally, we keep the same architecture for the

baselines as their corresponding backbone models used in

Diff3DHPE to reduce the effect of using different loss func-

tions, including temporal consistency loss [48].

Fig. 6 illustrates that the performances of all models drop

dramatically as the magnitude of the noise increases. How-

ever, our Diff3DHPE can still effectively overcome the im-

pact of large-magnitude noise in most scenarios compared

to the baseline model.
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Figure 6. Performance changes when Diff3DHPE-M and the baseline model are tested with CPN input distorted by two types of artificial

noise. 1. Gaussian noise with 0 mean and std σ. 2. Randomly set 2D keypoints to (0, 0) with probability drj .

4.4.3 Effect of Diff3DHPE in seq2seq and seq2frame
Styles

To demonstrate the versatility of Diff3DHPE, we apply

it to both seq2seq and seq2fame settings using MixSTE

and PoseFormer as backbone models for Diff3DHPE-M

and Diff3DHPE-P, respectively. It is worth noting that in

Diff3DHPE-P, we only initialize Gaussian noise for the 3D

pose of the central frame. This noisy 3D pose is then dupli-

cated and concatenated with each 2D pose along the channel

dimension in the input sequence. We use the same training

protocol for baseline models described in Section 4.4.2.

Table 4 demonstrates that the Diff3DHPE models out-

perform their corresponding baselines by up to 12.7%

(15.1mm vs. 17.3mm). These results empirically demon-

strate the capability of Diff3DHPE to collaborate with other

GNN-based models in both seq2seq and seq2frame predic-

tion methods.

We also conduct training on DDIM-M models. These

models utilize the Diff3DHPE with a MixSTE backbone

and incorporate the original DDIM method. As Table 4

shows, DDIM-M achieves better P-MPHPE than the base-

line but has downgraded MPJPE performance. Meanwhile,

DDIM-M uses more than four times iterations compared

to Diff3DHPE-M but fails to surpass its accuracy, which

proves the efficiency of our alternative design of the diffu-

sion model.

4.5. Effect of Random Seeds

To show the effect of random seeds, we train MixSTE

and Diff3DHPE-M with four more random seeds. The

means and standard deviations of experiments using five

random seeds are listed in Table 4 with † mark. We conduct

the two-sample t-test based on the results. The p-values of

F = 81 and F = 243 are 8.1e−4 and 2.5e−5, respectively.

All p-values are smaller than 0.05, which indicates the gain

from Diff3DHPE is significant.

Table 4. Ablation study of seq2seq and seq2frame models on Hu-

man3.6M. The best results are in Bold. ↓: lower is better. DDIM-

M: Diff3DHPE with MixSTE backbone and using original DDIM

method. Diff3DHPE-M: Diff3DHPE with MixSTE backbone.

Diff3DHPE-P: Diff3DHPE with PoseFormer backbone. S: the

number of reverse diffusion steps. s.d: standard deviation. ∗: we

train the baselines with only L2 loss of 3D pose prediction error

and normalize the training target 3D pose ground truth to [−1, 1].†:

we train the models with five different random seeds.

Model
CPN F=81 GT F=81

S MPJPE±s.d.↓ P-MPJPE±s.d.↓ S MPJPE↓ P-MPJPE↓
MixSTE∗ N/A 43.2 34.0 N/A 26.4 20.2

DDIM-M 40 44.2 33.4 - - -

Diff3DHPE-M 9 42.0 32.7 5 24.2 18.5
MixSTE∗† N/A 43.6±0.3 34.1±0.1 - - -

Diff3DHPE-M† 9 41.9±0.6 32.6±0.3 - - -

Model
CPN F=243 GT F=243

S MPJPE±s.d.↓ P-MPJPE±s.d.↓ S MPJPE↓ P-MPJPE↓
MixSTE∗ N/A 41.7 33.1 N/A 22.4 17.3

DDIM-M 80 42.2 32.3 - - -

Diff3DHPE-M 5 40.0 31.6 6 20.2 15.1
MixSTE∗† N/A 41.9±0.3 33.3±0.2 - - -

Diff3DHPE-M† 5 40.1±0.4 31.6±0.2 - - -

Model
CPN F=81 GT F=81

S MPJPE↓ P-MPJPE↓ S MPJPE↓ P-MPJPE↓
PoseFormer∗ N/A 46.1 36.2 N/A 34.9 26.6

Diff3DHPE-P 5 45.3 35.3 5 31.9 23.4

5. Conclusion

This paper introduces a novel approach for the 3D human

pose estimation task named Diff3DHPE, which is based on

a Transformer-based diffusion model. The proposed model

is designed to reduce the number of iteration steps with-

out compromising performance. Additionally, the over-

smoothing issue in Transformer is addressed by incorpo-

rating a PDE-based graph diffusion design. The experimen-

tal results demonstrate the effectiveness of Diff3DHPE and

show that it can be combined with various GNN designs in

both seq2seq and seq2frame settings. Overall, Diff3DHPE

provides a promising solution to the challenging task of 3D

human pose estimation.
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