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1. Accidental Turntables Dataset
Data source. We use 6 Youtube videos as the source of
our Accidental Turntables dataset including video1, video2,
video3, video4, video5, video6.
More examples. Fig. 1 provides more examples from our
Accidental Turntables dataset.
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Figure 1. Samples from the Accidental Turntables dataset. SfM
provides accurate 3D reconstructions (middle) and pose estima-
tions (right) on either texture-rich (1st row) or texture-free (2nd
row) objects, as well as objects moving along a straight line with-
out any turns (3rd row).

2. More Analysis
The effect of annotation noise level on pose estimation
In the main text, we use ImageNet-pretrained ResNet50 to
initialize our model and analyze the effect of annotation
noise level on the performance of pose estimation (Fig. 6
in the main paper). Here we provide additional experimen-

tal results under different network initialization including
contrastively pretraining and random initialization. Fig. 2
demonstrates that the effect of annotation noise level on the
pose estimation performance is consistent across different
network initialization, i.e., neither clean-yet-small data nor
large-yet-noisy data lead to higher performance than mid-
size data with mid-level noise.

3. Implementation

We use the Structure-from-Motion (SfM) and Multiview
Stereo (MVS) pipelines implemented in COLMAP [4, 5] 1

and HLOC library [3] 2. We use the MaskRCNN [2] im-
plemented in Detectron2 [6] to get the object masks. We
implement our pose estimation models based on PoseCon-
trast [7] 3.
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Contrastive pretraining [1]
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Figure 2. The effect of annotation noise level on 3D pose pre-
diction is consistent across different network initialization. For
each initialization method, we report the performance of the pose
predictor under different noise levels of pose annotations. A higher
level of annotation noise corresponds to a larger number of train-
ing images. We report both prediction accuracy (top row) and me-
dian error (bottom row) on two test splits included in PASCAL3D+
(i.e., PASCAL VOC and ImageNet validation set.).

[7] Yang Xiao, Yuming Du, and Renaud Marlet. Posecontrast:
Class-agnostic object viewpoint estimation in the wild with
pose-aware contrastive learning. In 2021 International Con-
ference on 3D Vision (3DV), pages 74–84. IEEE, 2021. 1


