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1. Introduction
We provide additional material in support of our main

paper. The material is organised as follows:
• In Sec. 2 we show qualitative results on the LMO [1]

and YCBV [6] datasets, divided into success (Figs. 1
& 3) and failure (Figs. 2 & 4) cases. We also report
examples of how pose registration is affected by correct
and incorrect detections. To assess the quality of the
learnt features, we visualise the distances in the feature
space between a point and all the other points (Figs. 5
& 6).

• In Sec. 3 we report an ablation study on one object of
the YCBV dataset (Tab. 1).

• In Sec. 4 we report an additional ablation study on the
choice of the tscale hyperparameter.

• In Sec. 5 we show the detection metrics on the test set
used in our results (Tabs. 3 & 4) and highlight problems
we found in the ground-truth annotations (Fig. 7). We
also report the percentage of cases in which the detector
causes a failure or a success in the pose registration.

2. Additional qualitative results
In Figs. 1 & 3 we show examples of correct pose predic-

tions on LMO [1] and YCBV [6], respectively. The top row
shows the ground-truth poses, while the bottom row shows
the results obtained with our experimental setting.

In Figs. 2 & 4 we show examples of wrong pose predic-
tions on LMO [1] and YCBV [6], respectively. To highlight
the detector contribution, we show the ground-truth poses
(top row), our results with the object detection prior (mid-
dle row), and our results without the object detection prior
(bottom row).

In LMO [1] we observe that the detector appears to be
strongly influenced by the colour of the object, as it con-
fuses the Can, Eggbox, and Glue objects which show similar
colours (see Fig. 2(a-b-c)).

Something similar occurs in Fig. 2(d), where the pose pre-
diction for Holepuncher is correct when the object detector
prior is not used, and wrong when it is used. This is due to

the colour similarity between Holepuncher and the toy car
behind the Glue object.

In YCBV [6] the object detector handles important errors
(Figs. 4(b-c)) and improves the pose prediction accuracy
(Figs. 4(f-g-h)). We also show a failure case where a wrong
detection causes an inaccurate pose prediction (the extra
large clamp object in Fig. 4(e)).

To examine the point-level features learned by FCGF6D,
we select pairs of point clouds and visualise the distance in
the feature space of each point with respect to a reference
point. Consider Figs. 5 & 6 for LMO and YCBV, respec-
tively. Given a pair (O,S), respectively object and scene,
we randomly select three points belonging to a correspon-
dence on O, then we compute the distance in the feature
space of each point in O and S from it. The distance is
then normalised for better visualisation. We show the RGB
point clouds on the left, and the input pairs with the feature
distance on the right. The reference point is depicted as a
red point on O.

In LMO [1] (Fig. 5), we can observe that the distance in
the scene point clouds is small near the point corresponding
to the reference one. We can also observe that the model can
learn a certain degree of symmetry: in the second visuali-
sation of the Can object, the distance in feature space of a
point which is symmetric to the reference one is small.

In Fig. 6 we show the visualisation on YCBV [6]. In
general the distribution of the distances appears to be noisier
and less smooth than in LMO. We believe this to be due
to the stronger sampling on S that we perform on YCBV,
unlike the one done on LMO (20,000 points against 50,000
points). Another possible cause is that the RGB test images
of YCBV are of a lower quality than the ones of LMO.
As in the LMO visualisation, the corresponding point of
the reference point in the scene has a small distance in the
feature space. We can also observe the resulting distance
in the case of similar objects: in the rightmost case of the
extra large clamp, one of the points on a similar object (the
large clamp) is similar to the reference one in the feature
space. Because our features are learned to describe a local
patch, their quality can be limited by the presence of similar
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Table 1: Ablation study on the large marker object of YCBV.
Performance are compared in terms of RRE [radians] and
RTE [cm] errors (the lower the better), and FMR and ADD-
S AUC (shortened to ADD) scores (the higher the better).
∆ shows the improvement of each contribution in terms of
ADD-S AUC with respect to the previous row.

Improvements RRE ↓ RTE ↓ FMR ↑ ADD ↑ ∆

Baseline 2.0 4.6 0.00 77.2 –

L
os

s + τNS = 0.1DS 2.0 4.2 0.00 78.7 +1.5
+ τNS = 0.1DO 2.0 4.3 0.00 78.3 −0.4

A
rc

h. + Independent weights 2.0 4.1 0.00 79.4 +1.1
+ Add RGB information 1.2 3.2 49.1 84.9 +5.5

A
ug

.

+ Color augmentation 1.2 3.3 50.0 84.6 −0.3
+ Random erasing 1.2 3.1 53.4 85.2 +0.6

O
pt

im
.

+ SGD → Adam 0.0 0.4 100 97.5 +12.3
+ Adam → AdamW 0.0 0.4 100 97.5 0
+ Exp → Cosine 0.0 0.4 100 97.4 −0.1

geometric structures in other objects. Also in this case we
can observe how symmetry influences the feature space, by
considering the visualisation of the mug object. We can
observe that, especially in the second and third pairs, the
most similar points on S are the ones on the radial symmetry
axis of O.

3. Ablation study on YCBV
In Tab. 1 we report the results of our ablation study on

YCBV [6]. We choose the large marker object and train a
single model on it for each modification we applied. Each
model is trained for 20 epochs on the standard training set.
For the computation of the Feature Matching Recall (FMR),
we set the distance threshold τ1 = 10 voxels and the inlier
ratio threshold τ2 = 5%, to account for the different density
of the scene point cloud in YCBV. All the other settings and
parameters are the same as those in our ablation study on
LMO [1] in the main paper.

We can observe that some changes do not increment per-
formance, but instead cause a slight drop, in particular when
adapting the safety threshold to the object dimension (third
row, −0.4) and when colour augmentation is applied (sixth
row, −0.3). These additions do not benefit this particular
object, but are instead advantageous when averaging all the
object in the dataset.

We can note that, as in the ablation study on the LMO
dataset in the main paper, the most significant improve-
ments in ADD-S AUC result from applying the safety thresh-
old (+1.5), adding RGB information (+5.5), and using the
Adam optimiser (+12.3).

4. Additional ablation study on LMO
We include in Tab. 2 an ablation study on the tscale hy-

perparameter, which is used to set the radius of the ball

Table 2: Ablation study on the Can object of LMO. Perfor-
mance is shown in terms of ADD-0.1 (the higher the better)
in function of the hyperparameter tscale.

tscale 0.0 0.01 0.05 0.1 0.5
ADD-0.1d 66.55 91.80 93.79 93.95 81.28

Table 3: Object detector performance on LMO [1]. On this
dataset, failures and successes of ∆S→F and ∆F→S are
measured in terms of ADD(S)-0.1d. Key: ∗: symmetric
object.

Object AP AP50 ∆S→F ∆F→S

Ape 64.9 95.8 3.3 1.5
Can 82.8 99.3 1.9 0
Cat 69.6 90.8 1.5 0.1
Driller 80.0 98.7 0.8 0.4
Duck 77.9 98.2 0.7 2.4
Eggbox∗ 58.8 85.9 4.3 24.8
Glue∗ 55.1 87.3 5.1 2.3
Holepuncher 82.3 99.5 2.0 1.4

Average 71.4 94.4 1.2 2.7

volume in which negative mining around a certain point is
not allowed. We train on the Can object of LMO using the
standard setting, and varying only tscale. We can observe
that our choice of tscale = 0.1 leads to the best result. When
tscale is increased, many candidate points are forbidden to
be used as negatives, therefore decreasing the final perfor-
mance. On the other hand, a lower tscale implies negative
pairs composed by points which are near in the 3D space.
This reduces the performance, as similar points are forced
to have different descriptors. Notably, the worst results is
obtained when tscale = 0, i.e. when no negative candidates
are excluded.

5. Contribution of the object detection prior
We report in Tabs. 3 & 4 the performance of the YOLOv8

detector [4] on the test set of LMO [1] and YCBV [6], respec-
tively. Following [5], we report the area-under-the-curve of
the Average Precision, obtained by varying the IoU threshold
with respect to a ground truth detection from 0.5 to 0.95 with
a step of 0.05 (AP). We also report the recall on Average
Precision, obtained with a fixed IoU threshold of 0.5 (AP50).
We also measure how the performances in ADD(S)-0.1d and
ADD-S-0.1d change when using a detector.

Because LMO and YCBV use ADD(S)-0.1d and ADD-
S AUC, respectively, to measure the performance change,
we consider ADD(S)-0.1d for LMO and in ADD-S-0.1d for
YCBV. As in the original definition [2], a success for the
ADD-S-0.1d metric is obtained when the ADD-S error is
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Figure 1: Example of success cases on the LMO dataset [1]. Colour key: • Ape, • Can, • Cat, • Drill, • Duck, • Eggbox,
• Glue, • Holepuncher.
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Figure 2: Example of failure cases on the LMO dataset [1]. Colour key: • Ape, • Can, • Cat, • Drill, • Duck, • Eggbox,
• Glue, • Holepuncher.

below 0.1DO, where DO is the object diameter, otherwise it
is considered a failure. The same applies to ADD(S)-0.1d.
Therefore, we define the following metrics:

• ∆S→F : the percentage of object instances for which
there is a success when not using a detector and a failure
when using it.

• ∆F→S : the percentage of object instances for which
there is a failure when not using a detector and a success
when using it.

In Tab. 3 we report the metrics on LMO [1]. We can
observe that the detector performance is correlated with
the size of the object: Ape, Cat and Duck are very small
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Figure 3: Example of success cases on the YCBV dataset [6]. Colour key: • master chef can, • cracker box, • sugar box,
• tomato soup can, • mustard bottle, • tuna fish can, • pudding box, • gelatin box, • potted meat can, • banana, • pitcher
base, • bleach cleanser, • bowl, • mug, • power drill, • wood block, • scissors, • large marker, • large clamp, • extra
large clamp, • foam brick.

and often occluded, and therefore perform worse than Can,
Holepuncher, and Drill which are bigger. The lower perfor-
mance on Glue and Eggbox objects occurs because they are
often confused by the detector. An example of this can be
observed in Fig. 2(b). This behaviour is also present with the
Can object in Fig. 2(a). Despite these errors, we note that
the Eggbox object greatly benefits from the detector (+24.8
in ∆F→S), while for the other objects the performance gain
is less significant.

In Tab. 4 we show the detection performances on
YCBV [6]. Unlike LMO, the introduction of the object
detector is beneficial for all the objects, as the ∆F→S is
always higher then the ∆S→F (i.e. the detector solves more
pose errors then it introduces for every object). We can note

how the detector helps in solving the problem of object sim-
ilarity: the large clamp and extra large clamp objects are
amongst the ones that benefit the most from it. As an ex-
ample, in Fig. 4(a) we show how the registration of the two
objects (large clamp in dark blue, extra large clamp in dark
green) differs depending on the use of the detector. With
prior detection (second row) the two clamps are registered
correctly. Without the detection (third row) the model regis-
ters both of them on the pose of the extra large clamp. We
observe in Tab. 4 that the scissors object appears to be an
outlier in the detector performance (AP50 of 27.6 against an
average of 95.8). By examining the ground-truth detections
we observed that they are noisy in the case of occlusion:
sometimes the image portion where the object should be
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Table 4: Object detector performance on YCBV [6]. On
this dataset, failures and successes of ∆S→F and ∆F→S

are measured in terms of ADD-S-0.1d. Key: ∗: symmetric
object.

Object AP AP50 ∆S→F ∆F→S

master chef can 89.8 99.5 0.0 0.5
cracker box 91.5 99.5 0.1 0.3
sugar box 96.0 99.5 0.0 0.0
tomato soup can 85.3 98.8 0.0 5.1
mustard bottle 97.0 99.5 0.0 0.0
tuna fish can 88.5 99.5 1.9 18.3
pudding box 96.7 99.5 3.0 8.8
gelatin box 96.6 99.5 0.0 0.2
potted meat can 84.2 99.5 0.7 7.8
banana 90.9 99.5 0.0 0.1
pitcher base 99.4 99.5 0.0 0.0
bleach cleanser 88.3 99.4 0.2 1.6
bowl* 93.9 99.5 1.7 3.4
mug 91.5 99.5 0.0 0.4
power drill 95.4 99.5 0.0 0.0
wood block* 84.1 99.5 0.2 2.0
scissors 21.3 27.6 0.2 2.3
large maker 82.3 99.5 0.0 0.7
large clamp* 80.0 95.4 0.7 10.6
extra large camp* 83.0 97.8 1.5 20.1
foam brick* 86.3 99.5 0.2 4.0

Average 86.8 95.8 0.4 4.2

is also included in the bounding box, even if the object is
not visible. See Fig. 7 for an example. Despite this, the
scissors performance in pose estimation still benefits from
the detector.
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Figure 4: Example of failure cases on the YCBV dataset [6]. Colour key: • master chef can, • cracker box, • sugar box,
• tomato soup can, • mustard bottle, • tuna fish can, • pudding box, • gelatin box, • potted meat can, • banana, • pitcher
base, • bleach cleanser, • bowl, • mug, • power drill, • wood block, • scissors, • large marker, • large clamp, • extra
large clamp, • foam brick.
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Figure 5: Qualitative evaluation of the features learned with our approach on the Can, Duck, Drill, and Cat objects of the LMO
dataset [1]. We show the Euclidean distance between the features of a reference point (red point) on the object O and the
features computed both on the rest of the points on O and on the scene S (cropped around the object of interest to facilitate
visualisation). Cold and hot colours represent small and large distances, respectively. Ideal descriptors would produce a
distance map with a sharp minimum at the corresponding point and no spurious local minima at other locations.
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Figure 6: Qualitative evaluation of the features learned with our approach on the mug, master chef can, power drill, and extra
large clamp objects of the YCBV dataset [6]. We show the Euclidean distance between the features of a reference point (red
point) on the object O and the features computed both on the rest of the points on O and on the scene S (cropped around
the object of interest to facilitate visualisation). Cold and hot colours represent small and large distances, respectively. Ideal
descriptors would produce a distance map with a sharp minimum at the corresponding point and no spurious local minima at
other locations.

Figure 7: Examples of noisy ground truth detections of the scissors object of YCBV [6] provided by the BOP challenge [3].
These annotations are used to train our YOLOv8 [4] object detector.
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