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We add some additional training details and results in the
following sections.

1. Implementation and Runtime Analysis

We implement our object-centric NeRF network based
on the original version of NeRF in[15], and train the net-
work from scratch. For the 2D detector, we use the standard
YOLOv3 [4] detector in stage two. An ImageNet [12] pre-
trained ResNet34 [6] network is leveraged as the backbone
of our pose regression network. All networks are trained
until convergence.

The training is done on a machine with a Titan RTX GPU
with 24GB Memory, an Intel(R) i7-8700K CPU and 24GB
RAM. During inference, for a single image with 640× 480
resolution, our approach takes about 0.25s for one object,
including about 0.03s for YOLOV3 2D detector, 0.01s for
pose regression and 0.21s for our pose solver.

2. Limitations

Though we present NeRF-Pose in a weakly-supervised
way, considering the training difference in OBJ-NeRF net-
work and our pose regression net, failing to enable end-to-
end optimization sometimes leads to local minima.

As indicated in Tab. 1, when trained on pbr images
rendered by Blender with high quality from BOP [10, 9],
GDR [19] and SO-Pose[2] gain about 10% improvement
on ADD(-S) metric. Those fully-supervised methods ben-
efit from pbr images that cover more poses and have more
realistic occlusion under various light conditions. It inspires
us to generate more synthetic training data using our well-
trained OBJ-NeRF for better performance.

*The first two authors contributed equally to this work

3. Experiments
We add object-wise results in this section for the

Linemod dataset(LM) in Table 2 and Linemod Occlu-
sion(LMO) datasets in Table 1. We also present additional
results on T-Less [8] dataset in Table 3. T-Less. We evalu-
ate our pipeline on T-Less dataset. The T-Less dataset com-
prises 30 objects with real training images. We train our
model using relative camera poses and real training images.
In Tab. 3 we report the AR of VSD, MSSD, MSPD met-
rics on the BOP challenge test set. We achieve closer to
benchmark accuracy despite not using a CAD model. It
shows that Nerf can learn accurate geometry and render
correspondences which are usually extracted from the CAD
model. SurfEmb performs better than our approach as their
approach is tailored for symmetric objects and also employs
an inference pipeline with 2.2s. However, the results com-
pared to other regression-based, Dpod and DpodV2, show
that our approach can perform equally better employing
NeRF.



Table 1. Comparisons with state-of-the-art methods on LMO. We report the Average Recall(%) of ADD(-S) without refinement. real
denotes the same real data as LM. syn denotes self-generated synthetic data, and pbr denotes blender rendered synthetic data from BOP[9].
* denotes the symmetric objects. Our-pose denotes our results with accurate pose labels and Our-weak is with relative pose labels. w/o
NeRF denotes our results using original PnP+RANSAC and w/ NeRF is our method with our NeRF-enabled PnP+RANSAC.

Object PVNet Single-Stage HybridPose GDR SO-Net GDR SO-Net Cai. Our-pose Our-pose Our-weak Our-weak
[16] [11] [18] [19] [2] [19] [2] [1] w/o NeRF w/ NeRF w/o NeRF w/ NeRF

CAD w/ CAD w/ CAD w/o CAD w/o CAD
training real+syn real+pbr real real

Ape 15.8 19.2 20.9 39.3 46.3 46.8 48.4 7.10 46.8 46.9 48.3 49.7
Can 63.3 65.1 75.3 79.2 81.1 90.8 85.8 40.6 79.1 86.2 81.4 86.4
Cat 16.7 18.9 24.9 23.5 18.7 40.5 32.7 15.6 20.7 27.1 28.8 26.9

Driller 65.7 69.0 70.2 71.3 71.3 82.6 77.4 43.9 58.9 65.8 60.4 66.2
Duck 25.2 25.3 27.9 44.4 43.9 46.9 48.9 12.9 25.3 29.9 32.8 36.9

Eggbox 50.2 52.0 52.4 58.2 46.6 54.2 52.4 46.4 19.6 24.9 22.8 24.4
Glue 49.6 51.4 53.8 49.3 63.3 75.8 78.3 51.7 61.0 66.3 69.8 70.9

Holep. 36.1 45.6 54.2 58.7 62.9 60.1 75.3 24.5 41.0 46.4 41.8 49.8
Mean 40.8 43.3 47.5 53.0 54.3 62.2 62.3 30.3 44.1 49.2 48.2 51.4(↑ 21.1)

Table 2. LM results in on ADD-10 metric. *denotes that the objects is symmetric and is evaluated in ADD-S. Our-pose denotes our results
trained on 6D pose labels, and Our-weak denotes training on camera relative pose labels. Ours-sam denotes our results trained on 6D
pose labels and segmentation masks extracted using SegmentAnything. w/o NeRF denotes our results using original PnP+RANSAC and
w/ NeRF is our method with our NeRF-enabled PnP+RANSAC

Object PVNet CDPN GDR SO-Pose LieNet Cai. Ours-sam Ours-pose Our-pose Our-weak
[16] [14] [19] [2] [3] [1] w/o NeRF w/o NeRF w/ NeRF w/ NeRF

CAD w/ CAD w/o CAD
Ape 43.6 64.4 - - 38.8 52.9 50.1 69.4 89.1 93.1

Bvise 99.9 97.8 - - 71.2 96.5 99.4 99.4 99.3 99.6
Cam 86.9 91.7 - - 52.5 87.8 97.7 98.3 98.7 98.9
Can 95.5 95.9 - - 86.1 86.8 98.7 97.8 99.1 99.7
Cat 79.3 83.8 - - 66.2 67.3 77.2 77.8 97.1 98.1

Drill 96.4 96.2 - - 82.3 88.7 99.1 99.6 97.4 98.7
Duck 52.6 66.8 - - 32.5 54.7 57.4 69.7 90.3 94.2

Eggbox* 99.2 99.7 - - 79.4 94.7 89.1 99.9 99.6 99.9
Glue* 95.7 99.6 - - 63.7 100 98.9 91.9 98.1 99.3
Holep 81.9 85.8 - - 56.4 75.4 90.3 89.4 94.3 96.5
Iron. 98.9 97.9 - - 65.1 94.5 100 99.89 98.1 97.8
Lamp 99.3 97.9 - - 89.4 96.6 98.7 99.8 97.9 98.7
Phone 92.4 90.8 - - 65.0 89.2 90.2 94.8 96.4 97.3
Mean 86.3 89.9 93.7 96.0 65.2 82.9 88.3(↑ 5.4) 91.8(↑ 8.9) 96.6(↑ 13.7) 97.8(↑ 14.9)

Table 3. Comparisons with state-of-the-art methods on T-Less. We
report the VSD, MSPD, MSSD, AR metrics as described in the
BOP challenge without refinement. CAD refers to the approaches
assuming that the CAD model is available for training

Approach Dv2 SurfEmb EP CP Dv2 CDPN Ours

[17] [5] [7] [13] [17] [14]

CAD Y Y Y Y N N N

VSD 0.57 0.5 0.57 0.46 0.49 0.45
MSSD 0.62 0.53 0.59 0.49 0.67 0.49
MSPD 0.76 0.83 0.63 0.76 0.59 0.41 0.66

AR 0.65 0.62 0.47 0.64 0.51 0.37 0.54
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