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1. Proof of Iteration Steps Required by DDIM
The reverse diffusion process proposed by DDIM [2] is:
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ᾱτi

) +
√
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where τi is sampled every ⌈T/S⌉ steps from {t1, t2, ..., tT },
τ1 < τ2 < ... < τS ∈ [1, T ], S < T , ŷt is the estimated 3D
coordinates at step t, ŷτS ∼ N (0, I), and ᾱt is a predefined
noise schedule. In this paper, we select cos schedule for ᾱt

proposed by [1]:
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, s = 0.008. (3)

We assume the 3D coordinate value of a human joint
is between [−1000, 1000] mm after centralizing the body.
Then, we normalize the coordinate value to [−1, 1], which
is required by the diffusion model. Since ϵ ∼ N (0, I), we
have 95% probability that |ϵ| < 2σ = 2. σ is the standard
deviation of ϵ. Therefore, we shall have
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in Eq. 2, which ensures impact introduced by noise value to
the final prediction has 95% probability smaller than 1 mm.
To achieve this, the minimum τ1 = 1. Then, we derive
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from Eq. 4. According to small-angle approximations, we
can have
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when T ≫ 1 and s = 0.008. Thus, we obtain:
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which can meet the target.

2. Hyper-parameter settings
The hyper-parameter search space and the final choice in

our experiments are listed in Table 1 and 2.

Table 1. Hyper-parameter search space.lr: learning rate.
StepEmb: whether or not using step embedding. S: the num-
ber of reverse diffusion steps.

Param. Search Space
lr 1E-4,4E-4,1E-3,4E-3
StepEmb T, F
S 1,3,4,5,6,7,8,10,15,20,40,80,160,320
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Table 2. Final hyper-parameters of each model. Diff3DHPE-M: Diff3DHPE with MixSTE backbone. Diff3DHPE-P: Diff3DHPE with
PoseFormer backbone. DDIM-M: Diffusion model with DDIM reverse diffusion method and MixSTE backbone. ∗: we train the baselines
with only L2 loss of 3D pose prediction error and normalize the training target 3D pose ground truth to [−1, 1]. F : the number of frames.
bs: batch size. lr: learning rate. dim: embedding dimension. depth: the number of Transformer blocks. StepEmb: whether or not using
step embedding. S: the number of reverse diffusion steps. dr: dropout rate. wd: weight decay. lrd: learning rate decay factor.

Model Dataset F bs lr dim depth StepEmb S dr wd lrd

Diff3DHPE-P H3.6M CPN 81 1024 4E-3

32 8
T

5

0.1 0.1 0.1

Diff3DHPE-P H3.6M GT 81 1024 4E-3 5
PoseFormer H3.6M CPN 81 1024 1e-4

N/A N/A
PoseFormer H3.6M GT 81 1024 1e-4
Diff3DHPE-M H3.6M CPN 81 64 4E-4

512 16

T

9
Diff3DHPE-M H3.6M CPN 243 24 4E-4 5
Diff3DHPE-M H3.6M GT 81 64 4E-4 5
Diff3DHPE-M H3.6M GT 243 24 4E-4 6
Diff3DHPE-M w/o PDE H3.6M CPN 81 64 1E-4 6
Diff3DHPE-M w/o PDE H3.6M CPN 243 24 1E-4 5
DDIM-M H3.6M CPN 81 64 4E-4 40
DDIM-M H3.6M CPN 243 24 4E-4 80
MixSTE H3.6M CPN 81 64 1E-4

N/A N/A
MixSTE H3.6M CPN 243 24 1E-4
MixSTE H3.6M GT 81 64 1E-4
MixSTE H3.6M GT 243 24 1E-4
Diff3DHPE-M 3DHP GT 27 64 4E-4 F 7


