
Characterizing Face Recognition for Resource Efficient Deployment on Edge

Ayan Biswas1, Sai Amrit Patnaik1, A. H. Abdul Hafez2 and Anoop M. Namboodiri1

1IIIT Hyderabad, India, 2Hasan Kalyoncu University, Gaziantep, Turkey
{ayan.biswas, sai.patnaik}@research.iiit.ac.in, abdul.hafez@hku.edu.tr, anoop@iiit.ac.in

Abstract

Deployment of Face Recognition systems on the edge
has seen significant growth due to advancements in hard-
ware design and efficient neural architectures. However,
tailoring SOTA Face Recognition solutions to a specific
edge device is still not easy and is vastly unexplored. Al-
though, benchmark data is available for some combina-
tions of model, device, and framework, it is neither com-
prehensive nor scalable. We propose an approximation
to determine the relationship between a model and its in-
ference time in an edge deployment scenario. Using a
small number of data points, we are able to predict the
throughput of custom models in an explainable manner.
The prediction errors are small enough to be considered
noise in observations. We also analyze which approaches
are most efficient and make better use of hardware in
terms of accuracy and error rates to gain a better under-
standing of their behaviour. Related & necessary mod-
ules such as Face Anti-Spoofing are also analyzed. To
the best of our knowledge, we are the first to tackle this
issue directly. The data and code along with future up-
dates to the models and hardware will be made available at
https://github.com/AyanBiswas19/Resource Efficient FR.

1. Introduction
Recent years have seen massive growth in edge comput-

ing & smart technologies. This has led to massive inter-

est in being able to perform previously difficult, compute

intensive deep learning tasks on resource constrained end

points such as edge devices. In particular, we focus on de-

ploying Face Recognition on Edge [25, 18, 19], which is

popular as it allows systems to intelligently respond to each

user. There are numerous use cases [30, 24] for such a solu-

tion. For example, the future of authentication systems may

lie in Edge AI, which is not only cost-effective & conve-

nient but also offers significant privacy benefits by retaining

sensor data to an edge device rather than uploading it to

a cloud server. Face Recognition (FR) is extremely pop-

ular among the various forms of authentication & identifi-

Data preparation
Sampling,

Augmentation,
Synthetic

generation

Loss Functions
Centre Loss,
Margin Loss

Sphere Face,
Cos face,
Arc face

MODEL:
ResNET?

Training Strategies
SynFace,

Meta Face Recognizer,
BoundaryFace

Figure 1. Methods employed to advance SOTA Face Recognition.

Works involving models & architecture for Face Recognition are

extremely rare. Most research is towards enhancing other compo-

nents - Data, Training Strategy & Loss Functions. Tailoring these

solutions to edge devices or use of backbones beyond common

Object Recognition models is unexplored. Refer Table 1 for de-

tails.

cation technologies. Due to its utility, face recognition &

face anti-spoofing (FAS) methods are studied extensively,

both in terms of accuracy & efficiency (smaller backbones).

However, tailoring the solution for edge devices is not ex-

plored. While we choose Face Recognition as a usecase

for classification, the analysis in this work may be directly

extended to other computer vision tasks as well.

As shown in Table 1, Solutions in Facial Recogni-

tion heavily draw from work done in image classifica-

tion & object detection models, designed for the scale of

ImageNet[6]. Further, most solutions use standard model

configurations such as ResNet18 from the Resnet family

[10], rather than custom or task-specific models, as used by

MFR [9]. Figure 1 illustrates the current topology of SOTA

Face Recognition research. Most works do not concern

with the architecture or model crafting, rather it is treated

as a blackbox & is barely explored in this domain. We be-

lieve this is partly due to design costs & the unavailability of

benchmarks for custom architectures. In the same vein, we

observe that solutions such as ShuffleNetV2 [23] & Mnas-

Net [35] are vastly unexploited in the SOTA Face Recogni-

tion literature.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

1312



Method Venue Backbone

PatchNet [36] CVPR ‘22 ResNet*18,34,50

MobileNetv2

ShuffleNetV2 0.5

AdaFace [17] CVPR ‘22 ResNet*18, 50, 100

Magface [26] CVPR ‘21 ResNet100,50

SynFace [32] ICCV ‘21 LResNet50E-IR

MFR [9] CVPR ‘20 28 Layer ResNet†

ElasticFace [3] CVPR ‘22 ResNet100

PartialFC [1] CVPR ‘22 ResNet

Zhang et al. [42] ECCV ‘22 MobileNet

BoundaryFace [39] ECCV ‘22 ResNet50

CoupleFace [22] ECCV ‘22 ResNet, MobileNet

CFSM [20] ECCV ‘22 ResNet50

Table 1. Architectures used by recent works in Face Recognition.

Only PatchNet is a Face Anti-Spoofing solution. ’*’ refers to as

modified by ArcFace [8], namely the removal of bottleneck struc-

ture. † - Width of 0.5

Generally, work on model architecture limits exploration

to specific tasks, such as Object Classification/Detection on

datasets like ImageNet [6]. These standard architectures are

used as a backbone without significant modification. Few

works such as MFR [9] in recognition design models that

are task-specific. However, these works are less common

than in FAS (Table 3). Further, even for models designed

to be resource efficient, it is necessary to explore their per-

formance on edge devices, as utilized in Facial Recognition

& FAS. To this end, using custom models based on tried

& tested architecture is of interest. From existing works, a

model may be designed to consume the exact amount of re-

sources demanded by the task, accuracy requirements, per-

formance requirements & edge hardware.

At the same time, there has been rapid growth in the per-

formance & variety of chips available for AI or Neural Net-

work tasks. AI-Benchmark [14, 15], approaches this prob-

lem from an implementation standpoint. AI-Benchmark has

detailed work on chips produced by specific manufactur-

ers such as Qualcomm, MediaTek, & Samsung. It has dis-

cussed supported libraries, frameworks, operations, & hard-

ware acceleration. A set of benchmarking tasks have been

made, which assign a score of a device’s capacity for AI

tasks. Currently, they have examples of 700+ phones on

their site. Similarly, MLCommons [33] provides bench-

marking tools & data for various Machine Learning tasks,

with heavy industry collaboration across multiple categories

of devices.

Hence works such as AI-Benchmark, MLCommons pro-

vide insight on hardware & software support for deploying

models to edge. Standard architectures such as [10, 11, 34,

12, 23, 35] have relatively better documentation. However,

the data is sparsely distributed across combinations of mod-

els, hardware & frameworks. Further, using benchmark-

ing data alone to obtain understanding of deploying to edge

does not scale well & is infeasible. Therefore, we have pro-

posed a mapping of custom models used in Face Recogni-

tion to their Throughput on Edge devices which uses very

little data while retaining robust predictions.

Efficiency has been previously measured in terms

of floating point operations (FLOPs), multiply-adds or

batches/second [23] [34]. However, these metrics were cho-

sen in an ad-hoc manner, specific to their particular novelty

& task - generally ImageNet [6] classification. To address

this, our work also attempts to standardize the procedure

& protocols to analyze model inference on edge devices.

While our work is centered on the use case of Face Recog-

nition deployment, the framework may be extended to other

domains.

We find a gap in the current literature - the mapping of

architecture to the inference time of its models is not consid-

ered. To elaborate, there are extremely large no. of model

configurations given an architecture. The following ques-

tion may arise: Can these configurations be described us-

ing some number, say n, that maps to expected through-

put/inference time relative to the standard configurations of

the architecture? To the best of our knowledge, we are the

first to address the problem of using benchmarks to estimate

or analyze the performance of custom models.

The scope of this work is limited to deep learning so-

lutions used in Face Recognition & related tasks such as

FAS, for edge deployment. As Face Detection is identical

to generic Object Detection, it is not explored in this work.

Our objective is to analyze model inference; the problem of

training on edge devices is outside the scope of this work.

To this end, we formalize assumptions, protocols & met-

rics needed to describe & measure the model behavior on

edge. However, there are concerns that are not related to

deep learning, yet have a significant impact on model in-

ference. One example is the data pipeline feeding input to

the model, which is mostly implementation dependent - a

software challenge. We address these empirically by high-

lighting their effect through data. Further, an analysis of

how these factors interact differently based on architecture

is carried out as well.

For architectures used in SOTA Face Recognition (like

those in Table 1), we propose a mechanism to describe a

model using its architecture. A novel analysis is done to

understand the relation between a model & its inference

time in an edge deployment scenario. We have been able to

achieve high-quality estimates for the Throughput of cus-

tom models, from very limited data points in an explainable

fashion. Further, we analyze which approaches are efficient

or utilize hardware better regarding accuracy & error rates.

This analysis enables decision-making for Face Recogni-

tion on edge along problems such as custom backbone de-

sign, less exploited architectures, operating across resolu-

1313



tions, trade-offs of throughput with accuracy, etc. We ob-

serve that FAS approaches tend to use custom models more

frequently than Recognition. To this end, we have carried

out a separate analysis highlighting the tradeoff of perfor-

mance in terms of inference time & error rates for FAS mod-

els only.

To the best of our knowledge, this is the first attempt

to map models with specific architectures to their relative

throughput. We have structured the previously unstructured

topology of Face Recognition for deployment in edge. At-

taining these results has further required identifying mea-

surable components, recognizing generalizable patterns (ex:

backbone usage) & establishing the framework to analyse

this specific domain. Our work makes the following con-

tributions: 1) A novel analysis to understand the relation

between model architecture & inference time in an edge de-

ployment scenario for Face Recognition. 2) Accurate High-

quality Throughput estimates for custom models from lim-

ited data in an explainable way. 3) Analysis of tradeoff be-

tween FAS model inference time & error rates.

To encourage an ongoing effort, a website has been

prepared for this project. Newer & existing architec-

tures, hardware & approaches would be gradually in-

tegrated. Information would be public & community

contributions are welcome. It will be accessible at

https://github.com/AyanBiswas19/Resource Efficient FR.

2. Architectural Analysis for Characterizing
Models & Hardware on Edge.

In this section, we present our approach to measuring &

comparing models on edge devices, the mapping of model

architecture to the throughput for backbones in Table 1, &

finally a separate analysis for the deployment of Face Anti-

Spoofing (FAS) models.

It is necessary to formalize the characteristics of an edge

device. Constraints, assumptions, deployment environment,

etc affect the design choice of protocols used to measure

required metrics. Section 2.1 presents this along with im-

plementation details. Table 1 is indicative of the archi-

tecture used in SOTA Face Recognition (FR) approaches.

The mapping of custom models of these architectures to

throughput (T ) is discussed, in Section 2.2. We pose this

as a learning problem & present a solution. However, un-

like FR, solutions in FAS tend to use hand-crafted models

for the task. Some of these approaches are listed in Table

3. The behaviour of backbone architectures alone is insuf-

ficient when characterizing the behaviour of T with respect

to Error Rates in FAS models. Hence, Section 2.3 analyses

the same for edge devices.

2.1. Framework Design for Analysis on Edge

We present in this section design & methodology of our

experiments, for analysis of model inference on edge de-

vices. This is done by 1. Choosing metrics & analysing

their applicability, 2. Formalising modelling of the deploy-

ment & testing environment, 3. Outlining protocols to mea-

sure some of the metrics. Hence, we propose using -

Architecture A: A family of models with similar de-

sign patterns in layers, blocks & operations. Example -

ResNet18, ResNet50, etc follow ResNet architecture, Mo-

bileNetV2 (width = x|x ∈ (0, 1]) follows MobileNet archi-

tecture. We use A to characterize models. In our experi-

mentation, we have observed that if models are grouped by

A, then patterns against other metrics are simplified.

Throughput (Tr,b): No. of inputs that can be inferred per

unit time. If inputs are images & batch size = 1, then T
can be measured in Frames Per Second (FPS), otherwise,

Hz. r refers to the resolution. Unless specified, the default

resolution is assumed to be r = 224 =⇒ 224 × 224 res-

olution. b refers to batch size. Unless specified, b = 1. Al-

though images at b = 1 (FPS) is the primary use case, face-

embeddings, patches or batches per second are also relevant

to the domain of Face Recognition. A similar metric is used

in Section 3.1, 112× 112 patches processed in parallel, per

unit time.

Latency: Time taken by the network for inference of a sin-

gle input. Latency = Tr,b=1
−1.

Model GFLOPs (F): We define F as no. of floating point

operations (FLOPs) required for the inference of a single in-

put, divided by 109. F varries with input size. FLOPs have

been previously used to measure the complexity of a model,

however, found to be an indirect approximation of metrics

such as T [23]. In our experimentation, we find that F is

useful if used in conjunction with A.

No. of Parameters (P): No. of parameters in the model.

Experimentally, it has proven to be a good measure for char-

acterizing the model, given architecture. It is preferred over

F as it is independent of input size. Unlike F , theoretical

calculations or runtime profiling are not needed to measure

P . Ease of measurement is another advantage of P .

We use P along with Architecture(A) primarily, to de-

fine a model. F is primarily used in drawing inferences

only, due to the previously discussed limitations. T is

favoured over Latency to estimate the speed of the model

due to flexible usage & ease of comparison.

2.1.1 Deployment & Testing Environment

An edge device considered in this work is assumed to have

limited compute resources - storage, memory, CPU, & GPU

which are generally much slower than desktop or server

counterparts & are relatively cheap in price. They are gener-

ally small, single-board computers that are deployed close

to the “edge” - where sensors capture data. Examples in-

clude JetsonNano & Raspberry Pi. [21] considers Jetson

TX2, a costlier (600$ in 2017), discontinued model in the

1314



Jetson series, as a “representative mobile device”. However,

we find that Jetson Nano is a much better choice for a repre-

sentative edge device due to its entry-level cost, availability

of a standard CUDA GPU (128-core Maxwell), & general

functionality. Hardware specifications are detailed in Sec-

tion 3.

Factors such as capturing input from sensors, data

pipeline, pre-processing, & post-processing are heavily im-

plementation dependent. In general, the inference from the

neural network is one of the most expensive steps. To this

end, we time the inference/forward pass of the model. In-

puts are preprocessed & loaded in memory prior to measur-

ing inference, to mitigate the effect of the data pipeline. We

do not consider post-inference operations. As an example -

matching face embeddings in a database.

2.1.2 Measurement Protocol & Frameworks

Warmup

Measurement

Step 1

Step 2

Figure 2. Deployment Environment: Nvidia Jetson Nano is the

primary edge device used. Thread sync, preloading of models &

data & warmup-run ensure consistent results. Process is repeated

over PyTorch [31], TensorRT [28] with FP32 & FP16. ts: no. of

times experiment is repeated, b: Batch-Size, st, et: Start & End

times.

Devices are run in headless mode in order to emu-

late a deployment scenario & save on excess computation,

given limited resources. We measure T along 3 config-

urations - PyTorch [31], TensorRT [28], TensorRT with

FP16. TensorRT is an SDK developed by Nvidia for infer-

ence. Tests have been carried out using Nvidia’s torch2trt

repository[29]. TensorRT & torch2trt have been used as

they are first-party solutions on Jetson Nano - hence pro-

vide fair representation.

Figure 2 depicts our measurement protocol. It is inde-

pendant of dataset - inputs are generated as random PyTorch

Cuda Tensors, preloaded before timing the forward pass.

Aside from the model & shape of input, ts = Trial Size, i.e

no. of batches timed in the trial & batch size, are required.

2.2. Estimating the Throughput of Backbones used
by SOTA Face Recognition

Figure 3. A plot of throughput vs standard model configurations,

grouped by architecture. Points correspond to the observations.

The naive approach (top) figure shows poor performance. How-

ever, the fit is very accurate when grouped by architecture (bot-

tom). Mean absolute error reduces by 84%. Note: X-axis is on log

scale.

In this section, we formulate a mapping from models

of an architecture (A) to their throughput (T ). We define

the data-set used to train/fit the estimator function as Land-

marks (L). L is device specific throughput data of mod-

els, typically of standard configurations such as ResNet18

of ResNet architecture. Consider -

T (M) = ZL(A,P) + ε (1)

where T (M) is T of Model M & ε is noise. ZL(M) is a

function which estimates T .

Ideally, M should be an ordered set of parameterized op-

erations/architectural blocks, for ex: Convolutions, Resid-

ual Blocks, Fully Connected Layers, etc. However, it is

difficult to get data across various configurations of A,

across devices & libraries. Therefore, it is necessary for

Z to be computed from very limited L. Hence we sub-

stitute the ordered set of operations using A such that it

A takes values {ResNet, MobileNet, DenseNet, ...}. We

find that no. of parameters(P) along with A captures suf-

ficient information to predict the relative T . Therefore, ZL

as ZL(M) = ZL(A,P).
Fig 3 (top) shows the distribution of T against P . As

model size increases with P , there is an expected drop in

T . As T is inversely proportional to model size, a trend

1315



similar to y = c/x is expected. But, we find this hyper-

bolic fit to show very poor approximations. However, when

grouping points by A, we are able to achieve fairly accurate

predictions. Fig. 3 (bottom) shows the plot of ZL, against

P , grouped by A. ZL is obtained by polynomial regression

on P , grouped by A. Hence,

ZL(A,P) =
C1

P2
+

C2

P + I (2)

where C1 & C2 are coeffiecints obtained from regres-

sion, I is the intercept. C1, C2 an I are computed separately

for each A.

Mean Absolute Error in T is reduced by 84% compared

to Fig. 3 (top). Further, we verify the hypothesis through in-

terpolation of non-standard configurations. Detailed results

can be found in Table 2.

For testing, we use the following custom models: Mo-

bileNetV2 with varying widths, & ResNets of varying

depths. The mean absolute errors are 3.4 FPS for Mo-

bileNetV2 & 3.08 for ResNets. When looking at individ-

ual points, the error in prediction is low enough to be con-

sidered noise in observations. Hence, we argue that the

proposed framework of estimating T through the estimator

function ZL is reliable with limited data & does not over-

fit. Further, ZL which estimates T is formulated such that

L is used as training data, & (A,P) as features. Hence

the mapping of custom models of an Architecture to their

Throughput on a device is posed as a learning problem.

2.3. Deployability of FAS Models

Compared to Face Recognition approaches, as shown in

Table 1, Anti-Spoofing approaches (Table 3) tend to use

models handcrafted for the task. While the design of task-

specific models is desired, we observe significant variation

in Throughput (T ), for similar no. of parameters (P) &

Half Total Error Rate (HTER), a common metric used to

measure error in FAS. Broadly, two observations of note are

1. Architectures making use of modified Convolution oper-

ations are underperforming 2. There is an odd distribution

of error rates with respect to T , wherein T is higher when

the error is low, as observed in SSAN-R.

CDCN [41] & DC-CDN [40] models adopt an en-

hancement over the standard 2D Convolution operation,

Central Difference Convolution (CDC). While these have

shown improvements, it is important to note that these non-

standard operations do not seem to be supported to the same

extent as regular ones. These models suffer from extremely

low T . DC-CDN propose C-CDC convolution based on the

CDC, which exploits sparse local features to improve the ef-

ficiency of the CDC, in theory. From claimed ACER values

on Oulu-NPU [2] Protocol 1, DC-CDNs perform slightly

worse than CDCNs. Further, no benefit in T is observed.

However, as the deficiency in T is likely to be an issue

of hardware/library implementations, the performance of

CDC-based architectures in terms of T may not have been

properly realised.

On the other hand, both SSAN [37] models are outliers

in terms of T to HTER tradeoff. For some reason, SSAN-

M [37] has extremely poor T despite having higher HTER,

as compared to SSAN-R[37]. While it may be an imple-

mentation or hardware issue, the implementation used was

official, to the best of our knowledge. There is a signifi-

cant gap in T between SSAN-R & HierarchialFusionNet-

work [4] (HFN). However, it is inconclusive as the model

size increases at a faster rate when accuracy or errors satu-

rate. SSAN-R shows significant improvement over DBM-

Net [16]. On further investigation, SSAN-R has slightly

better performance in terms of HTER, across all cross-

database testing results. In conclusion, this study highlights

that it is not possible to group Accuracy/Error Rates against

T , similar to Fig 6. Further, there are gaps in implemen-

tation for certain operations. This makes deploying poten-

tially better-performing approaches infeasible.

Our analysis has been limited by the availability of im-

plementations of works in this field. However, based on

our experimentation, SSAN-R provides a good trade-off be-

tween error rates & T .

3. Experimental Details
The experimentation work presented in this section, un-

less otherwise stated, is done on the Nvidia Jetson Nano

4GB. It has a 128-core Maxwell GPU, Quad-core ARM

A57 @ 1.43 GHz processor & 4GB LPDDR4 shared mem-

ory. We consider it as a representative edge device, as ar-

gued in Section 2.1.1. As previously stated, experiments

are run using PyTorch [31], TensorRT [28] & TensorRT at

16-bit Floating Point Precision (FP16).

3.1. Variation Across Resolutions

Resolution (r) is a key design component when de-

ploying neural networks on edge devices. Requirements

vary based on the task. For example, Face Detection in a

crowded street would benefit from high r. Patch-based ap-

proaches such as PatchNet [36] generally operate at lower r.

Hence, we analyze the relation between throughput (T ) &

r, for standard backbones (Table 1). Table 4 shows the high-

est r achieved in our experimentation using TensorRT with

FP16. For the sake of clarity, we define r = k as k× k pix-

els. High r was possible only on the lightweight ResNet18

& MobileNetV2 models. Through RetinaFace [7], we ver-

ify that loss in T due to detection overhead is relatively

low, evidenced by RetinaFace Mn25 - MobileNetV2 0.25

& Re50 - ResNet50.

Fig. 4 (left) shows the drop off of T against r. The

increase in computation in Model GFLOPs (F) is linear

to no. of pixels. Therefore, a hyperbolic trend similar to

1316



Train Test

MobileNetV2,

Width

Predicted Actual MobileNetV2,

Width

Predicted Actual

α = 0.25 230.92 230.54 α = 0.2 245.39 239.46

α = 0.5 147.03 148.41 α = 0.6 123.45 116.82

α = 0.75 100.10 98.34 α = 0.8 94.57 95.17

α = 1 80.33 81.09 α = 0.9 85.87 85.14

Train Error RMSE 1.20 Test Error RMSE 4.47

Mean Absolute 1.07 Mean Absolute 3.47

Model Name Predicted Actual Model Name Predicted Actual

ResNet18 86.36 86.09 ResNet28B 53.70 56.88

ResNet34 44.16 48.56 ResNet40B 37.26 43.13

ResNet50 36.89 32.02 ResNet77N 24.93 23.38

ResNet101 18.80 18.76 ResNet92N 20.79 20.19

ResNet152 12.44 13.23 ResNet134N 14.71 14.71

Train Error RMSE 2.96 Test Error RMSE 3.08

Mean Absolute 2.08 Mean Absolute 2.24

Table 2. Train & Test errors of the proposed estimation method. Absolute errors may be measured in inferences/s. Test models are custom

models made from the same architecture. α refers to the width multiplier, as proposed in [11]. B and N denote the type of blocks used to

make custom ResNet models - Basic Residual Block, Bottleneck Block.

Figure 4. Left: Throughput (T ) (log scale) against resolution r on the X axis. r = i =⇒ i× i pixels. Right: 112× 112 patches/second

against r. This is not to be confused with batch size. No. of patches is used to estimate size of input processed per unit time, rather than

no. of parallel inputs.

that explored in Section 2.2 is expected, but it proves to be

incorrect. This is due to T being “clamped” at higher T or

lower r. As expected, T is maximum at the minimum r of

112. However, although the computation cost F is linear in

r, the drop-off in T is much faster. We believe this is due to

the cost of other operations such as data pipeline, switching

between runtimes for I/O, etc. Modelling of this overhead

is beyond the scope of this work. However, let us consider

“Pixels Processed / Time”. In this case, Fig 4 shows the

no.of r = 112 patches processed in parallel, as a function

of resolution. We empirically prove the presence of this

bottleneck as we see a large jump from r of 112 to 224, in

1317



Model Name T P HTER ACER

FeatherNetA [43] 213.5‡ 0.35 - -

FeatherNetB [43] 187.9‡ 0.35 - -

CDCN* [41] 2.5‡ 2.25 - 1

CDCNpp* [41] 2.3‡ 2.26 - 0.2

C-CDN HV*[40] 2.5‡ 1.25 - 0.6

C-CDN DG*[40] 2.4‡ 1.25 - 0.7

DC-CDN* [40] 1.2‡ 2.50 18.82 0.4

DBMNet [16] 31.8† 12.44 17.59 -

SSAN-M [37] 2.5† 8.79 19.51 -

SSAN-R [37] 42.8† 8.14 13.72 -

HFN* [4] 12.5† 62.12 12.4 -

Table 3. Performance analysis of some recent FAS solutions. * -

Approximated Throughput T , as model did not run on TensorRT.

P - No. of Parameters. † - FP16, ‡ - FP32. HTER - computed

from training on Replay attack [5], CASIA-MFSD [45], MSU-

MFSD [38], testing on OULU-NPU [2]. ACER - on Protocol 1 of

OULU-NPU. FeatherNets have accuracy data for CASIA SURF

[44] only, leading to inconclusive comparisons with rest of the ap-

proaches.

Model Name Max Resolution Throughput

ResNet18 1440 2.51

ResNet34 640 6.71

ResNet50 640 4.99

ResNet101 512 4.98

MobileNetV2 0.25 1440 7.37

MobileNetV2 0.5 1080 6.67

MobileNetV2 0.75 1024 5.16

MobileNetV2 896 6.12

RetinaFace Mn25 1440 6.94

RetinaFace Re50 640 3.89

Table 4. Maximum Resolutions achieved in experimentation, us-

ing TensorRT with FP16 Precision. Beyond these resolutions, we

experience random crashes, & the process is killed. RetinaFace

[7] is paired with Mn25 = MobileNetV2 0.25 & Re50 = ResNet50

backbones.

terms of no. of patches processsed, across all models.

Hence performance saturates at lower r, i.e. the rate of

increase in T falls. It is preferable to avoid large r unless

there is some specific benefit, due to high memory & re-

source consumption. This would make running other pro-

cesses on devices harder, in deployment. However, it is in-

teresting to note that high r proves to be better in terms of

resource utilisation.

3.2. Impact of Floating Point Precision, Data
Pipeline & Memory

Converting models from standard 32-bit Floating Point

Precision (FP32) to 16-bit Precision (FP16) is standard

practice for deploying models on limited resource environ-

ments. This is not a training time change. Indeed, pre-

trained models can be converted. We investigate in this

Figure 5. Distribution of the Ratio of Throughput on FP32 to

FP16, on TensorRT.

section which architectures have benefited the most from

FP16 conversion. However, both hardware & library need

to support the use of fast FP16 operations like TensorRT to

observe the benefit.

Figure 5 plots the ratio R of the throughput T values of

FP16 to the regular FP32 of TensorRT, while the through-

put T is shown on X-axis. It can be observed that there

is a clear separation of ResNets, for which R is higher

from MobileNetV2, ShuffleNet, & MnasNet. This indi-

cates that models designed for regular GPUs benefit signifi-

cantly more from the reduction in memory footprint & par-

allelization due to FP16. Models designed to be resource-

efficient show speedups as well. However, there are some

outliers. MobileNetV2 seems to be very stable across T &

P . However, R being close to 1 indicates a limited speedup.

Some models such as FeatherNetA, FeatherNetB (Table 3)

& ShuffleNetV2 0.5x in Fig. 5 have R < 1, i.e they lose

T when converting to FP16. While these observations are

rare & may be specific to implementation, a common factor

is that these models are designed to be lightweight & have

high T . It can be hypothesized, for some lightweight mod-

els, either hardware is unable to maintain efficiency when

computation is reduced due to FP16, or the implementation

is unable to support it.

3.2.1 Data Pipeline & Memory Bottleneck

As evidenced earlier in Section 3.1, there are other pro-

cesses which consume or block resources, causing a bottle-

neck specifically at high T . As an example, MobileNetV2

(width = 0.25) is able to operate at T = 7.37, at 1440×1440

1318



resolution, i.e, over 1200 patches of size 112× 112 per sec-

ond. At 112× 112 resolution, the T achieved is merely 300
patches. Despite preloading inputs into memory, a mas-

sive bottleneck is observed in this experiment, as 300 in-

puts (tensors) have to be fed to the model, per second at

r = 120 rather than 7 at r = 1440. Therefore, a person in-

terested in deploying models on edge should consider per-

formance across resolutions to estimate the impact of the

data pipeline, & what could be a saturation point in opti-

mization.

3.3. Accuracy vs Performance

Figure 6. Top: Accuracy against Throughput, Bottom: Accuracy

against No. of Parameters

We present in this section our analysis of the accuracy of

models with respect to the performance, represented by the

throughput T , shown in Figure 6 (top). The analysis is also

presented with respect to the model size represented by the

number of parameters P , shown in Figure 6 (bottom).

As it can be observed in Figure 1, most of the works

on Face Recognition such as [17, 9, 32] try improving the

performance by, for example, investigating the loss func-

tions, training framework, data augmentation techniques, &

data sampling. These are independent of the backbone mod-

els which are arbitrarily chosen. Furthermore, the accuracy

margins reported by SOTA methods are very slim, often at

96 to 99% with < 1% variation on popular datasets such as

LFW [13], AgeDB [27] etc. As such, it is hard to decouple

the strength of the backbone from the approach, through the

accuracy data of these works.

Hence, to estimate the “discriminating power” of the

backbone model in hand, we have considered their Top 1

- Accuracy on Imagenet [6]. Top 1 Accuracy (acc) is con-

sidered over Top 5 due to simplicity & larger variation in

scores. Further, all the backbone models have thorough ex-

perimentation on ImageNet. Aside from significantly larger

models ResNets101 & ResNet152, only ResNet50 exceeds

80% acc. As acc gains are meagre compared to the drop

in T for larger models, ResNet50 can be a very balanced

choice at T = 33. The ShuffleNetV2 models provide on

average the highest accuracy at a given T . The leftmost

MnasNet model is on par with the leftmost ShuffleNetV2

model in Fig. 6 (Top), but the remaining other configura-

tions perform worse.

However, another factor needs to be considered in the

discussion of acc, no. of parameters (P) which is related

to model size, shown in Fig. 6 (bottom). MobileNetV2 &

Mnasnet0 3 are close to ResNet18 in acc but far apart in

P , as shown in Fig. 6 (bottom). This allows us to design a

trade-off between acc & P , at constant T . P is important

when building applications to be run on edge devices with

limited resources. This is of great use in situations where

the size of the model has to be optimized, to run on devices

with limited or slow storage, etc. However, P is insufficient

to describe memory footprint at run time. As an example,

The models Densenet121, & Densenet169 hugely outper-

form ResNet18 in acc to P ratio, but require significantly

more memory access operations at runtime. However, Shuf-

fleNetV2, MnasNet & MobileNetV2 architectures are ex-

pected to perform better on devices with lesser resources

than Jetson Nano, as their P is low due to explicit design of

memory efficiency.

4. Conclusion

We standardize inference on edge devices by analyzing

the time & performance in deployment scenarios. We are

the first to have created a mapping that estimates through-

put based on the model’s architecture. This has been done

by structuring the unstructured topology of Face Recogni-

tion for deployment on Edge. The predictions obtained are

accurate enough to be considered as noise in observations

& require a very small no. of data points. Further, related

challenges such as FAS are analyzed in detail. Deployment

concerns such as impact of floating point precision, data

pipeline, & memory operations on performance, as well as

the accuracy of models in relation to their size have been

emperically analyzed. The scale of the generic problem ex-

ceeds the scope of a single study. Something as simple as,

performance variation among multiple units of the same de-

vice poses a challenge.

The data & code of the work will be available at

https://github.com/AyanBiswas19/Resource Efficient FR.

We hope this acts as a resource for hardware developers for

furthering Face Recognition & Edge AI. While the work

focuses on Face Recognition & FAS, the study is readily

extensible to other vision based inference tasks on the edge.

1319



References
[1] Xiang An, Jiankang Deng, Jia Guo, Ziyong Feng, XuHan

Zhu, Jing Yang, and Tongliang Liu. Killing two birds with

one stone: Efficient and robust training of face recognition

cnns by partial fc. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 4042–4051, June 2022. 2

[2] Zinelabinde Boulkenafet, Jukka Komulainen, Lei Li, Xiaoyi

Feng, and Abdenour Hadid. Oulu-npu: A mobile face pre-

sentation attack database with real-world variations. In 2017
12th IEEE international conference on automatic face &
gesture recognition (FG 2017), pages 612–618. IEEE, 2017.

5, 7

[3] Fadi Boutros, Naser Damer, Florian Kirchbuchner, and Ar-

jan Kuijper. Elasticface: Elastic margin loss for deep face

recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, pages 1578–1587, June 2022. 2

[4] Rizhao Cai, Zhi Li, Renjie Wan, Haoliang Li, Yongjian

Hu, and Alex C Kot. Learning meta pattern for face anti-

spoofing. IEEE Transactions on Information Forensics and
Security, 17:1201–1213, 2022. 5, 7

[5] Ivana Chingovska, André Anjos, and Sébastien Marcel.

On the effectiveness of local binary patterns in face anti-

spoofing. In 2012 BIOSIG-proceedings of the international
conference of biometrics special interest group (BIOSIG),
pages 1–7. IEEE, 2012. 7

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1, 2, 8

[7] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia,

and Stefanos Zafeiriou. Retinaface: Single-shot multi-level

face localisation in the wild. In CVPR, 2020. 5, 7

[8] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep

face recognition. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4685–

4694, 2019. 2

[9] Jianzhu Guo, Xiangyu Zhu, Chenxu Zhao, Dong Cao, Zhen

Lei, and Stan Z. Li. Learning meta face recognition in un-

seen domains. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June

2020. 1, 2, 8

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2, 6

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2

[13] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric

Learned-Miller. Labeled faces in the wild: A database

forstudying face recognition in unconstrained environments.

In Workshop on faces in’Real-Life’Images: detection, align-
ment, and recognition, 2008. 8

[14] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,

Max Wu, Tim Hartley, and Luc Van Gool. Ai benchmark:

Running deep neural networks on android smartphones. In

Proceedings of the European Conference on Computer Vi-
sion (ECCV) Workshops, pages 0–0, 2018. 2

[15] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo

Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and Luc

Van Gool. Ai benchmark: All about deep learning on smart-

phones in 2019. In 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), pages 3617–

3635. IEEE, 2019. 2

[16] Yunpei Jia, Jie Zhang, and Shiguang Shan. Dual-branch

meta-learning network with distribution alignment for face

anti-spoofing. IEEE Transactions on Information Forensics
and Security, 17:138–151, 2021. 5, 7

[17] Minchul Kim, Anil K Jain, and Xiaoming Liu. Adaface:

Quality adaptive margin for face recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18750–18759, 2022. 2, 8

[18] Anis Koubaa, Adel Ammar, Anas Kanhouch, and Yasser Al-

Habashi. Cloud versus edge deployment strategies of real-

time face recognition inference. IEEE Transactions on Net-
work Science and Engineering, 9(1):143–160, 2021. 1

[19] Shen Li, Fang Liu, Jiayue Liang, Zhenhua Cai, and Zhiyao

Liang. Optimization of face recognition system based on

azure iot edge. Computers, Materials & Continua, 61(3),

2019. 1

[20] Feng Liu, Minchul Kim, Anil Jain, and Xiaoming Liu. Con-

trollable and guided face synthesis for unconstrained face

recognition. In ECCV, 2022. 2

[21] Jie Liu, Jiawen Liu, Wan Du, and Dong Li. Performance

analysis and characterization of training deep learning mod-

els on mobile device. In 2019 IEEE 25th International
Conference on Parallel and Distributed Systems (ICPADS),
pages 506–515. IEEE, 2019. 3

[22] Jiaheng Liu, Haoyu Qin, Yichao Wu, Jinyang Guo, Ding

Liang, and Ke Xu. Coupleface: Relation matters for face

recognition distillation, 2022. 2

[23] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018. 1, 2, 3

[24] Sumaira Manzoor, Eun-Jin Kim, Sung-Hyeon Joo, Sang-

Hyeon Bae, Gun-Gyo In, Kyeong-Jin Joo, Jun-Hyeon Choi,

and Tae-Yong Kuc. Edge deployment framework of guardbot

for optimized face mask recognition with real-time inference

using deep learning. Ieee Access, 10:77898–77921, 2022. 1

[25] Yunlong Mao, Shanhe Yi, Qun Li, Jinghao Feng, Fengyuan

Xu, and Sheng Zhong. A privacy-preserving deep learning

approach for face recognition with edge computing. In Proc.
USENIX Workshop Hot Topics Edge Comput.(HotEdge),
pages 1–6, 2018. 1

1320



[26] Qiang Meng, Shichao Zhao, Zhida Huang, and Feng Zhou.

Magface: A universal representation for face recognition and

quality assessment. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 14225–14234, June 2021. 2

[27] Stylianos Moschoglou, Athanasios Papaioannou, Chris-

tos Sagonas, Jiankang Deng, Irene Kotsia, and Stefanos

Zafeiriou. Agedb: the first manually collected, in-the-wild

age database. In proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages

51–59, 2017. 8

[28] Nvidia. NVIDIA TensorRT. https://developer.
nvidia.com/tensorrt, 2023. [Accessed: April,

2023]. 4, 5

[29] NVIDIA-AI-IOT. torch2trt. https://github.com/
NVIDIA-AI-IOT/torch2trt, 2023. [Accessed: April,

2023]. 4

[30] Manoranjan Parhi, Abhinandan Roul, Bravish Ghosh, and

Abhilash Pati. Ioats: An intelligent online attendance track-

ing system based on facial recognition and edge computing.

International Journal of Intelligent Systems and Applications
in Engineering, 10(2):252–259, 2022. 1

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

Imperative Style, High-Performance Deep Learning Library.

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché

Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 32, pages 8024–8035. Curran

Associates, Inc., 2019. 4, 5

[32] Haibo Qiu, Baosheng Yu, Dihong Gong, Zhifeng Li, Wei

Liu, and Dacheng Tao. Synface: Face recognition with

synthetic data. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages

10880–10890, October 2021. 2, 8

[33] Vijay Janapa Reddi, Christine Cheng, David Kanter, Pe-

ter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian

Anderson, Maximilien Breughe, Mark Charlebois, William

Chou, et al. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA), pages 446–459. IEEE, 2020. 2

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 2

[35] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 2820–2828, 2019. 1, 2

[36] Chien-Yi Wang, Yu-Ding Lu, Shang-Ta Yang, and Shang-

Hong Lai. Patchnet: A simple face anti-spoofing frame-

work via fine-grained patch recognition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20281–20290, 2022. 2, 5

[37] Zhuo Wang, Zezheng Wang, Zitong Yu, Weihong Deng, Jia-

hong Li, Tingting Gao, and Zhongyuan Wang. Domain gen-

eralization via shuffled style assembly for face anti-spoofing.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4123–4133, 2022. 5,

7

[38] Di Wen, Hu Han, and Anil K Jain. Face spoof detection with

image distortion analysis. IEEE Transactions on Information
Forensics and Security, 10(4):746–761, 2015. 7

[39] Shijie Wu and Xun Gong. Boundaryface: A mining frame-

work with noise label self-correction for face recognition,

2022. 2

[40] Zitong Yu, Yunxiao Qin, Hengshuang Zhao, Xiaobai Li, and

Guoying Zhao. Dual-cross central difference network for

face anti-spoofing. In International Joint Conference on Ar-
tificial Intelligence, 2021. 5, 7

[41] Zitong Yu, Chenxu Zhao, Zezheng Wang, Yunxiao Qin,

Zhuo Su, Xiaobai Li, Feng Zhou, and Guoying Zhao.

Searching central difference convolutional networks for face

anti-spoofing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5295–

5305, 2020. 5, 7

[42] Manyuan Zhang, Guanglu Song, Yu Liu, and Hongsheng Li.

Towards robust face recognition with comprehensive search.

In Computer Vision – ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XII, page 720–736, Berlin, Heidelberg, 2022. Springer-

Verlag. 2

[43] Peng Zhang, Fuhao Zou, Zhiwen Wu, Nengli Dai, Skarpness

Mark, Michael Fu, Juan Zhao, and Kai Li. Feathernets: Con-

volutional neural networks as light as feather for face anti-

spoofing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages

0–0, 2019. 7

[44] Shifeng Zhang, Xiaobo Wang, Ajian Liu, Chenxu Zhao, Jun

Wan, Sergio Escalera, Hailin Shi, Zezheng Wang, and Stan Z

Li. A dataset and benchmark for large-scale multi-modal

face anti-spoofing. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

919–928, 2019. 7

[45] Zhiwei Zhang, Junjie Yan, Sifei Liu, Zhen Lei, Dong Yi,

and Stan Z Li. A face antispoofing database with diverse

attacks. In 2012 5th IAPR international conference on Bio-
metrics (ICB), pages 26–31. IEEE, 2012. 7

1321


