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Abstract

Quantization is an efficient way of downsizing both mem-
ory footprints and inference time of large size Deep Neural
Networks (DNNs) and makes their application feasible on
resource-constrained devices. However, quantizing all lay-
ers uniformly with ultra-low precision bits results in signifi-
cant degradation in performance. A promising approach to
address this problem is mixed-precision quantization where
higher bit precisions are assigned to layers that are more
sensitive. In this study, we introduce the method that uses
first-order information (i.e. gradient) only for determining
the neural network layers’ sensitivity for mixed-precision
quantization and shows that the proposed method is equally
effective in performance and better in computation com-
plexity with its counterpart methods which use second order
information (i.e. hessian). Finally, we formulate the mixed
precision problem as an Integer linear programming prob-
lem which uses proposed sensitivity metric and allocate the
number of bits for each layer efficiently for a given model
size. Furthermore, we only use post training quantization
techniques to achieve the state of the art results in compari-
son to the popular methods for mixed precision quantization
which fine-tunes the model with large training data. Ex-
tensive experiments conducted on benchmark vision neural
network architectures using ImageNet dataset demonstrates
the superiority over existing mixed-precision approaches.
Our proposed method achieves better or comparable results
for ResNet18 (0.65% accuracy-drop, for 8× weight com-
pression), ResNet50 (0.69% accuracy-drop, for 8× weight
compression), MobileNet-V2 (0.49% accuracy-drop, for 8×
weight compression) and Inception-V3 (1.30% accuracy-
drop, for 8× weight compression), compared to other state-
of-the-art methods which requires retraining or uses hes-
sian as a sensitivity metric for mixed precision quantization.

*These authors contributed equally to this work.

1. Introduction

In recent years, the applications using deep neural net-

works are growing by a large number due to its impressive

performance on various artificial intelligence tasks. Intro-

ducing large number of parameters has shown substantial

gain in accuracy which motivate researchers to train the

neural networks with large number of parameters. How-

ever, the world is moving towards extensive use of edge

devices like- smartphone, smartwatch, many more wear-

able and non-wearable devices. To enable ML-based real-

time-applications on edge devices there are mainly three

constraints- power, memory and latency. To address this

problem, researchers offer number of techniques to com-

press and accelerate DNNs, including knowledge distil-

lation [12, 18], channel pruning [15, 16] and quantiza-

tion [24, 26].

Among these methods, quantization shows promising re-

sults by representing 32-bit floating point weights and ac-

tivation with fewer fixed-point bits without changing the

original architecture of the model. Though, quantization

is much favoured for compressing model multifolds with

significant acceleration in inference, it is still the topic of

research-interest because of the accuracy gap between orig-

inal and quantized model when compressed significantly. In

particular, many approaches have been tried for quantiza-

tion which can be broadly categorized as uniform and non-

uniform quantization, symmetric and asymmetric quantiza-

tion, static and dynamic quantization, stochastic quantiza-

tion and mixed-precision quantization [9]. Attempts have

been made in each category to narrow-down the gap be-

tween accuracy of the original model and the quantized

model, however, some of approaches (like non-uniform

quantization) are generally difficult for efficient implemen-

tation on existing hardware.

To achieve large compression, some of the work attempts

to quantize the models in very low precision-bits. How-

ever, due to low precision quantization their is a undesirable

drop in accuracy which obstructs the objective to achieve
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the higher compression. One of the promising approach to

achieve larger compression which shows encouraging re-

sults is mixed-precision quantization, where different lay-

ers are quantized with different bit-precision. The main

challenge in mixed-precision quantization is the exponen-

tial search space which grows with number of layers in the

neural network. For L layer neural network which may be

quantized with D different bit-precision settings, the size of

the search space is DL. Computationally, it is infeasible to

evaluate all the settings in the permissible time period for

required accuracy and inference time. State-of-the-art try to

address this problem by proposing different strategies either

searching more efficiently through this exponential space or

using some criteria to evaluate the performance of different

bit-precision setting in minimal time. Searching methods

are time consuming and requires huge amount of compu-

tational resources for evaluating the performance of mod-

els for every setting returned by these searching methods

along the search trajectory. In addition, like other searching

methods, quantization results are very much dependent on

the initial value of the search parameters and hence unpre-

dictable. Criteria based methods use some heuristics and

try to evaluate the performance of the model for given bit-

precision setting without actually training the model, hence

they are less time consuming in comparison to the search-

based methods.

Recently, some of the notable work [3, 7, 8] for mixed-

precision quantization used second order information i.e.,

hessian, to measure the sensitivity of the layers’ parameters

of the pre-trained neural network. Sensitivity can be un-

derstood as the change in loss function when the optimal

parameters of the trained model are perturbed. Though,

hessian provides a lot of information to measure the sen-

sitivity, the computing cost of the hessian is quadratic in

number of parameters and therefore very expensive in case

of deep neural networks. On the other hand, the first-order

information i.e., gradient is zero at the point of convergence

(optimal point) and therefore provides no information about

the curvature of the loss function. In this paper, we intro-

duce a novel approach for measuring the sensitivity of the

layers using first-order information in the ε-neighbourhood
of optimal point for mixed-precision quantization and show

promising results. The mixed-precision quantization in gen-

eral can be seen as an optimization problem where the ob-

jective is to minimize loss function over all possible bit-

precision assignments for given constraints. In this work,

we formulate the mixed-precision quantization problem as

an instance of Integer Linear Programming Problem (ILPP)

for given compression ratio. This simple formulation can

also be used to generate pareto-front by solving the ILPP

for given range of compression ratio. Finally extensive ex-

periments conducted on benchmark vision neural networks

architectures using ImageNet dataset demonstrates the su-

periority over existing mixed-precision approaches.

To summarize, we propose a gradient guided approach

for mixed-precision quantization. In particular, our main

contributions are as follows:

• We show that expected average norm of the gradients,

taken in the close proximity of the point of conver-

gence, can be considered as a sensitivity metric for

mixed precision quantization. The computation com-

plexity for estimating the expected average norm of

gradients is better than the complexity to estimate the

average hessian trace [7] or approximating hessian [3].

• We formulate the problem of assigning different bit-

precision to different layers using proposed sensitivity

metric (expected average norm of the gradients) as a

constraint optimization problem.

• We perform extensive experiments to show that state

of art accuracy can be achieved for mixed-precision

post training quantization with very limited access of

training dataset (≈ 0.002%, in case of ImageNet).

2. Related Work
Deploying large size deep neural network on edge de-

vices is challenging due to limited memory and computing

resources. To overcome this problem many literature work

proposed hardware friendly solutions which includes prun-

ing, neural architecture search, knowledge distillation and

quantization. Here we briefly review the work related to

ours and suggest interested reader to refer the recent sur-

vey [9, 22] for a comprehensive overview.

Quantization is a promising approach for compressing

deep neural networks using low precision bits. A ma-

jor challenge in quantization is to retain the accuracy of

the original model. To achieve this, several methods pro-

pose retraining of the model to recover the lost accu-

racy [3, 7, 8, 10, 13, 17, 23]. However to perform retrain-

ing, full dataset is required that was used to train the orig-

inal model. Retraining not only takes long time but need

access to the training data which may not always be possi-

ble. To address this, state of the art propose various meth-

ods which focus on quantization that do not require retrain-

ing the model. [6] proposed OMSE method that optimize

L2 distance between the original weights and quantized

weights. ACIQ [1] analytically compute the clipping range

and the channel-wise bit precision setting and shows good

generalization performance. [25] propose outlier channel

splitting method to overcome the severe impact of outliers

on quantization which require access to the limited train-

ing data. One of the notable work is AdaRound [19] which

perform adaptive rounding that is better optimal than round-

to-nearest method. Similar to OCS, AdaRound also require

limited training data for adaptive rounding. In this work,
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we use adaptive rounding after performing quantization and

show promising results in Section 4. To the extreme, few

notable work proposed methods which do require training

or testing data during quantization [2, 11, 20].

Quantizing layers of neural network uniformly with ul-

tra low precision bit is sub-optimal solution for large com-

pression. To achieve large compression, state of the art

show promising results for mixed precision quantization

where different layers are quantized with different bit pre-

cision [3, 7, 8, 17, 23]. However, these approaches require

retraining which is time-consuming and cannot be possible

if full training data set is not available. We address this

limitation in our work and show promising results by using

approximately 0.002% of the training data with no retrain-

ing.

3. Methodology
Here our focus is on supervised framework where the

objective is to minimize the empirical risk loss L (θ),

L (θ) = 1
N

N∑
i=1

l(f(xi, θ), yi) (1)

where θ ∈ R
d is the trainable model parameters, l(ŷi, yi)

is the loss between the model prediction ŷi and the ground

truth yi, f(xi, θ) is the model that maps input sample xi to

a prediction ŷi using parameters θ, N is the training set car-

dinality. We assume that the neural networks is partitioned

in L blocks as {B1, B2, ..BL} which are parametrized by

learnable parameters, {W1,W2, . . . ,WL} respectively.

For quantization, we assume that neural network is al-

ready trained by minimizing the L (W ) using backpropaga-

tion algorithm and converged to a point which satisfy first-

order optimal condition (i.e., ∇WL (W ) = 0). All weights

and activations of the model are stored in single precision

(32-bit floating point numbers). While quantizing, our aim

is to reduce the inference time and memory footprints by

representing the floating point weights, W with quantized

weights, W̃ as:

Qb(z) = qj , for z ∈ (tj , tj+1] (2)

where z denotes either weight and activation, (tj , tj+1] is an

interval in the real numbers (j = 0, 1, . . . , 2b − 1) and b is

the quantization precision. This means that all the values in

the range of (tj , tj+1] are mapped to qj which is equivalent

to dequantized value of z.

One much favoured practice is to use uniform bit preci-

sion for all the blocks. However, quantizing all the blocks

uniformly with ultra low bit precision may results into sig-

nificant drop in accuracy. It has been argued that different

layers of the network have different sensitivity and there-

fore bit precision used for quantizing different layers should

be chosen accordingly. However, as mentioned above the

search space for assigning bit precision to different layers is

exponential in number of layers. In the following section,

we do the theoretical analysis to obtain the sensitive metric

and propose a method to assign bit precision for each layer

by avoiding exponential search space.

3.1. Quantization Sensitive Metric

The model is more sensitive to the perturbation if the cur-

vature of the loss function is large (imply large eigen val-

ues of hessian) at point of convergence. Larger curvature

implies a substantial change in loss function for the same

amount of perturbation in comparison to the smaller curva-

ture of the loss function. Attempts [7, 8] have been made to

measure the curvature either using top eigen value and aver-

age hessian trace or approximating hessian [3]. In this work,

we hypothesize that expected value of the average norm

of the gradients, taken in the close proximity of the point

of convergence, can be considered as a quantization sensi-

tive metric. We also hypothesize that the proposed metric

may consider the possibility of saddle point at the point of

convergence, hence estimate sensitivity better than average

hessian trace [7]. As a simple example, this can be illus-

trated by considering the function F (x, y) = 10x2 − 10y2.

The trace of the hessian for F (x, y) is zero at the origin

(i.e., x = y = 0) and therefore represents zero sensitiv-

ity for perturbation. In contrast, computing the expected

value of the average of the norm of the gradients taken at

(x = 0, y = 0.1), (x = 0.1, y = 0), (x = 0, y = −0.1),
and (x = −0.1, y = 0) is 2 which is more accurate proxy

then the trace of the hessian.

3.1.1 First-Order Information

The first-order information is zero at the point of conver-

gence. However, it is possible to compute the gradient in

ε-neighbourhood of the convergence point which may pro-

vide the first-order information of the curvature in the ε-
neighbourhood. We hypothesize that the expected average

gradient norm in the ε-neighbourhood of the convergence

point can be considered as a quantization sensitive metric.

To illustrate that how this can be done for neural network,

let us denote W ∗
i as the converging point of ith block of

the network and δW ∗
i is very small perturbation to the W ∗

i

such that 0 < ‖δW ∗
i ‖2 < ε. Then the average gradient

norm denoted by gavi at the perturbed point, W ∗
i + δW ∗

i

can be computed as

gavi =
1

ni

∥∥∇δW∗
i
L (W ∗

i + δW ∗
i )

*
∥∥
1

(3)

where ni is the dimension of W ∗
i and ‖.‖1 refers to the norm

one of the vector. To compute the expection of gavi denoted
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by Gi, we draw δW ∗
i several times from Gaussian distribu-

tion and scale them accordingly.

Gi = EδW∗
i
[gavi ] (4)

From now we denote Gi as expected average gradient norm.

We hypothesize that when block Bi and Bj with expected

average gradient norm Gi and Gj respectively, is quantized

with same amount of perturbation such that ‖ΔW ∗
i ‖22 =∥∥ΔW ∗

j

∥∥2
2
. Then we will have:

‖L (W ∗
i +ΔW ∗

i )− L (W ∗
i )‖2 <

∥∥L (W ∗
j +ΔW ∗

j )− L (W ∗
j )
∥∥
2

(5)

if

Gi < Gj (6)

The intution is that if expected average gradient norm in

the ε-neighbourhood of jth block is greater than ith block,

then for the same amount of perturbation (i.e. ‖ΔW ∗
i ‖2 =∥∥ΔW ∗

j

∥∥
2
) the relative change (i.e. ‖ΔW ∗

i ‖2 Gi <∥∥ΔW ∗
j

∥∥
2
Gj) in loss is also greater. This implies that jth

block is more sensitive than ith block for perturbation.

3.2. Algorithm

Algorithm 1 Expected Average Gradient Norm of ithblock

Input: Block Parameters W ∗
i

Output: Expected Average Gradient Norm,

Gi

1: Let gavi = 0.

2: for t = 1, 2, 3, .., p do
3: dt ∼ N (0, I)
4: Compute δW ∗

t = k dt

‖dt‖2

5: Compute gt = ∇δW∗
t
L (W ∗

i + δW ∗
t )

6: gavi = gavi +
‖gt‖1

ni

7: end for
8: return Gi =

gav
i

p

Computing expected average gradient norm of ith block

is shown in Algorithm 1. The expected average gradient

norm measures the quantization sensitivity which is used

to assign the bit-precision to different model layers ac-

cordingly. To measure the sensitivity of the ith block, we

keep the remaining blocks except ith block to the origi-

nal weights. To define the close proximity, δW ∗
i , of con-

vergence point, W ∗
i , first we obtain the random direction

vector, d, sampled from the random Gaussian distribu-

tion with dimension compatible with W ∗
i . Then we sub-

stitute δW ∗
i ← k d

‖d‖2
to remove the scaling effect [14].

Here we get random directions with constant ‖δW ∗
l ‖2,

k is scalar value to tune the perturbation across the lay-

ers. Please see Appendix for more details on value of k.

We compute the average of norm of the gradient, gavi =
1
ni
∇δW∗

i
L (W ∗

i + δWi), where ni is the dimension of W ∗
i .

Finally, we compute the expected average gradient norm

in the ε-neighbourhood. In Section 4 we show empiri-

cally that the algorithm has good convergence properties

with much smaller computation complexity in comparison

to training the model itself.

We use the Algorithm 1 to compute the expected aver-

age gradient norm of different layers of ResNet50 as shown

in Figure 1 (Right). We can clearly observe the com-

parable difference between the expected average gradient

norm for different layers of the model. To further support

the observation, we have plotted the 1D loss landscape by

perturbing the pretrained weights in ten random directions

for ResNet50 along which we computed average gradient

norms. From Figure 1 (Left), it is evident that the Block 1

and Block 49 of ResNet50 on ImageNet has very significant

difference in expected average gradient norm which is also

visible in Figure 1(Right) for 1D loss landscape. We re-

produce the same plots for InceptionV3, MobileNetV2 and

ResNet18 which are shown in Appendix. The blocks hav-

ing higher sensitivity needs to be kept at higher bit precision

in comparison to the blocks having lower sensitivity.

3.3. Constraint Optimization Problem Formulation

The major challenging problem in mixed-precision

quantization is to assign precision bits to different blocks

based on the block’s sensitivity without loosing accuracy of

the model. We use expected average gradient norm to mea-

sure the sensitivity of different blocks as shown in Figure 1

(Left). However, the problem of assigning the bit precision

to different block still persist. For example, Block 1 and

Block 4 of ResNet50 are having much larger expected av-

erage gradient norm in comparison to Block 48 and Block

49 which suggest that Block 1 and Block 4 should be as-

signed higher bit precision than Block 48 and Block 49 bit

precision. We still may not be able to get the precise pre-

cision bit settings for each block of the model using Algo-

rithm 1. We formulate mixed-precision quantization prob-

lem as a constrained optimization problem, as our solution

space contains all boolean decision based parameters, so we

chose Integer Linear Programming to solve this problem.

We hypothesize that the expected average gradient norm of

the block can be considered as an average slope of the loss

landscape in the close proximity of the original weights of

the block of the model. We use this average slope to mea-

sure the effect of perturbation on model’s loss. The change

in loss will be directly proportional to the product of the

L2 norm of the quantization perturbation with the average

slope. This is illustrated in Figure 2 (Left) and defined as

follows:

Ml,b ∝ Gl ‖Qb(W
∗
l )−W ∗

l ‖22 (7)

where Qb(W
∗
l ) is the quantized weights of lth block
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Figure 1: (Left) Expected Average Gradient Norm of different blocks in ResNet50 on ImageNet. (Right) The plot of 1D loss landscape for

Block 1 and Block 49 of ReNet50 on ImageNet. The landscape is plotted by perturbing the pretrained weights of the model in ten random

directions along which we computed average gradient norm (ε = 0 corresponds to no perturbation). Higher curvature (top) shows higher

sensitivity and lower curvature (bottom) shows lower sensitivity.
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Figure 2: (Left) Sensitivity of ResNet50 when quantized to 2/4/8/16-bit weight precision. (Right) The trade-off between model size and

the ILPP formulation (Equation 8) output for ResNet50.

of the model using b precision bits, W ∗
l is the origi-

nal weights of the block of the model, Gl is the ex-

pected average gradient norm of lth block. Please note

that total change in loss due to total perturbation using b
precision bits in all L blocks is directly proportional to∑l=L

l=1 Gl ‖Qb(W
∗
l )−W ∗

l ‖22.

In ILPP formulation, we find the precise bit settings of

each block for the given target model size with minimum

change in loss due to perturbation. We denote the set of D
admissible bit precision settings used for mixed-precision

quantization by set K = {b1, b2, ..., bD}. In particular, the

objective function is to minimize the total change in loss

of the model due to total perturbation. The ILPP formu-

lation for mixed-precision quantization is shown in equa-

tion 8, where Ml,d is the change in loss due to perturba-

tion of lth block using bd precision bits, Cl,d ∈ {0, 1} is

the binary variable which represents the precision bit set-

ting, bd is used for quantizing lth block or not, Sl,d is the

size of the lth block when bd bits are used for quantizing

the lth block, Starget is the desired target model size after

mixed-precision quantization. Please note that each block

is quantized by any one of the admissible precision bit set-
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Algorithm 2 Assigning bit precision using ILPP

Input: Block-wise expected average gradient norm (Gl)

in the proximity of Wl (from Algorithm 1), ‖ΔW ∗
l ‖2,

number of parameters in lth layer, nl for l = 1, 2, ..., L,

bit-precision set K, target model size Starget
Output: bit-width assignment of each layer

{al}Ll=1

1: Intialize {{Cl,d}Dd=1}Ll=1 with zero

2: Compute {{Pl,d = ‖Qbd(Wl)−Wl‖22}Dd=1}Ll=1

3: Compute {{Ml,d = GlPl,d}Dd=1}Ll=1

4: Compute {{Sl,d = nlbd}Dd=1}Ll=1

5: Solve equation 8

6: for l = 1, 2, 3, ..., L do
7: for d = 1, 2, 3, ..., D do
8: if Cl,d is equal to one then
9: al = bd {bit–precision assign for each layer}

10: end if
11: end for
12: end for
13: return {al}Ll=1

tings from the set K which we enforce by the constraint∑D
d=1 Cl,d = 1; ∀l ∈ {1, 2, .., L}. This simple formu-

lation can be used to generate pareto-front by solving the

ILPP for given range of model size as shown in Figure 2

(Right).

min
Cl,d

L∑
l=1

D∑
d=1

Ml,dCl,d

s.t.
D∑

d=1

Cl,d = 1; ∀l ∈ {1, 2, .., L}

L∑
l=1

D∑
d=1

Sl,dCl,d ≤ Starget

Cl,d ∈ {0, 1}

(8)

We show the steps of choosing exact bit precision in Al-

gorithm 2. Expected average gradient norm is computed

using Algorithm 1 for each block of the model which are

then passed as the input to Algorithm 2 along with the K
which denotes set of all admissible bit precision settings,

and the target model size Starget. At first, the binary matrix

CL×D, is initialized to zero. In second step, we compute

perturbation matrix PL×D, where each entry constitutes the

Euclidean norm of the perturbation to the lth block when

quantized using bd precision bits that is ‖Qbd(Wl)−Wl‖22.

In third step, we compute the estimated loss-change matrix

ML×D as explained in Equation 7. At last, we compute the

size matrix SL×D, where each entry constitutes the size of

each block having nl weights when quantized by bd preci-

sion bits. Finally, we solve Equation 8 using all matrices

computed above to get the exact bit precision settings of the

model for the given target size Starget. As a solution, we get

modified configuration matrix CL×D where each row cor-

responds to the specific block contains only one entry set

to one which corresponds to the column that represent the

number of precision bits used for mixed-precision quantiza-

tion.

4. Experiments and Results
We use variant of adaptive rounding [19] for post train-

ing quantization which is computationally efficient, does

not require retraining of the network, and only uses a small

amount of unlabelled data. We minimize the following loss

function for adaptive rounding:

argmax
V

α
∥∥∥fa(Wx)− fa(W̃x̂)

∥∥∥2
F
+ η

∥∥∥W − W̃
∥∥∥2
2
+ λfreg(V)

(9)

where we set α equals to 2, η equals to 0.25 and rest all the

parameters are set to default. Please refer [19] for more

details. In all experiments, we use asymmetric per-tensor

weight and activation quantization scheme where all log-

ics are implemented in Pytorch framework. We use pre-

trained models from torchvision-models library for our ex-

periments. In this section, we present the comparative anal-

ysis of our method with state of the art quantization meth-

ods. We demonstrate that our proposed methodology is fair

competitor to methods in both categories which require re-

training and which do not. We want to emphasis that for

adaptive rounding we use approx 0.002% (i.e. 2048 sam-

ples) of the training dataset and same data is used to com-

pute expected average gradient norm. This minimal require-

ment of data without retraining poses our method very near

to zero shot post training quantization methods. For our

analysis we have considered benchmark dataset, ImageNet

for classification task. At first, we do convergence anal-

ysis of our proposed algorithm (Algorithm 1) to compute

expected average gradient norm and then show the state-of-

the-art quantization results achieved by our method.

Convergence Analysis: We perform convergence anal-

ysis of the Algorithm 1 and show that the expected average

gradient norm vary very little as we increase the number

of iterations over 50 as shown in Figure 3 (Left). We fur-

ther study the impact of number of images used to com-

pute the expected average gradient norm. We can clearly

observe in Figure 3 (Right) that expected average gradient

norm converges sharply for the images over 1024 which are

used to compute the gradient of the loss function in the ε-
neighbourhood of original weights. Based on convergence

analysis we have computed the expected average gradient

norm shown in Figure 1 (Left) for all the blocks of ResNet50

on ImageNet. In addition to the precise bit precision se-

lection using ILPP problem formulation, the Algorithm 1

makes our method much faster. The total time to finish
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Figure 3: (Left) Relationship between the number of iterations used for estimation and expected average gradient norm on block 25 in

ResNet50. (Right) Relationship between the number of datapoints used and the convergence of expected average gradient norm on block

25 in ResNet50.

the whole bit-width assignment procedure of all blocks of

ResNet50 using single CPU take less that 10 seconds to fin-

ish.

4.1. ImageNet for classification task

We demonstrate mixed precision post training quanti-

zation results on ResNet50, MobileNet-V2 and Inception-

V3 for classification and summarize the results in Table 1.

Additional results for quantizing ResNet50 on ImageNet is

provided in Appendix.

For ResNet50, we compare our results with notable

state-of-the-art methods which do not require retraining

such as ZEROQ [2] and achieve almost the same accuracy

drop (-1.72% vs. -1.64%) with larger compression ratio

(12× vs. 8×). At the same time our method perform better

than OMSE [6] and ZEROQ [2] with similar compression

ratio(Weight CR:8×; Activation CR: 4×). In comparison to

OCS [25] and DPFMNQ [4], we achieve comparable accu-

racy with larger compression for both weight and activation.

We also compare our result with the methods which require

retraining after quantization and achieve almost same accu-

racy drop for all models except MPQNNCO [3]. This shows

that our method can be adopted as an alternative to the meth-

ods which require retraining with same performance but

with very limited access of the training data. Please refer

Table 1 for detailed information.

For Mobilenet-V2, we compare our method with much

more efficient and lightweight architecture. For the model

which require retraining after quantization, we compare

with DC [10] and achieve better performance (-0.49% vs.

-0.63%). We also compare with HAQ [8] and achieve sim-

ilar accuracy drop (-0.49% vs. -0.40%) with the similar

compression ratio. MPQNNCO [3] performs better than

our method which may be due to very extensive efforts on

finetuning as methods of finetuning are not mentioned in

the paper [3]. For the model which require retraining af-

ter quantization, we compare with DFQ [20], ZEROQ [2]

and DPFMNQ [4]. we achieve the significant performance

improvement with a similar weight compression ratio.

At last, Inception-V3 is considered for further evalu-

ation. We achieve significant performance improvement

when compared with RVQuant [21] which require retrain-

ing after quantization. We also achieve comparable perfor-

mance with other methods like HAWQ [8], IntOnly [13] and

HAWQ-V2 [7] in the same category (requires retraining).

When compare to the notable methods which do not require

retraining like OCS [25], we achieve much smaller accuracy

drop(-1.30% vs. -4.60%) which larger weight compression

ratio (8× vs. 5.33×). We also achieve almost the same

accuracy drop (-1.30% vs. -1.31%) when compared to ZE-

ROQ [2] which shows the applicability of our method in

general.

5. Conclusion

In this work, we present a novel mixed-precision post

training quantization method which requires very limited

access of training data with no retraining required after

quantization. To measure the sensitivity of the layers

against perturbation we have used only first-order infor-

mation. As per our knowledge, this is the first attempt to

measure the sensitivity of the layers using first-order in-

formation only. We have modelled the relative change in

loss which is proportional to the product of L2 norm of the

quantization perturbation and the expected average gradi-

ent norm. Furthermore, we formulate the mixed-precision

quantization problem as Integer linear programming prob-
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Table 1: Comparison with state-of-the-art methods on ImageNet. ‘RT’ refers whether retraining of network is required or not. ‘W Bits’ and

‘A Bits’ stands for quantization bits used for weights and activations, respectively. The ‘W CR’ and ‘A CR’ stands for weight and activation

compression ratio, respectively. The ‘MP’ refers to mixed-precision quantization, where we report the lowest bits used for weights and

activations. We use ‘-’ where data is not provided in the manuscript.

Network Method RT Top-1 W A W A Top-1 Top-1

Full Bit Bit CR CR Quant Drop

ResNet-50

PACT� [5] � 76.90 2 4 7.24 × 7.99 × 74.50 -2.40

AutoQ [17] � 74.80 MP MP 10.26 × 7.96 × 72.51 -2.29

HAWQ [8] � 77.39 2MP 4MP 12.28 × - 75.48 -1.91

HAWQ-V2 [7] � 77.39 2MP 4MP 12.24 × - 75.76 -1.63

HAQ [23] � 76.15 MP 32 10.57 × 1.00 × 75.30 -0.85

MPQNNCO [3] � 76.13 2MP 4MP 12.24 × 8.00 × 75.28 -0.85

OMSE [6] � 77.72 4 32 8 × 1 × 70.06 -7.66

ZEROQ [2] � 77.72 MP 8 8 × 4 × 76.08 -1.64

DFPNMQ [4] � 76.13 MP 32 6.43 × 1 × 75.32 -0.81

OCS [25] � 76.10 8 8 4 × 4 × 75.7 -0.40

Ours � 76.13 2MP 8 8 × 4 × 75.44 -0.69
Ours � 76.13 2MP 8 12 × 4 × 74.41 -1.72

MobileNet-V2

DC [10] � 71.87 MP 32 7.47 × 1.00 × 71.24 -0.63

HAQ [23] � 71.87 MP 32 7.47 × 1.00 × 71.47 -0.40

MPQNNCO [3] � 71.88 3MP 8 7.49 × 4.00 × 71.83 -0.05

DFQ [20] � 73.03 8 8 4 × 4 × 71.20 -1.83

ZEROQ [2] � 73.03 MP 8 8 × 4 × 69.44 -3.59

DFPNMQ [4] � 71.88 MP 32 6.32 × 1 × 70.35 -1.53

ZEROQ [2] � 73.03 8 8 4 × 4 × 72.91 -0.12

Ours � 71.87 2MP 16 4 × 2 × 71.88 +0.01
Ours � 71.87 2MP 16 8 × 2 × 71.38 -0.49

Inception-V3

RVQuant [21] � 78.88 8 8 4 × 4 × 74.22 -4.66

HAWQ [8] � 77.45 2MP 4MP 12.04 × - 75.52 -1.93

IntOnly [13] � 77.45 8 8 4.00 × 4.00 × 75.40 -2.05

HAWQ-V2 [7] � 77.45 2MP 4MP 12.04 × - 75.68 -1.77

OCS [25] � 75.90 6 6 5.33 × 5.33 × 71.30 -4.60

ZEROQ [2] � 78.88 MP 8 8 × 4 × 77.57 -1.31

Ours � 76.10 2MP 8 8 × 4 × 74.75 -1.30
Ours � 76.10 8MP 8 4 × 4 × 75.97 -0.13

� do not quantize the first and last layer

lem to decide the precise bit settings of each layer in the

network. We presented state-of-the-art results on image

classification for ResNet18, ResNet50, and Inception-V3.

We demonstrate that using our proposed method for post

training mixed-precision quantization, we achieve better re-

sults than several state-of-the-art methods in both categories

which require retraining of the model with full training

dataset and which do not require retraining model.
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