
MOFA: A Model Simplification Roadmap for Image Restoration on Mobile
Devices

Xiangyu Chen1,2†, Ruiwen Zhen2†, Shuai Li2, Xiaotian Li2, Guanghui Wang3∗
1Department of EECS, University of Kansas, KS, USA

2SenseBrain Technology, San Jose, CA, USA
3Department of CS, Toronto Metropolitan University, Toronto, ON, Canada
xychen@ku.edu, {zhenruiwen, shuai.li, lixiaotian}@sensebrain.site,

wangcs@torontomu.ca (* corresponding author)

Abstract

Image restoration aims to restore high-quality images
from degraded counterparts and has seen significant ad-
vancements through deep learning techniques. The tech-
nique has been widely applied to mobile devices for tasks
such as mobile photography. Given the resource limita-
tions on mobile devices, such as memory constraints and
runtime requirements, the efficiency of models during de-
ployment becomes paramount. Nevertheless, most previ-
ous works have primarily concentrated on analyzing the
efficiency of single modules and improving them individ-
ually. This paper examines the efficiency across different
layers. We propose a roadmap that can be applied to fur-
ther accelerate image restoration models prior to deploy-
ment while simultaneously increasing PSNR (Peak Signal-
to-Noise Ratio) and SSIM (Structural Similarity Index).
The roadmap first increases the model capacity by adding
more parameters to partial convolutions on FLOPs non-
sensitive layers. Then, it applies partial depthwise convo-
lution coupled with decoupling upsampling/downsampling
layers to accelerate the model speed. Extensive experiments
demonstrate that our approach decreases runtime by up to
13% and reduces the number of parameters by up to 23%,
while increasing PSNR and SSIM on several image restora-
tion datasets. Source Code of our method is available at
https://github.com/xiangyu8/MOFA.

1. Introduction

During the past decade, deep learning has been the dom-

inant approach for various computer vision tasks, including

image classification [29, 43], object detection [22, 41], seg-

mentation [33, 32], and image restoration [39, 4, 46, 45,

†
These authors contributed equally to this work

10, 8], owing to its remarkable feature extraction capabili-

ties derived from a substantial number of parameters. How-

ever, these large models often demand significant computa-

tional resources and result in longer inference latency, pos-

ing challenges for direct deployment on mobile devices. As

a consequence, their application in mobile photography has

been restricted.

To address this challenge, researchers have been explor-

ing different approaches to simplify deep learning models

by reducing the size of models directly, like channel dimen-

sions and the number of layers [3, 21, 38]. Further, some

works design efficient modules to replace inefficient mod-

ules [47, 52, 28, 15, 35, 37, 13], e.g. replacing the origi-

nal convolution with depthwise convolution [3, 38]. How-

ever, most model compression methods focus on reducing

the FLOPs or runtime only, at the cost of performance loss.

Partial Convolution (PConv) [2] is a recently proposed

efficient module that simplifies original convolutions by

performing calculations only on a portion of the channel di-

mension. In comparison to depthwise convolution, PConv

demonstrates smaller runtime during deployment on mobile

devices, even though it requires more parameters. Build-

ing on this observation, we can leverage the idea of adding

more parameters during model compression to compensate

for any potential performance loss, particularly in terms

of PSNR (Peak Signal-to-Noise Ratio). By doing so, the

model can still achieve faster runtime through model com-

pression algorithms, while also benefiting from the larger

capacity enabled by the additional parameters. As a result,

the overall performance of the model is either maintained or

even improved, considering the enhanced capacity brought

about by the increased parameters.

Motivated by this concept, we propose a model simplifi-

cation roadmap, which encompasses a set of tricks and tech-

niques designed to optimize image restoration models for

deployment on mobile devices. Through the application of

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

1322

these techniques, we aim to strike the right balance between

model efficiency and performance, enabling the deployment

of high-quality image restoration models on mobile devices

without compromising on speed or output quality. The con-

tributions of this paper are summarized below.

• We propose a model simplification roadmap, consist-

ing of tricks to add parameters to expand model capac-

ity first and then reduce runtime, i.e. MOre parameters
and FAster (MOFA). Given a small model, the model

can be further accelerated before deployment with im-

proved performance following the roadmap.

• Building upon the concept of partial convolution, we

propose Partial Depthwise Convolution (PDWConv) to

further enhance acceleration. PDWConv involves per-

forming depthwise convolution across only a portion

of the channel dimension for input features.

• We tested our roadmap on widely used small image

restoration models, PMRID and NAFNet, on image

restoration tasks including image denoising, image de-

blurring, and image deraining. Extensive experiments

show that using our tricks, runtime for PMRID and

NAFNet is decreased by up to 13% and parameters are

reduced by 23% with better PSNR and SSIM.

2. Related work

This section presents related works on image restora-

tion models on mobile devices as well as those modules

designed to increase efficiency.

2.1. Image restoration on mobile devices

Image restoration aims to reverse degraded images into

high-quality images. Tasks include image denoising, im-

age deblurring, image draining, etc. These tasks are more

commonly used in mobile devices like mobile photography.

This encourages researchers to work on designing efficient

deep learning models considering both runtime and image

quality (IQ) [20, 14, 40, 16, 5, 53, 44, 18, 6, 1, 51]. PM-

RID [38] is one of the earliest efficient models. It care-

fully designs a U-Net-like model and increases efficiency

by putting most parameters and calculations on the encoder

stages. MicroISP [17] propose an attention-based multi-

branch model so that it can be adapted to the different com-

putational power of edge devices flexibly. MFDNet [23]

designs a mobile-friendly attention module coupled with

a reparameterization module to increase the denoising ef-

ficiency on iPhone 11. FusionNet [21] designs a U-Net-

like model to take two images from dual cameras as input

and output the deblurred images. Beyond image restoration,

MobileOne [36] proposes re-parameterizable structures to

decrease the runtime during inference for general tasks like

image classification. Orthogonally, we propose a roadmap

to further accelerate U-Net-like backbones.

2.2. Efficient modules on computer vision

The first set of efficient modules is related to the convo-

lution operation. Vanilla convolution performs well but it

visits each pixel the number of output channel times, which

takes much computation and is inefficient for mobile appli-

cations. To improve this, Xception [7] proposes to use sep-

arable convolution, a depthwise convolution followed by a

pointwise convolution, which requires visiting each pixel

only once by depthwise convolution. This reduces compu-

tation greatly even counting the following pointwise convo-

lution. PConv [2] proposes to calculate partial convolution,

i.e. a portion like 1/4 of the input feature across channel di-

mension as they observe most kernels are learning similar

features.

In addition, some works propose a model simplification

process by reducing unnecessary modules or replacing them

with more efficient modules, e.g. NAFNet [3], ConvneXt

[24] and Efficient Unet [34]. Other efficient modules in-

clude dynamic convolution [12], fast nearest convolution

[26], IRA block [9], and self-calibrated module [27].

However, all these consider only the efficiency of a sin-

gle module and attempt to replace them with more effi-

cient ones. Instead, we consider the efficiency of the entire

network and manipulate inefficient layers according to the

FLOPs distribution. PConv module provides us the flexibil-

ity to add parameters freely by setting the portion differently

for different layers.

3. Roadmap for simplification

This section presents our model simplification roadmap,

under the guideline that using more parameters wherever

possible to compensate for the performance loss brought by

rapid runtime decrease. We employ the widely used PM-

RID model from image denoising as an example for illus-

tration. Following our roadmap, either the runtime gets re-

duced drastically or more parameters are added to the model

in each step. At the end of optimization, the runtime is de-

creased by 11%, the number of parameters is reduced by

6% and the PSNR is increased by 0.02dB. Noticeably, this

roadmap can be applied to any U-Net-like model as a model

compression method before deployment on mobile devices.

Settings We train PMRID on SIDD dataset. Runtime is

tested on one single v100 GPU with input size 3 × 1024 ×
1024, averaging 600 rounds. Each trick mentioned below

from subsection 3.2 is built on top of the previous ones.

3.1. Starting point - PMRID

PMRID [38] is a U-Net-like model proposed for raw im-

age denoising on mobile devices as in Figure 1 and 2. It is

1323

+ + + + +

Encoder
stage 1

256x256x64

Encoder
stage 2

128x128x128

Encoder
stage 3

64x64x256

Encoder
stage 4

32x32x512

middle
layer

32x32x64
Decoder
stage 1

64x64x64

Decoder
stage 2

128x128x32
Decoder
stage 3

256x256x32
Decoder
stage 4

512x512x16Input stage
512x512x16

output stage
512x512x3

input
512x512x3

3x3 Conv Block Encoder Block Downsample Block

Decoder Block SepConv Block Upsample Block

+ Elementwise Add

Figure 1. The overall network structure of PMRID

K x K Depthwise Conv
1 x 1 Pointwise Conv

SepConv Block

5 x 5 SepConv

5 x 5 SepConv

ReLU

+

H x W x C/4

H x W x C

Encoder Block

5 x 5 SepConv

5 x 5 SepConv

ReLU

+

Downsample Block

3 x 3 SepConv

3 x 3 SepConv

3 x 3 SepConv

ReLU

+

H x W x C

H x W x C

Encoder Block

H/2 x W/2 x C/4

H/2 x W/2 x C

H x W

H/2 x W/2 x C

2 x 2 Deconv

Upsample Block

K x K Partial Depthwise Conv
1 x 1 Pointwise Conv

Partial SepConv Block
(P-SepConv Block)

5 x 5 P-SepConv

5 x 5 P-SepConv

ReLU

+

H x W x C/4

H x W x C

Encoder Block

5 x 5 SepConv

5 x 5 P-SepConv

ReLU

+

Downsample Block

3 x 3 SepConv

3 x 3 P-SepConv

3 x 3 P-SepConv

ReLU

+

H x W x C

H x W x C

Encoder Block

H/2 x W/2 x C/4

H/2 x W/2 x C

H x W

H/2 x W/2 x C

3 x 3 P-SepConv

Upsample Block

interpolate

before

after

Figure 2. Detailed Blocks. We replace all Separable Convolutions (stride = 1) with one of the following convolutions: partial depth-wise

convolution and partial convolution (PConv), with the portion 1/4 or 1/2.

worth noting that PMRID holds much more parameters than

normal U-Net-like image restoration models on mobile de-

vices like DnCNN [50] and NAFNet, but comparable run-

time. This is because PMRID puts most of its parameters on

its encoder only like half-UNet [25], while most U-Net-like

models distribute equally on the encoder and decoder. This

asymmetrical design gives more freedom to put even more

parameters on high-level encoders, where the input feature

size is the smallest and hence the FLOPs will not increase

drastically along with the increase of parameter amounts.

For all convolutional layers, most layers use efficient depth-

wise convolution followed by point-wise convolution, ex-

cluding the input and output layer, where vanilla convolu-

tions are used as the channel dimension is relatively small

hence it will not add too many calculations/FLOPs into the

whole structure.

3.2. Depthwise separable convolution to PConv

Partial convolution (PConv) [2] is a newly proposed ef-

ficient replacement for convolution modules on mobile de-

1324

39.2769

39.3345

39.3007

39.3323

39.3039

39.2949

PSNR

runtime (ms)

PMRID

pconv2 (middle)

pconv

pconv2 (cheap)

upsample

partial_dw

1.03

2.84

3.86

4.44

4.42

0.97

params(M)

Figure 3. Roadmap. Starting from the baseline PMRID, we add

each trick on top of all previous tricks, and it ends with partial dw.

vices, aiming to reduce both the number of floating-point

operations (FLOPs), related to the number of multiply-

adds, and the floating-point operations per second (FLOPS),

considering the hardware deployment efficiency like mem-

ory access time. Unlike depthwise convolution which re-

quires much memory access as convolution among different

depths does not share parameters, partial convolution calcu-

lates only part of the convolution in terms of channel dimen-

sion, e.g. 1/4 by default. In this way, the computation gets

reduced as depthwise convolution compared with the orig-

inal convolution while it also enjoys the deployment time

reduction due to parameter sharing as the original convo-

lution, reducing memory access time drastically compared

with depthwise convolution. Besides this, partial convolu-

tions provide us more flexibility to manipulate later, e.g. the

portion. Hence, we first replace all depth-wise separable

convolutions with partial convolutions. If there are vanilla

convolutions exist (except the input and output layer), we

also replace all those convolutions with partial convolutions

directly. After this replacement, PSNR and SSIM increased

to 39.3345 and 0.9559 respectively and runtime also in-

creased by 0.76ms. This may be caused by the increase

in parameters and FLOPs after the replacement. From now

on, we use this partial convolution version as our model.

3.3. More parameters - middle layers

More parameters mean higher network capacity and bet-

ter performance at most times. This motivates us to add

more parameters to compensate for the PSNR and SSIM

loss brought by the conversion from convolution to partial

convolution. To achieve this, we can manipulate how large

the “part” is in partial convolution, e.g. increasing it from

default 1/4 to 1/2. Another problem is, where can we put

those extra parameters to increase feature extraction ability

without hurting runtime too much?

As for image restoration tasks, they target on reconstruct

pixels, not the semantic understanding of the whole images

as high-level vision tasks, e.g. image classification and de-

tection. Thus we claim that more parameters should be

added in shallow layers to increase low-level feature extrac-

tion power. However, more parameters in shallow layers

usually mean much larger FLOPs and runtime as the feature

size for shallow layers is usually larger than deeper layers.

Considering both the performance and runtime, we increase

the portion from 1/4 to 1/2 in partial convolution to add

parameters on middle layers for both encoder and decoder,

e.g., encoder 3 and decoder 2 for the PMRID model. As a

result, PNSR and SSIM decreased a little bit, and runtime

increased only 2.9ms even if the number of parameters in-

creased from 2.84M to 3.86M and FLOPs from 2.12G to

3.25G. This increases model capacity.

3.4. More parameters - cheap layers

To add more parameters without adding too many

FLOPs and runtime, we first examine the flop distribution

for each layer. There are two ways to achieve this. The

most intuitive way is to calculate the FLOPs layer by layer

using Python tools. However, this will include some un-

necessary FLOPs we are not interested in here, e.g. calcu-

lation in skip connections. Another way is to use a theo-

retical formula to estimate the FLOPs of convolution lay-

ers only. Here, we use the second method. The estimated

FLOPs distribution can be found in Figure 4. It shows that

all the decoders along with the middle layer take up rela-

tively fewer FLOPs compared with encoders, hence we call

them “cheap layers”. As a result, we increase the portion

from 1/4 to 1/2 for partial convolutions in decoder lay-

ers. After adding this trick, PSNR, and SIMM increased

to 39.3323 and 0.9560 respectively while runtime only in-

creased 0.5ms. The amount of parameters now is 4.44M,

which is 4× compared with the original PMRID model. Af-

ter adding parameters to increase the model capacity using

previous tricks, the following subsections focus on reducing

the runtime.

3.5. Faster - upsampling/downsampling

Downsampling and upsampling modules are vital in U-

Net-like networks. There are some choices for them, e.g.

PMRID used depthwise separable convolution with stride 2

for downsampling and deconvolution for upsampling while

NAFNet employed convolution coupled with pixel shuffle

for upsampling. Instead, paper [34] argued that perform-

ing downsampling before the convolution and upsampling

after the convolution can improve the efficiency, different

from the normal order for downsampling and upsampling.

Hence, we may first decouple downsampling from convolu-

tion with stride 2 to one average pooling layer followed by a

convolution layer with stride 1. Upsampling deconvolutions

are replaced with an interpolation layer following a stride-1

convolution layer. We select the most efficient downsam-

pling/upsampling from the choices mentioned above and

the original downsampling/upsampling strategies for differ-

1325

Figure 4. Estimated FLOPs distribution across layers before/after applying our roadmap tricks (dimension threshold d ∗ p is 0 here). Note

that in PMRID structure, some layers (e.g. input and output layers) are vanilla convolutions and separable convolutions elsewhere. To get

a clear structure-related FLOPs distribution (only related to the channel dimensions and feature size changes), we estimate the FLOPs by

assuming all layers are vanilla convolutions and excluding FLOPs in skip connections.

* *

* *

= =

= =

(a) Convolution (b) Depthwise/Group Convolution

(c) Partial Convolution (d) Partial Depthwise Convolution (ours)

*input/output filter convolution identity

Figure 5. The structure of vanilla convolution, depthwise convolu-

tion, partial convolution, and partial depthwise convolution.

ent structures. For PMRID, we replace only the upsampling

layers with the decoupled ones. After this change, the run-

time gets reduced by 0.67 ms, PSNR dropped a little bit

while SSIM remains the same.

3.6. Faster - PConv to PDWConv

To further accelerate it, we propose to replace partial

convolution (PConv) with partial depthwise convolution

(PDWConv). As illustrated in Figure 5, Partial depthwise

convolution calculates only a portion across the channel di-

mension of the input features as in PConv and the rest un-

touched part uses identity mapping. Unlike PConv, we per-

form depthwise convolution for the selected portion while

PConv uses original convolution.

Besides this, noticing that after taking the portion across

the channel dimension, the input feature dimension will be

decreased drastically. For features with small channel di-

mensions, e.g. 64 or 32, only 16 or 8 channels are used

to learn the parameters, which may hurt the performance

worse than larger features. Thus, we replace only those

PConv with PDWConv for larger channel dimensions while

keeping PConv for smaller ones. For the PMRID model,

we set the dimension threshold d ∗ p (d is the input channel

dimension for the current layer and p is the portion) to 32

according to the experimental results.

Finally, the runtime gets decreased to 16.46ms while

PSNR and SSIM become 39.2769 and 0.9556 respectively,

still better than the original PMRID backbone.

4. Experiments

This section presents a detailed ablation study and analy-

sis of some tricks in enhancing PMRID model on SIDD de-

noising dataset and both quantitative and qualitative results

when we accelerate other models on RGB image denoising,

image deblurring, raw image denoising, image deblurring

with JPEG artifacts and image deraining tasks.

4.1. Setting

To verify the effectiveness of our pipeline, we apply it

on two different models, NAFNet-tiny [3] which has only

7 blocks, and the backbone from PMRID [38]. For both

models, our settings are mainly based on NAFNet [3] as

PMRID lacks the settings and reported results on most im-

age restoration benchmarks. Adam optimizer [19] is used

with β1 = 0.9, β2 = 0.9 and weight decay 0. Total iteration

is 200K during training. In addition, we report the FLOPs

(input size 3×256×256) and the number of parameters for

comparison. For the performance, we use PSNR and SSIM

for quantitative comparison. Qualitative visualization can

be found in Section 4.5. We tested runtime using two ways.

The first one is gpu based as mentioned above. We tested on

a single v100 with 3×1024×1024 as the input size, averag-

ing from 600 rounds. Besides this, we also test our models

on Android phone Tecno Camon 19 Pro based on Pytorch

1326

Mobile framework, using image size 3 × 256 × 256, aver-

aging runtime from 3 forward passes. We use a larger input

size on GPU runtime testing because when both our model

and input are too small, the variance of runtime would be

comparable to the actual runtime on v100 GPU, leading to

biased averaged runtime.

4.2. Ablation study

In this subsection, we examine how each trick works in

this acceleration process. Results can be found in Table 1.

We can find the first 3 tricks mainly increased the PSNR and

SSIM by adding more parameters efficiently without adding

too much runtime. Specifically, replacing with partial con-

volution increased PSNR and SSIM to 39.3345 and 0.9559

respectively compared with the baseline (PSNR: 39.2769,

SSIM: 0.9556). Adding more parameters for middle lay-

ers also boosts PSNR and SSIM to 39.3007 and 0.9557

separately. Adding more parameters on cheap layers cou-

pled with middle layers together further increased PSNR to

39.3323 and SSIM to 0.9560. All these tricks bring much

more parameters to the model to increase the model capac-

ity without introducing too many FLOPs and runtime, mak-

ing space for the runtime reduction tricks to keep PSNR and

SSIM.

For the upsampling/downsampling modules, PMRID

uses deconvolution layers to perform upsampling. When

we decouple it into a convolution layer and an upsampling

layer, the runtime gets reduced by 0.65ms while PSNR and

SSIM are still comparable.

Finally, we replace all PConv with PDWConv, i.e. we

use depth-wise convolution to replace the original convolu-

tion in PConv and it results in partial depth-wise convolu-

tion as illustrated in Figure 5. When we apply this directly

on PConv skipping all steps in the middle, performance

dropped from (PSNR: 39.3345, SSIM: 0.9559) to (PSNR:

39.2104, SSIM: 0.9552), even if runtime dropped signifi-

cantly. This also demonstrates the necessity of expanding

the model capacity to increase the model performance in

the middle steps.

4.3. Analysis of different components

This subsection presents experimental results of how to

determine alternatives for each trick.

Analysis of middle layers As mentioned above, we aim

to add more parameters in middle-level layers to balance

between performance and runtime, as we believe more pa-

rameters in shallower layers would be more appealing for

low-level vision tasks as they focus more on extracting low-

level features. However, more parameters in shallow layers

also mean much more FLOPs as they take the largest fea-

ture size in the entire U-Net-like network. As a result, we

decide to add parameters on the middle layers by increasing

the portion of PConv from 1/4 to 1/2. The experiments can

be found in Table 2.

As adding more parameters on PConv layers in encoder

stage 3 and decoder stage 2 increased PSNR from 39.2769

to 39.3007 compared with the PMRID backbone baseline

while other encoder-decoder pairs even dropped the PSNR

and SSIM, we use encoder stage 3 and decoder stage 2 as

our final middle layers to add parameter in PMRID. Besides

this, this pair also introduces much more parameters than

others. This is because encoder stage 3 in this pair has 4

encoder blocks while other encoder stages have only 2.

Analysis of upsampling/downsampling layers For up-

sampling, we replace deconvolution layers with convolution

and an upsampling layer in PMRID. This order can decrease

the FLOPs compared with the reverse. For downsampling,

the downsampling layer coupled with the convolution layer

(stride 1) replaced the stride 2 convolution layers. Results

can be found in Table 3. Here, the runtime is based on Py-

torch Mobile tested on Android phones. We can find adding

upsampling can reduce GPU runtime a little bit as in Table

1 while increasing inference time on the device as in Table

3. This may be caused by different acceleration implemen-

tations for GPU and Pytorch Mobile on devices. Besides

this, downsampling increased runtime on Pytorch Mobile a

lot for PMRID, from 255ms to 460ms. Hence, we replace

upsampling only for PMRID.

Analysis of PDWConv threshold Noticing that PDW-

Conv calculates only a portion of the entire depthwise con-

volution across channel dimension, and when the dimension

is relatively small, e.g. 32, it may hurt performance drasti-

cally compared with the convolution in PConv which hold

much more parameters. As a result, we replace only PConv

with PDWConv with a larger channel dimension and set a

threshold to determine. If the channel dimension of input

features d divided by the portion p, i.e. d∗p, p = [1/2, 1/4],
the actual channel dimension to be calculated, is larger

than the threshold, replace PConv with PDWConv, other-

wise, we keep them PConv. Considering both runtime and

PSNR/SSIM, we choose 32 as the threshold for PMRID. It

may differ for different backbones.

4.4. Applications

We apply our roadmap with two different backbones,

PMRID [38] and NAFNet [3], and get their accelerated ver-

sions PMRIDmofa and NAFNetmofa. As layer normaliza-

tion is not deployable on mobile devices, we remove this

layer directly to test runtime. We tested these models on

various image restoration tasks, including denoising, de-

blurring, and deraining.

RGB Image Denoising. We test denoising performance

on SIDD dataset. Quantitative results are shown in Table

4. This table shows for both PMRID and NAFNet, our ac-

celerated versions decreased runtime on mobile devices by

11% and 13%, and PSNR and SSIM are also increased at

1327

PConv
PConv2 PConv2

down/up PDWConv
FLOPs Param

PSNR(↑) SSIM(↑)
runtime (ms) (↓)

(middle) (cheap) (G) (M) GPU Mobile

baseline 1.11 1.03 39.2769 0.9556 17.65 220

� 2.12 2.84 39.3345 0.9559 18.41 212
� � 3.25 3.86 39.3007 0.9557 21.31 250

� � 2.69 3.46 39.3211 0.9559 19.19 218

� � � 3.69 4.44 39.3323 0.9560 21.81 255

� 0.95 1.01 39.2741 0.9556 16.99 153
� � 1.03 0.95 39.2104 0.9552 14.46 162
� � � � � 1.11 0.97 39.2949 0.9558 16.46 196

Table 1. Ablation study based on PMRID model for image denoising on SIDD dataset.

input GT PMRID PMRIDmofa NAFNet NAFNetmofa

GoPro

Rain100L

Figure 6. Visualization. Image restoration results from PMRID, PMRIDmofa, NAFNet and NAFNetmofa on different tasks.

layers FLOPs (G) Param(M) PSNR SSIM

baseline 1.11 1.03 39.2769 0.9556

+PConv 2.12 2.84 39.3345 0.9559

enc3, dec2 3.25 3.86 39.3007 0.9557

enc2, dec3 2.58 2.93 39.2508 0.9556

enc1, dec4 2.54 2.86 39.2770 0.9556

Table 2. Adding more parameters to middle layers on PMRID.

replacement Param(M) runtime PSNR SSIM

no 4.44 255 39.3323 0.9560

upsampling 4.42 268 39.3039 0.9561

downsampling 4.61 460 39.3334 0.9559

Table 3. Replacement of upsampling/downsampling in PMRID.

the same time, from 39.2769dB to 39.2949dB for PMRID

and from 39.2319dB to 39.3098dB for NAFNet. Note that

runtime reduction is applied to all the following tasks as we

use the same models for comparison.

Image Deblurring. We tested image deblurring perfor-

mance on GoPro [30] dataset. As shown in Table 4, we

have increased PSNR by 0.14dB for PMRID and 0.05dB

for NAFNet while reducing the runtime by more than 10%
for both backbones.

Image Deblurring with JPEG artifacts. As in NAFNet

[38], we also tested the image deblurring effect with JPEG

artifacts. Following settings in NAFNet [38], we use REDS

[31] dataset and evaluate on REDS-val-300. Table 4 shows

NAFNetmofa increased PSNR by 0.07dB compared with

NAFNet while the runtime gets decreased and PMRIDmofa

is comparable to PMRID.

Image deraining. Following settings in HINet [4],

we also train our models on image deraining task with

Rain13k dataset and test on Test100 [49], Rain100H [42],

Rain100L [42], Test2800 [11] and Test1200 [48] datasets.

Quantitative results are shown in Table 5. From this ta-

1328

Method
runtime (ms)

params
FLOPs denoising (SIDD) debluring (GoPro) debluring (REDS)

Mobile (G) PSNR SSIM PSNR SSIM PSNR SSIM

PMRID 220∗ 1.03M 1.15 39.2769 0.9556 29.0840 0.9153 27.6501 0.8348

PMRIDmofa 196(-11%) 0.97M(-6%) 1.11 39.2949 0.9558 29.2274 0.9176 27.6493 0.8347

NAFNet 69∗ 286.6K 1.03 39.2042 0.9555 29.4337 0.9237 27.6747 0.8381

NAFNetmofa 60(-13%) 222.1K(-23%) 0.94 39.3098 0.9560 29.4810 0.9242 27.7450 0.8398

Table 4. Image denoising and deblurring results on different datasets. ∗ Represents we also added split cat operations for fair comparison.

Method
Test100 Rain100H Rain100L Test2800 Test1200

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PMRID 28.3400 0.8690 27.9492 0.8343 32.5887 0.9316 32.6028 0.9260 31.4316 0.9001

PMRIDmofa 28.2158 0.8739 28.3177 0.8453 32.7912 0.9330 32.6106 0.9272 31.4936 0.9034
NAFNet 28.0719 0.8775 27.8863 0.8414 33.6056 0.9467 32.8942 0.9298 32.6602 0.9181

NAFNetmofa 28.9186 0.8888 28.5133 0.8531 33.9560 0.9500 32.9450 0.9303 32.4535 0.9150

Table 5. Image deraining results on different test datasets.

thres d ∗ p runtime(ms) Param(M) PSNR SSIM

0 14.10 0.94 39.2513 0.9554

16 15.8 0.95 39.2408 0.9557

32 16.46 0.97 39.2949 0.9558

64 16.56 1.21 39.2920 0.9559

128 16.71 1.25 39.2973 0.9561

Table 6. The effect of threshold d ∗ p to replace PConv with PDW-

Conv.

ble, our accelerated versions for both backbones have im-

proved the performance for most deraining datasets while

reducing the runtime. Specifically, PMRIDmofa defeats

PMRID on Rain100H, Rain100L, Test2800 and Test1200

datasets, and NAFNetmofa improves over NAFNet on

Test100, Rain100H, Rain100L and Test2800 datasets.

4.5. Visualization

To understand the qualitative results, we visualize im-

age restoration results on different datasets, SIDD dataset

for image denoising, GoPro dataset for image deblurring,

REDS dataset for image deblurring with JPEG artifacts, and

Rain100L dataset for deraining as in Figure 6.

For image denoising, we can find all these models, PM-

RID, PMRIDmofa, NAFNet and NAFNetmofa have good

denoising ability. Among them, we observe NAFNetmofa

is the best.

In GoPro dataset, the quality of deblurring results in-

creases from PMRID to PMRIDmofa where the shape of

the hand in the figure changes from blurred for PMRID to

clear for NAFNetmofa.

For deraining results on Rain100L dataset, we can see

both PMRIDmofa and NAFNetmofa show better deraining

results than their baselines.

5. Conclusion and limitation

This paper has presented a comprehensive roadmap to

accelerate image restoration models before deploying them

on mobile devices. The key idea is to enhance the model’s

capacity without significantly increasing runtime by strate-

gically adding more parameters to FLOP-insensitive layers

and middle layers. Additionally, we propose the decou-

pling of upsampling/downsampling layers and apply par-

tial depthwise convolution to further accelerate the models.

The proposed roadmap is effectively applied to PMRID and

NAFNet for various image restoration tasks. Extensive ex-

perimental results demonstrate the effectiveness of our strat-

egy. Following our approach, we achieve a runtime reduc-

tion of up to 13% and reduce the number of parameters by

23% while simultaneously improving the image restoration

performance.

Our approach offers a powerful solution for deploying

image restoration models on mobile devices, striking a bal-

ance between increased model capacity and faster infer-

ence without compromising restoration quality. For deploy-

ment, the decrease of parameters is suitable for parameters-

sensitive implementation like sensor programming. The in-

troduction of split cat operation in PDWConv and PConv

might be less efficient in deployment based on Pytorch Mo-

bile, ONNX and Caffe and need to be further accelerated.

Acknowledgement
The work was supported by and conducted at SenseBrain

Technology. G. Wang was partly supported by the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC).

1329

References
[1] Hanting Chen, Yunhe Wang, Jianyuan Guo, and Dacheng

Tao. Vanillanet: the power of minimalism in deep learning.

arXiv preprint arXiv:2305.12972, 2023. 2

[2] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song

Wen, Chul-Ho Lee, and S-H Gary Chan. Run, don’t walk:

Chasing higher flops for faster neural networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12021–12031, 2023. 1, 2, 3

[3] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.

Simple baselines for image restoration. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part VII, pages 17–33.

Springer, 2022. 1, 2, 5, 6

[4] Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, and Cheng-

peng Chen. Hinet: Half instance normalization network for

image restoration. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

182–192, 2021. 1, 7

[5] Haram Choi, Cheolwoong Na, Jinseop Kim, and Jihoon

Yang. Exploration of lightweight single image denoising

with transformers and truly fair training. In Proceedings of
the 2023 ACM International Conference on Multimedia Re-
trieval, pages 452–461, 2023. 2

[6] Haram Choi, Cheolwoong Na, Jihyeon Oh, Seungjae Lee,

Jinseop Kim, Subeen Choe, Jeongmin Lee, Taehoon Kim,

and Jihoon Yang. Ramit: Reciprocal attention mixing trans-

former for lightweight image restoration. arXiv preprint
arXiv:2305.11474, 2023. 2

[7] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

1251–1258, 2017. 2

[8] Xiaojie Chu, Liangyu Chen, Chengpeng Chen, and Xin Lu.

Improving image restoration by revisiting global information

aggregation. In European Conference on Computer Vision,

pages 53–71. Springer, 2022. 1

[9] Marcos V Conde, Florin Vasluianu, Javier Vazquez-Corral,

and Radu Timofte. Perceptual image enhancement for

smartphone real-time applications. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1848–1858, 2023. 2

[10] Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fa-

had Shahbaz Khan, and Ming-Hsuan Yang. Burst im-

age restoration and enhancement. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5759–5768, 2022. 1

[11] Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao

Ding, and John Paisley. Removing rain from single images

via a deep detail network. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

3855–3863, 2017. 7

[12] Jiaming Guo, Xueyi Zou, Yuyi Chen, Yi Liu, Jianzhuang

Liu, Youliang Yan, and Jia Hao. Asconvsr: Fast and

lightweight super-resolution network with assembled con-

volutions. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1582–

1592, 2023. 2

[13] Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming

Cheng, and Shi-Min Hu. Visual attention network. Compu-
tational Visual Media, pages 1–20, 2023. 1

[14] Yu Guo, Axel Davy, Gabriele Facciolo, Jean-Michel Morel,

and Qiyu Jin. Fast, nonlocal and neural: a lightweight high

quality solution to image denoising. IEEE Signal Processing
Letters, 28:1515–1519, 2021. 2

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1

[16] Andrey Ignatov, Grigory Malivenko, Radu Timofte, Yu

Tseng, Yu-Syuan Xu, Po-Hsiang Yu, Cheng-Ming Chiang,

Hsien-Kai Kuo, Min-Hung Chen, Chia-Ming Cheng, et al.

Pynet-v2 mobile: efficient on-device photo processing with

neural networks. In 2022 26th International Conference on
Pattern Recognition (ICPR), pages 677–684. IEEE, 2022. 2

[17] Andrey Ignatov, Anastasia Sycheva, Radu Timofte, Yu

Tseng, Yu-Syuan Xu, Po-Hsiang Yu, Cheng-Ming Chiang,

Hsien-Kai Kuo, Min-Hung Chen, Chia-Ming Cheng, et al.

Microisp: processing 32mp photos on mobile devices with

deep learning. In European Conference on Computer Vision,

pages 729–746. Springer, 2022. 2

[18] Daniel Justus, John Brennan, Stephen Bonner, and An-

drew Stephen McGough. Predicting the computational cost

of deep learning models. In 2018 IEEE international confer-
ence on big data (Big Data), pages 3873–3882. IEEE, 2018.

2

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[20] Avisek Lahiri, Sourav Bairagya, Sutanu Bera, Siddhant

Haldar, and Prabir Kumar Biswas. Lightweight modules

for efficient deep learning based image restoration. IEEE
Transactions on Circuits and Systems for Video Technology,

31(4):1395–1410, 2020. 2

[21] Wei-Sheng Lai, Yichang Shih, Lun-Cheng Chu, Xiaotong

Wu, Sung-Fang Tsai, Michael Krainin, Deqing Sun, and

Chia-Kai Liang. Face deblurring using dual camera fusion

on mobile phones. ACM Transactions on Graphics (TOG),
41(4):1–16, 2022. 1, 2

[22] Kaidong Li, Nina Y Wang, Yiju Yang, and Guanghui Wang.

Sgnet: A super-class guided network for image classification

and object detection. In 2021 18th Conference on Robots and
Vision (CRV), pages 127–134. IEEE, 2021. 1

[23] Zhuoqun Liu, Meiguang Jin, Ying Chen, Huaida Liu, Can-

qian Yang, and Hongkai Xiong. Mfdnet: Towards real-

time image denoising on mobile devices. arXiv preprint
arXiv:2211.04687, 2022. 2

[24] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-

enhofer, Trevor Darrell, and Saining Xie. A convnet for the

2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976–11986,

2022. 2

1330

[25] Haoran Lu, Yifei She, Jun Tie, and Shengzhou Xu. Half-

unet: A simplified u-net architecture for medical image seg-

mentation. Frontiers in Neuroinformatics, 16:911679, 2022.

3

[26] Ziwei Luo, Youwei Li, Lei Yu, Qi Wu, Zhihong Wen, Hao-

qiang Fan, and Shuaicheng Liu. Fast nearest convolution for

real-time efficient image super-resolution. In European Con-
ference on Computer Vision, pages 561–572. Springer, 2022.

2

[27] Long Ma, Tengyu Ma, Risheng Liu, Xin Fan, and Zhongx-

uan Luo. Toward fast, flexible, and robust low-light image

enhancement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5637–

5646, 2022. 2

[28] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 1

[29] Wenchi Ma, Xuemin Tu, Bo Luo, and Guanghui Wang. Se-

mantic clustering based deduction learning for image recog-

nition and classification. Pattern Recognition, 124:108440,

2022. 1

[30] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3883–3891,

2017. 7

[31] Seungjun Nah, Sanghyun Son, Suyoung Lee, Radu Timofte,

and Kyoung Mu Lee. Ntire 2021 challenge on image de-

blurring. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 149–165,

2021. 7

[32] Krushi Bharatbhai Patel, Fengjun Li, and Guanghui Wang.

Fuzzynet: A fuzzy attention module for polyp segmentation.

In NeurIPS’22 Workshop on All Things Attention: Bridging
Different Perspectives on Attention, 2022. 1

[33] Raiyan Rahman, Christopher Indris, Tianxiao Zhang,

Kaidong Li, Brian McCornack, Daniel Flippo, Ajay Sharda,

and Guanghui Wang. On the real-time semantic segmen-

tation of aphid clusters in the wild. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6298–6305, 2023. 1

[34] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,

Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,

et al. Photorealistic text-to-image diffusion models with deep

language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022. 2, 4

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1

[36] Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu,

Oncel Tuzel, and Anurag Ranjan. Mobileone: An im-

proved one millisecond mobile backbone. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7907–7917, 2023. 2

[37] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang,

Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu,

Hongsheng Li, et al. Internimage: Exploring large-scale vi-

sion foundation models with deformable convolutions. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 14408–14419, 2023. 1

[38] Yuzhi Wang, Haibin Huang, Qin Xu, Jiaming Liu, Yiqun

Liu, and Jue Wang. Practical deep raw image denoising on

mobile devices. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part VI, pages 1–16. Springer, 2020. 1, 2, 5, 6,

7

[39] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang

Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general

u-shaped transformer for image restoration. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 17683–17693, 2022. 1

[40] Lu Xu, Jiawei Zhang, Xuanye Cheng, Feng Zhang, Xing

Wei, and Jimmy Ren. Efficient deep image denoising via

class specific convolution. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3039–

3046, 2021. 2

[41] Wenju Xu, Yuanwei Wu, Wenchi Ma, and Guanghui Wang.

Adaptively denoising proposal collection for weakly super-

vised object localization. Neural Processing Letters, 51:993–

1006, 2020. 1

[42] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zong-

ming Guo, and Shuicheng Yan. Deep joint rain detection

and removal from a single image. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1357–1366, 2017. 7

[43] Yiju Yang, Tianxiao Zhang, Guanyu Li, Taejoon Kim, and

Guanghui Wang. An unsupervised domain adaptation model

based on dual-module adversarial training. Neurocomputing,

475:102–111, 2022. 1

[44] Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu,

Dongxin Liu, Lu Su, and Tarek Abdelzaher. Fastdeepiot:

Towards understanding and optimizing neural network exe-

cution time on mobile and embedded devices. In Proceed-
ings of the 16th ACM Conference on Embedded Networked
Sensor Systems, pages 278–291, 2018. 2

[45] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-

nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.

Restormer: Efficient transformer for high-resolution image

restoration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5728–5739,

2022. 1

[46] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar

Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling

Shao. Multi-stage progressive image restoration. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 14821–14831, 2021. 1

[47] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar

Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling

Shao. Learning enriched features for fast image restoration

and enhancement. IEEE transactions on pattern analysis and
machine intelligence, 45(2):1934–1948, 2022. 1

1331

[48] He Zhang and Vishal M Patel. Density-aware single image

de-raining using a multi-stream dense network. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 695–704, 2018. 7

[49] He Zhang, Vishwanath Sindagi, and Vishal M Patel. Im-

age de-raining using a conditional generative adversarial net-

work. IEEE transactions on circuits and systems for video
technology, 30(11):3943–3956, 2019. 7

[50] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising. IEEE transactions on image
processing, 26(7):3142–3155, 2017. 3

[51] Wei Zhang, Wanshu Fan, Xin Yang, Qiang Zhang,

and Dongsheng Zhou. Lightweight single-image super-

resolution via multi-scale feature fusion cnn and multiple at-

tention block. The Visual Computer, pages 1–13, 2023. 2

[52] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

6848–6856, 2018. 1

[53] Yifeng Zhou, Xing Xu, Shuaicheng Liu, Guoqing Wang,

Huimin Lu, and Heng Tao Shen. Thunder: Thumbnail based

fast lightweight image denoising network. arXiv preprint
arXiv:2205.11823, 2022. 2

1332

