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Abstract

Shapely Deep Learning (SDL) targets a new foundation
for the design of general-purpose vision systems, by estab-
lishing a consensus method that facilitates self-adaptation
and flexibility to deal with new computer vision tasks.
Today, machine learning did not yet reach the flexible,
general-purpose intelligence that biological vision has in
mimicking visual descriptions and learning in general-
purpose vision algorithms. Currently, each model is built
using the domain knowledge of the application in question.
Data scientists must consequently be well-versed in the rel-
evant subject. This paper presents SDL as a consensus
method for general-purpose intelligence without the help of
a domain expert as the trained model has been developed
utilizing a general deep learning approach that investigates
the contribution of each model in the training process. First,
several deep learning models have been trained for each im-
age. The shapley value is then determined to compute the
contribution of each subset of models in the training. The
model selection is finally performed based on the shapley
value and the joint model cost. Optimization of the shapley
computation is also carried out by investigating the banzhaf
function. We present the evaluation of the generality of SDL
using the computer vision benchmarks: MNIST for Shapley
value performance, ImageNet for image classification, and
COCO for object detection. The results reveal the effective-
ness of SDL in terms of accuracy and competitiveness of
inference runtime. Concretely, SDL achieved 10%, and 8%
over MViTv2 for classification, and object detection tasks,
respectively.

1. Introduction
Today computer vision systems can only cope with con-

ditions they were designed for, with single-purpose models

for specific applications [3, 4, 8, 30] or single tasks such

as classification [28], segmentation [29], and object detec-

tion [49]. Whenever the conditions change, humans need

to step in to redesign the system to adapt it to a new task

or dataset that may require an architecture change and re-

training. In the future hyper-connected digital world, com-

puter vision systems will need to work radically different

from today to make use of panoplies of deep learning archi-

tectures developed to meet a wide range of practical appli-

cations and conditions. Unfortunately, some architectures

performs better than others on some data and vise-versa.

Ensemble learning have been largely investigated to solve

the uncertainty in the model behavior where several mod-

els have been performed and aggregated to achieve better

performance [25, 46]. Two main challenges have not been

addressed yet for ensemble learning. The first challenge is

that these models are time and memory consuming, where

all models in the ensemble need to be loaded and executed

during the inference phase. The second challenge is that one

or more models in the ensemble can contribute negatively to

the learning process. To address the aforementioned chal-

lenges, we need to answer to the two following research

questions: 1. Assume we have a set of models which solves

a given computer vision task, what are the best models in

this set? In other words, can we distinguish between the

models that contribute positively and the models that con-

tribute negatively to the learning process?. 2. Assume we

succeeded to derive the best models, how can we explore

these models to achieve a better performance.? This work

strives to elaborate on these research questions by propos-

ing a new consensus method called Shapely Deep Learning

(SDL) as a foundation for the design of general-purpose vi-

sion systems.

Motivations The Shapley value is a concept in cooper-

ative game theory that provides a way to fairly distribute
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the benefits of a cooperative effort among a group of play-

ers based on their individual contributions to the overall ef-

fort. The idea behind the Shapley value is that each player’s

contribution to the overall value of the group should be

proportional to the marginal contribution they make to the

group’s value. The contribution of a player is determined

by the change in the value of the group that results from

the player’s participation [43]. Motivated by the success

of Shapley value in addressing different machine learning

challenges including feature selection [45], interpretation

[36], and data valuation [10], we will elaborate on a con-

sensus method to determine the contribution of each model

to the overall value generated by an ensemble models. In

this context, each model can be considered as a player in

a cooperative game, and the goal is to distribute the total

learning process generated by the ensemble model among

the models. The Shapley value for model contribution pro-

vides a way to assess the relative importance of each model

in the learning process. It gives a fair and consistent eval-

uation of model importance, taking into account not only

the direct effect of each model, but also its interaction with

other models.

Contributions To the best of our knowledge, this is the

first piece of work that thoroughly examines and computes

the importance of models using Shapley value to effectively

address the challenges of the current computer vision sys-

tems. In short, this paper proposes the novel approach

SDL as a foundation for designing general-purpose vision

systems to tackle the limitations of existing single-purpose

models and multi-purpose models such as Mask R-CNN

[15] on being tailored to specific tasks. The main contri-

butions of this research work are given as follows:

1. We propose a SDL as a novel baseline for consensus

method, which explores the Shapley to first compute the

contribution of each model in the set of model players that

will be used in the learning process. The information de-

rived by Shapley will be then used to efficiently select the

best models for the inference purpose.

2. We introduce two coalition functions to determine the

contributions of the models. The loss coalition function that

takes directly the loss of each model in the group to assess

the coalition value of the group of the models. However,

the data coalition takes into account the model output for

determining the coalition value of the group of the models.

3. We suggest two different ways of exploiting the se-

lected best models. The first solution employs the aver-

age voting without considering the importance of the best

models. The second solution considers the weighted voting

mechanism, where the weight of each selected model is de-

termined based on its contribution of the set of best models.

4. We conduct extensive experiment to analyze the

different components of SDL using three well-established

computer vision benchmarks, MNIST for Shapley value

performance, ImageNet for image classification, and

COCO for object detection, and with different metrics (clas-

sification rate, and intersection over union). The results

show that SDL outperforms the baseline solutions for both

classification and object detection in terms of the quality of

the outcomes, and it is very competitive in terms of the in-

ference runtime.

2. Related Work
SDL is a foundation for general-purpose vision systems

that considers the benefits of the best models for solving a

given computer vision task. Existing works can be roughly

grouped into two families, ensemble learning and Shapley

learning. In the following, we will give insights of using

SDL compared to studies belong to both families.

Ensemble Learning for Computer Vision Ensemble

learning for computer vision is a powerful learning

paradigm that combines various computer vision models for

improving accuracy and robustness of single-based mod-

els. It can be divided into four categories: 1) Bagging
[48, 34, 42]: Bagging or bootstrap aggregating is a tech-

nique where multiple copies of a single model are trained

on different subsets of the training images. The final out-

put is made by averaging the different outputs of all mod-

els. Bagging is particularly useful for reducing overfitting in

high-variance models. 2) Boosting [47, 40, 13]: It is a tech-

nique that combines multiple weak visual learners to create

a strong learner. The weak visual learners are trained se-

quentially, and each new model focuses on the images that

were incorrectly trained. Boosting can improve the accu-

racy of the model and reduce bias. 3) Stacking [9, 18, 6]:

It is an ensemble learning technique where multiple mod-

els are trained and their outputs are combined using another

model, called a meta-model. The meta-model is trained on

the outputs of the base models and can learn to combine

their strengths. 4) Gradient Boosting [13, 7, 20]: It is

a technique that combines boosting with gradient descent.

Each weak learner is trained to minimize the residual error

of the previous learner. Gradient Boosting is widely used

in computer vision and can achieve state-of-the-art perfor-

mance on many computer vision tasks.

Shapley learning A lot of efforts have been invested in

exploring the Shapley within different stages of the machine

learning process, including trustworthy AI [36, 16, 26], fea-

ture selection [45, 39, 23], data valuation [10, 19], and

ensemble pruning [35]. In the context of trustworthy AI

[36, 16], Shapley value is used for understanding the black-

box deep learning model by estimating the importance of

each data input in achieving the model output. In the con-
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text of feature selection [45, 39, 23], Shapley value might

be used to distinguish among the relevant features the non

relevant ones in the training process. It can also be used

in the data valuation [10, 19], where the goal is to predict

the goodness of fit achieved by a model on the test data.

Only one work explored Shapley for ensemble pruning [35],

where the target is to determine the importance of the mod-

els in the ensemble classifier. Nevertheless, the former work

suffers from several limitations: 1. It considers binary coali-

tion based on the number of corrected samples on each clas-

sifier.2. It used Monte Carlo approximation [37] which does

not compute the contributions of all subsets of models.3. It

does not go for end-to-end framework where they only stud-

ied the contribution of the models and they did not explain

how this information may be beneficial in both the training

and in the inference stages. 4. The solution is only limited

for classification task, and for graph-based representation.

Discussion Ensemble learning averages the output of sev-

eral learning models trained independently. Even these

methods outperform single learning models, they have sev-

eral shortcomings: 1. The memory and time complexity

linearly increase with the ensemble size (increasing in the

number of models trained). 2. Models of poor quality

greatly influence the best models in the ensemble. In ad-

dition, the Shapley value has been largely studied for prob-

lems related to various applications including explanation,

feature selection, and data valuation. To our knowledge,

only one work that explore ensemble pruning [35], how-

ever, it only provides binary coalition with Monte Carlo ap-

proximation. It did not explain how the determination of the

model importance can be used for both the training and the

inference stages. It also designed only for solving classi-

fication problem for graph-based data representation. Our

contribution with SDL is aligned with ensemble pruning

and develop a robust consensus method for general-purpose

vision systems. Moreover, SDL is generic and might be

applied to other data representation including time series,

texts, and graphs.

3. SDL: Shapley Deep Learning
3.1. Principle

First, we will discuss the major elements of the SDL ap-

proach for general-purpose vision systems. The developed

SDL-based consensus method makes use of deep learning

and Shapley value as illustrated in Figure 1. Several deep

learning models are trained in the learning phase and the

Shapley value is used to select the best model(s) that will

be executed in the inference phase and this for each testing

image. The information returned by the Shapley value is

utilized to determine which model(s) are appropriate dur-

ing the inference phase. This section contains a detailed

description of the SDL components.

3.2. Training

We consider the set of l images used in the training

I = {I1, I2...Il}. The training is performed using the set

of n models M = {M1,M2, ....Mn}. Each image Ii is

injected to each model Mj for the training. The loss value

vij is determined by computing error between the output of

the modelMj , and the ground truth associated to the image

Ii. It will be computed using the loss functions according

to the problem at hand. For instance, Binary Cross-Entropy

Loss might be used for classification problem, as follows:

vij(yi, y
∗
ij) = −y× log(y∗ij)− (1−yi)× log(1−y∗ij) (1)

yi is the ground truth value of the image Ii, and y∗ij is

the predicted value of Ii by the modelMj . Afterwards, the

average loss Li of all images in I is determined for each

modelMi as,

Li(Mi, I) =

∑
Ij∈I vij

l
(2)

Definition 1 (Model Output) We define the set of outputs
of the model Mj by the union of all outputs of this model
when training the set of images in I , and we write:

Y∗
j = {

⋃
Ii∈I

y∗ij} (3)

Definition 2 (Model Cost) Consider tj and mj be the run-
time, and the memory costs of the model Mj , respectively.
We define the cost of the model Mj by the aggregation of
runtime, and the memory costs, and we write:

Cj = α1 ×Normalize(tj) + α2 ×Normalize(mj) (4)

α1, and α2 are the user parameters chosen in the range [0-
1]. Normalize is a function min-max normalization [41].

hyperparameter optimization For the hyperparameter

optimization of the n models, we adopt the recent greedy

search algorithm (GHO) [32]. In order to converge to

the local optimal solution with the hope that this decision

will result in a global optimal one, the GHO algorithm

optimizes each hyperparameter while holding the others

constant. Up until all of the hyperparameters are optimized,

the local solution for each one is optimized iteratively.

Therefore, the greedy algorithm reduces the exponential

computational cost of the hyperparameter optimization.

At the end of this step, the set of model play-

ers, noted, MP is created, such as: MP =
{(M1,L1,Y∗

1 , C1), (M2,L2,Y∗
2 , C2)...(Mn,Ln,Y∗

n, Cn)}
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Figure 1: SDL principle: The deep learning models are first trained. The Shapley value is then computed for each subset of

models. The best models are finally selected for the inference of new images based on the Shapley value, and their costs.

3.3. Shapley Learning

This step aims to determine the contribution of each

model inMP in the learning process. We draw inspiration

from the so-called solution concepts or values from coop-

erative game theory. They measure the importance of each

player in, or contribution to, a coalitional game. While there

are numerous ways to evaluate each player’s significance,

some solution concepts are seen as being more basic than

others because of the axiom systems that define them specif-

ically. The Shapley value is a significant game-theoretic so-

lution notion that has sparked a great deal of interest in the

area of deep learning [1]. In the following, we will show

how we can adapt the Shapley value to calculate the impor-

tance of the models inM in the learning process.

Definition 3 (Shapely for Models) Let us denote by
〈c,MP〉, a coalition game where c : 2MP → R, is the set
function that assigns utility to each coalition of the subset
of players in MP . Then, the Shapley value of the subset of
model players p ∈MP is defined as follows:

φp =

∑
F⊆MP\{p}

(
n−1
|F |

)−1
(c(F ∪ {p})− c(F ))

n
(5)

We also need to define the function c, which expands

the training to all subsets of models F ⊆ MP , in order to

standardize this formula in our setting. Thus, the function c
allows us to drop models in MP \ F based on loss values

{Li} of the models {Mi}.

Definition 4 (Loss Coalition) Consider a subset p ∈
MP , we define the loss coalition value of p by the aver-
age loss values of all models in p as,

c(p) =

∑
MPi∈p(1− Li)

|p| (6)

Normalization is performed to ensure that the loss values

should be between 0 and 1.

Definition 5 (Data Coalition) Consider a subset p ∈
MP , we define the data coalition value of p by the max-
imum loss values of all models in p compared to the set Y ,
composed by the ground-truth of all images in I , as,

c(p) =

∑
Ij∈I maxMPi∈p{vij(yij ∈ Y, y∗ij ∈ Y∗

i )}
l

(7)

Definition 6 (Joint Model Cost) Consider a subset p ∈
MP , we define the joint cost of the p by the average cost of
all models in p, and we write:

Jp =
∑

MPj∈p

Cj (8)

To determine the coalition of all subsets inMP , a shap-

ley value method is developed. The process starts by ex-

ploring the tree-search of the player models, noted T . As

we are not interested to a singleton subset, 2|MP| − |MP|
nodes need to be generated and explored, where at every

pass, the coalition of the node, and the joint model cost are

calculated. This process is repeated for all subsets in MP .

Computing Shapley value is high time consuming, in partic-

ular when the number of models increased and with using

the data coalition function described in EQ. 7.

The Shapley value is not the sole theory-game-based ap-

proach that has been promoted for figuring out how much
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each player contributes to the game. The Banzhaf value is

the most well-studied alternative for Shapley value coming

from the coalitional game theory. This value accumulates

the contributions of individuals differently, such as:

βp =
1

2n−1

∑
F⊆MP\{p}

(c(F ∪ {p})− c(F )) . (9)

The Shapley value is a weighted average of participants’

marginal coalition contributions, whereas the Banzhaf value

would be a simple average. This will reduce the complexity

of the Shapley value computation. We will explore both

formulas (EQ. 5, and EQ. 9) in computing the contribution

of each subsets of models inMP .

Once all subsets are generated, the subsets of models are

ranked according to their contribution value in a descending

order. At the end of this step, the set P of the subsets Pi ⊆
MP are created with their contributions, and joint costs, as

illustrated in:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 φP1
JP1

p2 φP2 JP2

.

.

.
p2|MP|−MP φP

2|MP|−MP
JP

2|MP|−MP

⎞
⎟⎟⎟⎟⎟⎟⎠

In case the Banzhaf function is considered, φp is re-

placed by βp

Model Selection This step aims to select the best mod-

els that will be used for the inference. We consider a cost

threshold μ which represent the maximal budget cost that

should not exceed in the learning process. It is based on

both the runtime, and the memory costs, and it is normalized

using Normalize function. The process starts by exploring

the sorted set P . We compare the budget constraint μ with

the joint cost of P1, if P1 satisfied the budget constraint,

then P1 is returned, and we terminate the search process.

Otherwise, the process is repeated for P2 and so on until we

found a subset that satisfies the budget constraint μ. At the

end of this step, the set of best models pbest is returned.

Inference The selected best models in pbest is used for the

inference step. Let us consider the new image I ′, y′best(i) is

the inference output of the model Mi
best on the new image

I ′. We will use two strategies to explore the selected best

models for inference the final output y′best:
1. Average voting: In the average voting, the output of

the best models are averaged without any weights as fol-

lows:

y′best =

∑
Mi

best∈pbest
y′best(i)

|pbest|
(10)

2. Weighted voting: In the weight voting, the output of

the best models are averaged by considering the importance

of each model in the set pbest as follows:

y′best =

∑
Mi

best∈pbest
wi

best × y′best(i)∑
Mi

best∈pbest
wi

best

(11)

where wi
best represents the weight of the model Mi

best.

It is calculated by the ratio of the importance of the model

Mi
best in the set pbest, and it is given as,

wi
best =

Li
best

φbest
(12)

In case we consider the Banzhaf function, φbest is re-

placed by βbest.

Algorithm 1 SDL(M, I, Y , μ)

1: MP ← ∅
2: for each Mi ∈ M do
3: Y∗i ← ∅
4: for each Ij ∈ I do
5: y∗ji ← ForwardPropagation(Ij)

6: Y∗i ← Y∗i ∪ {y∗ji}
7: end for
8: Wi ← GHO(BackPropagation(Y∗i ))
9: Li ← ComputeLoss(Mi, I,Y,Y∗i )

10: Ci ← DetermineCost(Mi))
11: MP ← MP ∪ {(Mi,Li,Y∗i , Ci)}
12: end for
13: P ← ∅
14: for each p ⊆ MP do
15: if Shapley then
16: P ← P ∪ {p, φp,Jp}
17: P ← Sort(P, φ)
18: else
19: P ← P ∪ {p, βp,Jp}
20: P ← Sort(P, β)
21: end if
22: end for
23: for each Pi ∈ P do
24: if JPi

≤ μ then
25: pbest ← Pi

26: break:
27: end if
28: end for
29: return pbest

Algorithm Algorithm 1 presents the formal description

of the SDL steps. It takes as input the set of the models

M, the set of images I , with their ground-truth Y , and the

maximum budget constraint μ. The process starts by train-

ing the models in M, from line 1 to line 12. The output of

this step is the set of model players MP with its relevant

information of the lost, the cost, and the outputs of the mod-

els. The Shapley value, and the joint cost are determined for

each subset in MP from line 13 to line 22. The output of

this step will be the sorted set P of all possible subsets of

the models players with their Shapley value, and the joint

cost. The process ends by selecting the best models in P
that maximize the Shapley value and satisfies the maximal
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budget constraint μ (from line 23 to line 28). The SDL al-

gorithm will return the set of the best models pbest that will

be used in the inference.

4. Numerical Results

To evaluate the SDL approach, intensive simulation have

been carried out using well-known benchmarks, and com-

pared with recent deep learning solutions in solving com-

puter vision tasks.

4.1. Setting Details

We will first go through the details of our experiment in

this section. Then, we will compare our results to those of

baseline models. Since ImageNet, COCO, and MNIST have

been ones of the most thoroughly benchmarked datasets

in computer vision and since advancements on ImageNet,

COCO, and MNIST transfer to other datasets [33, 17], we

undertake experiments on the ImageNet 2012, and MNIST

challenge classification task, and on the COCO challenge

object detection task. Further to the GHO algorithm em-

ployed in SDL for hyperparameter optimization, and in-

spired by the work of Xie et al. [44], we optimize again

the batch size, and the number of epochs. We utilize a batch

size of 2048 by default for labeled images, and we decrease

the batch size when the model cannot fit in the memory. We

discover that employing 512, 1024, or 2048-batch sizes re-

sults in the same speed. The batch size for labeled images

is used to calculate the number of training epochs and the

learning rate. With a dropout rate of 0.5, we apply dropout

to the last layer of the models in SDL and the baseline mod-

els. α1, and α2 are set equally to 0.5 each. The maximal

budget cost μ is set to the average model cost of all models

in SDL setting.

4.2. Shapley Vs. Banzhaf

This first experiment aims to understand the impact of

using Banzhaf heuristic compared to the Shapley heuris-

tic. Starting by comparing the running times of the Shapley

and Banzhaf algorithms. Figure 2 depicts the Shapley and

Banzhaf runtimes on generated synthetic data. It is built on

two identically shaped subtrees, both of which are full bi-

nary trees with a depth of 15. By varying the depth size

from 1 to 15, it is clear that Banzhaf is faster than Shap-

ley, which can result in significant time savings for larger

trees. Both solutions converge for small trees, but for large

trees, there is a significant difference in runtime between

the two methods. This is explained by Banzhaf considering

the marginal contribution of each model averaged across all

possible coalitions that do not include that model. Shapley,

on the other hand, considers each model’s marginal contri-

bution averaged across all permutations. To compare the

quality of the returned outputs of Shapley and Banzhaf, we

used the average Cayley distance [12] between models or-

derings derived from Shapley and Banzhaf values. Figure

2 presents the average Cayley distance between both algo-

rithms (Shapley and Banzhaf) while varying the depth size

from 1 to 15. The results indicate high convergence be-

tween these two models, whatever the depth size. From

these promising results, we will use the Banzhaf heuristic in

the remaining experiments. The second experiment of this

initial tests is to analyze the cost of using the loss coalition,

and the data coalition functions on the Banzhaf heuristic.

We used three different models as players namely VGG16

[38], DenseNet [11], and Inception [2] using MNIST data.

We varied the percentage of MNIST from 20% to 100%,

and we compute the runtime of Banzhaf using loss coali-

tion, and data coalition. The results are reported in Figure

2. The results indicates the stability of loss coalition func-

tion compared to the data coalition function. Indeed the

runtime of the data coalition is increased by increasing in

the training data size. This result is explained by the fact

the data coalition function is dependent to the data, where

the loss coalition is only dependent to the loss values of the

models. Even there is a high gap between the runtime of

the loss coalition, and the data coalition, these functions are

only used in the training process, and might be executed

offline. We will show in further analysis the quality of loss

coalition, and data coalition functions for both classification

and object detection tasks.

4.3. SDL Vs. Advanced Deep Learning Solutions

This experiment analyzes the performance of the SDL

on two case studies (image classification, and object detec-

tion), and with the following advanced deep learning solu-

tions:

1. Classification: We use two algorithms for comparison

regarding the classification task, namely Revised RESNET

[5], MViTv2 [24], and LL-R [22]. We use the combination

of the three models as model players for SDL. We use the

weighted voting mechanism in the inference.

2. Object Detection: We use three algorithms for com-

parison regarding the object detection task, namely MViTv2

[24], FSOD [14], and Improved Yolov5 [31]. We use the

combination of the three models as model players for SDL.

We use the weighted voting mechanism in the inference.

Using the previously described ImageNet, these exper-

iments compare the SDL’s accuracy against SOTA image

classification methods (Revised RESNET, MViTv2, and

LL-R). Figure 3 demonstrates that SDL outperforms the

two baseline algorithms in terms of classification rate and

it is very competitive in terms of inference runtime when

the percentage of the number of images used as input is

varied from 20% to 100%. Thus, the classification rate of

the SDL is 95% whereas the baseline methods go below

90% when the entire ImageNet is processed in the train-
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Figure 2: Performance of the Shapely value compared to the Banzhaf.

Figure 3: Classification rate and Runtime of the proposed solution and the SOTA models for different training samples of the

ImageNet, and with different number of epochs.

Figure 4: Performance of the proposed solution and the SOTA models for object detection use case using COCO dataset, and

with different number of epochs.

ing phase. These results are obtained thanks to the selective

strategy based on Shapley value, and the loss coalition func-

tion, which achieve in finding the best models executed in

the inference stage. Using the previously described COCO

dataset, the next experiments compare the SDL’s accuracy

against SOTA object detection methods (MViTv2, Yolov5,

and FSOD). Figure 4 demonstrates that SDL achieved a

great performance compared to the two baseline algorithms

in terms of IoU (Intersection over Union) and it is very com-

petitive in terms of inference runtime when the percentage

of the number of images used as input is varied from 20% to

100%. Thus, the IoU of the SDL is 92% whereas the base-

line methods go below 86% when the entire COCO dataset

is processed in the training phase. These outcomes were

again made possible by the selective strategy based on the

shapley value, which looked through all the models and de-

termines the contribution of each model to identify the most

appropriate models for the inference stage.
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Figure 5: Performance of SDL compared to ensemble learning based solutions.

4.4. Qualitative Results for Coalition Functions

The next experiments aims to evaluate the coalition func-

tions developed in SDL. We varied the number of epochs

from 1 to 500 while fixing the remaining optimal parame-

ters. The results highlighted in Figure 3, and Figure 4 show

that while increasing the number of epochs, the classifica-

tion rate, and the IoU increased. For instance, when the

number of epochs is set to 5, the classification rate of SDL

does not exceed 36%. However, when the number of epochs

is set to 500, the classification rate of SDL reaches 95%.

In addition, the data coalition gives better results compared

to the loss coalition, whatever the number of epochs, and

the scenario used in the experiment. These results explain

the powerful function of the data coalition compared to the

loss coalition. Indeed, the loss coalition considers directly

the loss functions of the models in computing the coalition,

where the data coalition takes into account the model output

for deriving the coalition value of the models.

4.5. SDL Vs. Ensemble Learning

The last experiments aims to compare SDL with the en-

semble learning strategy using the ImageNet data. Fur-

ther to VGG16, DenseNet, and Inception, two other models

(RESNET [21], and AlexNet [27]) are also used in both the

ensemble classifier, and SDL. To make a fair comparison,

the weights of the ensemble classifier with weighted aver-

age strategy are the same weights as SDL with the weighted

average strategy. The order of the models are as follows

{Inception, DenseNet, AlexNet, RESNET, and VGG16}.
By varying the number of models from 1 to 5, Figure 5

shows that the classification ratio of SDL is better than the

ensemble classifier, whatever the scenario used. Indeed, the

classification rate of SDL achieved 95%, where the ensem-

ble classifier does not exceed 91%. These promising re-

sults are achieved thanks to the efficient coalition function,

and the weighted voting strategy to first compute the contri-

bution of each subset of models, and then explore the best

models returned by the banzhaf value heuristic. In addi-

tion, we observe high gap in terms of inference runtime, and

memory consumption between SDL, and ensemble classi-

fier. This can be explained by the fact that SDL explores a

few subsets of models in the inference instead of the ensem-

ble classifier where it needs to make the inference from all

models.

5. Conclusion

This work addresses the challenges related to estab-

lishing general-purpose and flexible vision systems using

the currently existing deep learning models, and propose

a novel foundation called SDL for establishing a task-

agnostic consensus modelling. For each set of visual data,

SDL makes use of many deep learning models for train-

ing. Following that, the Shapley value is then determined

to compute the contribution of each subset of models in the

training. The model selection is finally performed based

on the Shapley value and the joint model cost. Optimiza-

tion of the Shapley computation is also carried out by in-

vestigating the Banzhaf function. ImageNet, COCO, and

MNIST benchmarks were used to evaluate the designed

SDL approach on several tasks. The outcomes presented

validated the SDL’s higher accuracy and strong inference

runtime competitiveness compared to the baseline methods

for both classification, and object detection tasks. Since the

runtime of the SDL is critical, in particular when the num-

ber of models became high, and for real-time processing

based applications, we plan to improve the model explo-

ration by investigating other heuristics than Shapley, and

Banzhaf values. Investigating SDL for other computer vi-

sion tasks and case studies is also on our future agenda.
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ing the envelope of gradient boosting forests via globally-

optimized oblique trees. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 285–294, 2022. 2

[14] Bin-Bin Gao, Xiaochen Chen, Zhongyi Huang, Congchong

Nie, Jun Liu, Jinxiang Lai, Guannan Jiang, Xi Wang, and

Chengjie Wang. Decoupling classifier for boosting few-shot

object detection and instance segmentation. In Advances in
Neural Information Processing Systems, 2022. 6

[15] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shik. Mask r-cnn. In Proceedings of the International Con-
ference on Computer Vision, pages 2980–2988, 2017. 2

[16] Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom

Claassen. Causal shapley values: Exploiting causal knowl-

edge to explain individual predictions of complex mod-

els. Advances in neural information processing systems,

33:4778–4789, 2020. 2

[17] Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and

Dacheng Tao. Affordance transfer learning for human-object

interaction detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

495–504, 2021. 6

[18] S Iniyan, Anurag Singh, and Brishti Hazra. Wavelet transfor-

mation and vertical stacking based image classification ap-

plying machine learning. Biomedical Signal Processing and
Control, 79:104103, 2023. 2

[19] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,

Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn
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