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Figure 1. The compressed Pix2Pix (part a) and CycleGAN (part b) models achieved by accumulation knowledge distillation (ACKD).

Parms denotes the parameters of generative model and MACs refers to the multiply-accumulate operations which are used to quantify the

computation cost. ACKD largely reduces the parameters and computation while preserving the visual fidelity.

Abstract

This paper focuses on an efficient and high-performance

compression method for conditional generative adversarial

networks (cGANs) from the perspective of knowledge dis-

tillation. Previous cGANs compression approaches using

knowledge distillation typically transfer knowledge in a

one-to-one manner, where a specific student generator layer

only receives knowledge from the same depth stage in

the teacher generator. Obviously, this approach fails to

sufficiently explore the valuable dark knowledge embedded

in the intermediate teacher generator layers. To address

this issue, a novel cGANs compression method based on

accumulation knowledge distillation (ACKD) is proposed.

ACKD accumulates knowledge from various teacher gen-

erator stages then transfers it to the student generator. To

this end, ACKD first extracts the essential knowledge from

different stages and subsequently unifies them to determine

their relative importance. In this manner, ACKD is capa-

ble of effectively providing hierarchical, informative and

targeted knowledge to the compressed student generator.

The compressed cGANs achieved by ACKD demonstrate

remarkable performance surpassing other other state-of-

the-art methods on three benchmarks. Furthermore, ACKD

compresses parameters over 100× and MACs over 50×,

setting new records in cGANs compression.

1. Introduction

Conditional generative adversarial networks (cGANs)

have gained significant attention due to their impressive

image generation capabilities. While being successfully

applied to tremendous scenarios such as image transla-

tion [1, 17, 26, 32, 39, 48] and image synthesis [2, 6,

29, 37, 45, 47], cGANs suffer from massive model size

and expensive computational overhead, which significantly

limit their deployment to resource-constrained platforms,

especially the edge devices. This paper aims to alleviate

these restrictions by proposing a novel method to compress

cGANs using knowledge distillation.

Knowledge distillation for cGANs is highly non-trivial.

Compared with recognition models, there is neither addi-

tional knowledge in the output layer nor a logits layer in

cGANs. All the valuable knowledge for cGANs is con-

cealed within the intermediate layers, commonly referred

to as the dark knowledge. Previous approaches to compress

cGANs using knowledge distillation [4, 7, 21, 30, 35] typ-

ically transfer knowledge with one-to-one connections (as

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Different knowledge transfer approaches for cGANs. (a)

is the conventional one-to-one method, while (b) is the proposed

more-to-one method. The blue and green circles represent teacher

and student generator structure, respectively. The lines and arrows

illustrate the knowledge transfer path.

illustrated in Fig. 2 (a)), in which a certain student generator

layer only gains knowledge from the corresponding teacher

generator layer with the same depth. These methods fall

short in fully exploring the useful dark knowledge obscured

in the intermediate teacher generator layers.

To address the above issue, we propose accumulation

knowledge distillation (ACKD), which transfers knowledge

in a more-to-one manner (as illustrated in Fig. 2 (b)). In

addition to delivering knowledge from the single teacher

generator layer to the corresponding student generator layer,

ACKD also accumulates knowledge from several shallow

teacher generator layers in a dense-connection manner.

Finer-grained structural and textural features, whose ab-

straction grows as the depth of neural networks increases,

are necessary for the generative models to generate high-

quality samples. Benefiting from the accumulation knowl-

edge merged from down (concreteness) to top (abstraction),

student generators can learn well not only the finer-grained

structure, texture and detailed features in the shallow

stages of teacher generators, but also features with higher

abstraction in the deep stage. Furthermore, we develop

Accumulation Knowledge Attention (ACK-A) as a novel

method to enhance the organization of the dense accumu-

lation knowledge. Observing that different generator layers

possess distinct semantic features, ACK-A employs a two-

step process to handle the accumulated knowledge. ACK-

A first separates knowledge from different stages indepen-

dently for spatial attention and then group them again for

channel attention. This procedure is essentially ranking

the knowledge importance in various layers, allowing for

a more refined understanding of the knowledge dynamics.

After applying ACK-A, accumulation knowledge fusion

(ACK-F) fuses the reconstructed accumulation knowledge

and the deep stage feature.

Inspired by [16, 46], attempts are made to improve the

performance of the teacher model by self-distillation using

ACKD. Such approach involves the teacher serving as its

own teacher. A great teacher will directly contribute to good

results for knowledge distillation. However, as experimen-

tally verified by [8, 25], when the structure of teacher and

that of student is vastly different, the knowledge distillation

performance will be reduced. Therefore, based on self-

distillation, the capability of the teacher generator can be

enhanced without enlarging the structural gap between the

teacher and student generators.

The present method is evaluated on three benchmarks. In

the experiments, ACKD demonstrates the ability to preserve

visual fidelity while utilizing significantly fewer parameters

and MACs (as shown in Fig. 1). Impressively, even with

compression ratios as high as 105.6× for paramters and

50.4× for MACs, or compression ratios of 139.5× for

parameters and 65.5× for MACs, ACKD is capable of

achieving state-of-the-art results. The experimental results

demonstrate that a compressed student generator can be

both small and effective when guided by efficient and rea-

sonable knowledge from the intermediate teacher generator

layers in the training process.

The major contributions of this work can be summarized

as follows: (1) This paper introduces and highlights the

significance of accumulating knowledge for the knowledge

distillation of cGANs. (2) This work proposes ACK-A, a

novel framework that effectively organizes the accumula-

tion knowledge in a reasonable, appropriate, and targeted

manner. The efficiency of ACK-A is demonstrated through

a sufficient amount of ablation study. (3) The proposed

ACKD approach achieves state-of-the-art performance in

cGAN compression, surpassing previous methods by a

significant margin.

2. Related Work

2.1. cGANs and cGANs Compression

cGANs. A significant branch of GAN [10] is conditional

GAN (cGAN), the core idea of which is to control images

generated by condition, rather than a random manner.

cGAN consists of a generator G and a discriminator D.

In the training process of cGANs, G generates realistic

images to deceive D, while D distinguishes the images

generated by G from the real ones. cGANs have been

extensively adopted in image-to-image tasks in recent years,

with Pix2Pix [17] and CycleGAN [48] as two of the more

representative cGAN models. Pix2Pix and CycleGAN can

both be applied to image translation, but the difference is

that the former is used to process data in the paired form,

while the latter is for data in the unpaired form. Recently,

there has been an emergence of cGANs [2, 24, 26, 38, 39]

that can generate photo-realistic images, however such

cGANs require a considerably high number of parameters

and a significantly large amount of computation. Hence,

cGANs compression is of high practical significance.

cGANs Compression. Recently, a number of notable

research efforts focusing on cGANs compression to reduce

the number of parameters and computation of cGANs
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Figure 3. The overview of the proposed cGANs compression method based on accumulation knowledge distillation. (a) shows the pipeline

and (b) illustrates the framework of accumulation knowledge distillation. ACK denotes accumulation knowledge, ACK-A denotes the

accumulation knowledge attention and ACK-F denotes the accumulation knowledge fusion.

have been proposed, thereby advancing the application of

cGANs. The more representative work is [21], which

standardizes the experimental setup for subsequent related

work, including the benchmark datasets and experimental

metrics. An online knowledge distillation with multi-

granularity loss and two teacher generators was proposed

by [30], which achieves impressive results by compressing

parameters over 80 times. Regarding [4], a GAN compres-

sion method was designed using knowledge distillation, and

a triplet loss was also employed to train the discriminator.

Fu et al. [7] used neural architecture search and knowledge

distillation in combination and implemented a GAN com-

pression method called Auto-GAN. Li et al. [22] developed

a GAN compression algorithm based on differentiable mask

and co-attention. Jin et al. [19] introduced a new generator

structure, and then implemented a GAN compression so-

lution via the pure algorithm. Wang et al. [35] proposed

a GAN compression framework by combining knowledge

distillation, quantization training, and channel pruning.

2.2. Knowledge Distillation

Knowledge Distillation. Knowledge distillation is an

essential model compression method, and its function is to

distill and extract the knowledge contained in an already

trained model named teacher into another model named

student. Using the output of the logits layer of teacher

to guide the training of student was proposed by [15] in

2015. Romero et al. [31] proposed FitNets, which marked

the beginning of feature-based knowledge distillation. The

majority of existing feature-based knowledge distillation

methods [13, 27, 28, 34] have only adopted a one-to-one

manner, that is, the training of the corresponding stage of

the student is instructed with the knowledge of the teacher

network at the same stage. Some works [42, 44] attempt to

use multi-layers in the same stage.

Cross-stage Distillation. The first cross-stage based

knowledge distillation is knowledge review proposed

by [5], which is excellent work for knowledge distillation.

However, this method involving more layers of knowledge

is not the same as the proposed ACKD in more dense man-

ner, and does not deal with multiple layers of knowledge in

a more fine-grained and targeted manner.

Self-Distillation. Self-distillation was first proposed

by [46], in which the teacher and student have the same

network structure. Hou et al. [16] used self-distillation for

lane detection and Hahn et al. [12] explored the capacity

of self-distillation for natural language processing. Our

paper is the first to apply and validate self-distillation for

the generative models.

3. Method

3.1. Framework Overview

The framework is illustrated in Fig. 3. GT and DT

denote the generator and discriminator of teacher, respec-

tively, while GS and DS represent corresponding student.

GT and GS have the same depth and are divided into differ-

ent stages using the same method. (T1, T2,. . . , Tm) and (S1,

S2,. . . , Sm) represent the different stages of GT and GS . As

shown in Fig. 3 (b), for a certain stage of GT , knowledge in

the shallow stages before it is the accumulation knowledge.

GS receives the knowledge from both the same stage of

GT and the corresponding accumulation knowledge. Under

the guidance of the deep-stage knowledge of GT , the

accumulation knowledge is effectively and purposefully

selected, organized and integrated through ACK-A, and

then fused with the deep-stage knowledge through ACK-

F. The knowledge after fusion is used to instruct GS on the

training of the corresponding stage.

For the supervision of losses, as shown in Fig. 3 (a), GS
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Figure 4. The illustration of modules in ACKD. (a) is the pipeline

of ACK-A, (b) is the structure of ACK-F. c© denotes the channel-

wise concatenation, +© denotes the element-wise sum, and conv

block denotes several convolution operations.

is only allowed to view GT instead of both GT and the

ground truth. Meanwhile, given that DT holds a significant

amount of related prior knowledge that can be used to guide

the training of GS , this work takes full advantage of it. The

learning of Texture loss of GS is supervised by DT to better

learning of the texture feature from GT .

3.2. Accumulation Knowledge Distillation

Fig. 4 (a) illustrates the pipeline of ACK-A. For the

purpose of effective and targeted organization of accumula-

tion knowledge, the process of ACK-A is conducted under

the guidance of its corresponding deep-stage knowledge.

Firstly, knowledge of different stages is guided by deep-

stage knowledge to separately and independently conduct

spatial attention. Such a process is referred to as local

ACK-A, which marks the key points of knowledge in

different stages of accumulation knowledge with different

perspectives. Subsequently, all the outputs of local ACK-

A are concatenated together and jointly conducted channel

attention under the guidance of knowledge in deep stage.

Such process is global ACK-A, which ranks the importance

of knowledge of all stages together.

The following is the process of ACK-A in detail. For

the sake of brevity, the reshaping feature map in related

operations is omitted. Given Ti ∈ R
C×H×W (C, H and

W denote the channel number, height and width of feature

map, respectively ), and Tj is set to represent one of the

shallow stages of Ti. For the purpose of obtaining the

spatial attention map Alocal
j ∈ R

1×H×W for Tj under the

guidance of Ti, query vector qlocal
i→j from Ti, and key vector

Figure 5. The illustration of ACK-A. The left part is the diagram

of local ACK-A generating spatial attention map, the right part is

the diagram of global ACK-A generating channel attention map.

×© denotes the matrix multiplication operation.

kj and value vector qj from Tj are obtained as follows:

qlocal
i→j = fi→j((φ

HW (WiTi)))

kj = fkj (φ
HW (Wkv

j Tj))

vj = fvj (φ
HW (Wkv

j Tj)),

(1)

where φHW represents the global average pooling layer

which is used for obtaining global spatial semantic infor-

mation, Wi and Wkv
j represent the 1×1 convolution layers

and fi→j , fkj and fvj represent the full connection layers

which are used to obtain the targetd vector..

Afterwards, as shown in Fig. 5, the cross-attention mod-

ule [41] is adopted to establish the relationship between Ti

and Tj , outputting it as dynamic weight. Subsequently, the

spatial attention map Alocal
j which indicates the importance

of each pixel in guiding student learning for Tj , and Klocal
j

can be obtained by means of the following:

Alocal
j = σ(WjTjA(qlocal

i→j ,kj ,vj))

Klocal
j = Alocal

j Tj ,
(2)

where Wj is a 1×1 convolution layer, σ is the sigmoid

function, A is the cross attention module [41].

When the local ACK-A is completed for all stages of

accumulation knowledge, their outputs are concatenated

and denoted as Ksa
i . Next, global query vector q

global
i

from Ti, key vector ksa
i and value vector vsa

i from Ksa
i

are obtained by means of the following:

q
global
i = fi((φ

C(WiTi)))

ksa
i = fksa−i(φ

C(WkvKsa
i ))

vsa
i = fvsa−i(φ

C(WkvKsa
i )),

(3)

where φC represents the channel-wise pooling which is

used for obtaining global channel semantic information, fi,

fksa−i and fksa−i represent the full connection layers and Wi

and Wkv represent the 1×1 convolution layers.

Then, the channel attention map A
global
i ∈ R

C×1×1 as

shown below and Kca can be obtained:

A
global
i = softmax(Wsa

i Ksa
i A(qglobal

i ,ksa
i ,vsa

i ))

Kca = A
global
i Ksa,

(4)
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where W sa
i denotes a 1×1 convolution layer.

After the aforementioned operations, targeted reorgani-

zation of accumulation knowledge can be obtained, which

is then fused with Ti through ACK-F (as shown in Fig. 4

(b)). As a result, the available ACKD loss is:

Lackd =

m∑
||Fusion(Ti,K

ca
i ),WS(Si))||1, (5)

where WS represents a 1×1 convolution layer, used to deal

with the different shapes of features of GT and GS . ||||1
denotes L1 distance, Fusion represents ACK-F.

In regard to self-distillation, student generator equips

exactly the same network structure as teacher generator. T ′

i

is used to represent the corresponding stage in the student

generator, and the following loss can be obtained:

Lackd−self =
m∑

||Fusion(Ti,K
ca
i ), T ′

i ||1.
(6)

3.3. Training objectives

Different from knowledge distillation for tasks such as

image recognition [18, 25] and object detection [3, 11],

which provide supervision for student model training jointly

using both the intermediate features of the teacher and the

ground truth, for the compressed student generator, all the

supervision on the losses comes from GT . This study

is not the first one to adopt ground truth free setting for

cGANs compression. [30] also uses this setting and gives

the explanation that such method can reduce the difficulty

of training. However, [30] dose not give detailed reasons

and ablation experiments. Nonetheless, this study wants to

give a point of view. Compared with tasks such as image

recognition and object detection, the answer of cGANs is

not unique. It is a correct output result just as long as

the output image conforms to the cognitive common sense

of human. However, every detail or texture of the output

image of GT remaining the same as the ground truth cannot

be guaranteed. Therefore, when the parameters of GS

is relatively small, as the learning capacity is limited, in

which case if there is a gap between the supervision from

knowledge of the intermediate layers of teacher and ground

truth images, then the training of GS will be affected.

This work adds Texture loss and SSIM loss to the

original loss method in [17, 48]. The performance dif-

ferences among various models of cGAN mainly lies in

image texture, which is attributed to the fact that cGAN

typically generates or modifies texture based on given

information. Therefore, it is essential to emphasize the

texture features for cGAN compression. SSIM is capable

of making the generated images better conform to human

visual perception and present more details.

Given input image X , and GT (X) and GS(X) are

denoted as gt and gs. The SSIM loss [40] is as follow:

Lssim = ||SSIM(gt)− SSIM(gs)||1. (7)

F
ID

edges shoes

horse zebra
maparial

Figure 6. The illustration of the performance of self-distillation

using ACKD. When the value of abscissa is 0, the FID is the

performance of the original teacher generator.

The reconstruction loss provides pixel-wise supervision.

Lrecon = ||gt − gs||1. (8)

The total KD loss is as folllow:

LKD = λreconLrecon + λssimLssim, (9)

where λrecon and λssim are applied to balance losses.

The Texture loss provides supervision on texture feature.

Ltexture =

k∑
||Φ(Di

T (gt))− Φ(Di
T (gs))||1,

(10)

where Di
T denotes the ith layer activation in DT , Φ denotes

the gram matrix.

The adversarial loss is also applied.

Lgan =EX [log(1−DS(X,GS(X)))]

+ EX,GT (X)[log(DS(X,GT (X)))].
(11)

The overall training objectives are by follow:

L =λackLackd + LKD + λtexLtexture + Lgan, (12)

where λack and λtex are adopted as weights for losses.

4. Experiments

4.1. Experimental Settings

Models. Following the previous cGANs compression

work, the compression experiments are performed on

Pix2Pix [17] and CycleGAN [48]. The network structure

is the same as that of [21, 22, 30].

Datasets Description. Three of the most commonly uti-

lized datasets for cGANs compression research are adopted

for the experiments, which facilitates the acquisition of

baseline models for comparison. (1) The horse→zebra [48],
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Table 1. Comparison with other cGANs compression methods on

the horse→zebra. CR represents compression ratio.

Method MACs (CR) Parameters (CR) FID ↓

Original [48] 56.8G (1.0×) 11.3M (1.0×) 61.53

Co-Evol [20] 13.4G (4.2×) 96.15

GAN-Slim [35] 11.34G (5.0×) 86.09

AGD [7] 6.39G (8.9×) 83.60

GAN Comp [21] 2.67G (21.3×) 0.34M (33.2×) 64.95

DMAD [22] 2.41G (23.6×) 0.28M (40.4×) 62.96

CF-GAN [36] 2.65G (21.4×) 62.31

Gong et al. [9] 1.57G (36.2×) 0.22M (51.4×) 60.49

CAT [19] 2.55G (22.3×) 0.43M(26.3×) 60.18

GCC [23] 2.40G (23.7×) 59.31

OMGD [30] 1.408G (40.3×) 0.137M (82.5×) 51.92

Ours-a 2.904G (19.6×) 0.296M (38.2×) 38.69

Ours-b 1.408G (40.3×) 0.137M(82.5×) 39.67

Ours-c 1.127G (50.4×) 0.107M (105.6×) 40.62

Ours-d 0.867G (65.5×) 0.081M (139.5×) 45.24

the input is a horse image and the output is a zebra image.

(2) The edges→shoes [43], the input is a sketch of the

structure of a shoe, while the output is an image of the actual

shoe. (3) The map→aerial [17], the input is an map image,

the output is an aerial photo. CycleGAN compression

experiments are performed on the horse→zebra, while

Pix2Pix compression experiments are conducted on the

other datasets. To ensure a fair comparison, the data setting

is identical to [19, 21, 22, 30].

Performance Metric. For obtaining baseline metrics to

evaluate ACKD, we follow the previous cGAN compression

work [19, 21, 22, 23, 30, 36] to apply the Fréchet Inception

Distance (FID) [14] as the performance metric for the three

datasets. FID estimates the distribution between images

using pre-trained Inception [33] and a lower FID value

indicates better generator performance.

Implementation Details. The experiments are con-

ducted using Pytorch. For the edges→shoes, the batch size

is set to 4, while for the other two datasets, the batch size

is set to 1. Consistent with previous work, the input images

are resized to 256×256. Adam is applied as the optimizer.

As with [19, 21], the student discriminator inherits the pre-

trained weights of the teacher discriminator.

4.2. Experimental Results

4.2.1 Quantitative Results

The self-distillation experiments using ACKD are con-

ducted, and the original teacher generators are the pre-

trained models provided by [21]. After the improvement,

the teacher generator may potentially further improve itself

by self-distillation again. Based on the teacher model

obtained by last self-distillation, the self-distillation ex-

Table 2. Comparison with other cGANs compression methods on

the edges→shoes. CR represents compression ratio.

Method MACs (CR) Parameters (CR) FID ↓

Original [17] 56.8G (1.0×) 11.3M (1.0×) 24.18

GAN Comp [21] 4.81G (11.8×) 0.70M (16.1×) 26.60

GF-GAN [36] 4.77G (11.9×) - 24.13

DMAD [22] 4.30G (13.2×) 0.54M (20.9×) 24.08

OMGD-b [30] 1.408G (40.3×) 0.137M (82.5×) 25.88

OMGD-a [30] 2.904G (19.6×) 0.296M (38.2×) 21.41

Ours-a 2.904G (19.6×) 0.296M (38.2×) 16.46

Ours-b 1.408G (40.3×) 0.137M (82.5×) 22.10

Ours-c 1.127G (50.4×) 0.107M (105.6×) 23.24

Ours-d 0.867G (65.5×) 0.081M (139.5×) 26.61

Table 3. Comparison with other cGANs compression methods on

the aerial→map. CR represents compression ratio.

Method MACs (CR) Parameters (CR) FID ↓

Original [17] 56.8G (1.0×) 11.3M (1.0×) 47.76

GAN Comp [21] 4.68G (12.1×) 0.75M (15.1×) 48.02

Gong et al. [9] 4.56G (12.5×) 0.51M (22.2×) 47.32

CF-GAN [36] 4.50G (12.6×) - 46.15

CAT [19] 4.59G (12.4×) 0.54M(20.9×) 44.96

Ours-a 2.904G (19.6×) 0.296M (38.2×) 41.35

Ours-b 1.408G (40.3×) 0.137M (82.5×) 43.28

Ours-c 1.127G (50.4×) 0.107M (105.6×) 44.82

Ours-d 0.867G (65.5×) 0.081M (139.5×) 49.94

periment is repeated until the performance of the teacher

generator is no longer improved or the improvement is small

enough to be neglected. Fig. 6 illustrates the results on three

datasets. The performance of the teacher generator has been

remarkably improved after 4 or 5 times of self-distillation

using ACKD.

Based on the improved teacher generator by self-

distillation, the experiments of generator compression are

embarked on. This study trains the models with varying

compression degrees on the three datasets. The evaluation

results for the horse→zebra are presented in Tab. 1. It is

noticeable that our models outperform all previous cGAN

compression methods by a considerable margin. When

ACKD compresses parameters 139.5× and MACs 65.5×,

our model still maintain the superior performance. Tab. 2

shows the experiment results on the edges→shoes. Under

the same compression degree, it is evident that ACKD has

better performance. Additionally, competitive results can

still be obtained when the parameters are compressed to

over 100× and the MACs are compressed to over 50×.

According to Tab. 3, in comparison to the alternative com-

pression methods, ACKD demonstrates clear advantages on

the map→aerial. With 105.6× parameters compression and

50.4× MACs compression, FID achieved by ACKD still

1307



������ �	
�
�������
��	����������������
������ �!"��������

"�#�����	���
��
��	�������$������%��
�����%� &"��%�����

��'
��	������$����% ����
�����%���"��%%����

��"(
��	�������&���!%����
�������$�!"��$�����

��)(����	��
��	������!������*����
�������! &"�� �����

������ "	�����'	��+� �	
�
�������
��	����������������
������ �!"�������

"�#�����	���
��
��	������&����������
�����$� !"���%����

��'
��	�������$���%��*��
�����$��*"���%�$��

��)(����	��
��	�������&������� ��
��������%&"�����$��

������ "	�����'	��+� �	
�
�������
��	����������������
������ �!"�������

"�#�����	���
��
��	������&����� ����
�����$�!�"�����!��

��"(
��	������%* ����!�%��
������%�*�$"���*� ��

��)(����	��
��	�����%* ����!�%��
������%�*�$"���*� ��

Figure 7. Qualitative comparisons with other methods. The left upper part are the compression results on the map→aerial, the left lower

part are experimental results on the edges→shoes and the right part are the visualization results on the horse→zebra. With the same or

fewer parameters, the images achieve by ACKD have better visual fidelity.

remains superior to other cGANs compression methods.

4.2.2 Ablation Study

In order to verify the effectiveness of each component in

ACKD, the ablation study is conducted on edges→shoes

for both teacher generator self-distillation and student gen-

erator compression, and various setting experiments are

carried out as follows: (a) w/o ACK-A, remove ACK-

A and apply convolution layers to fuse the accumulation

knowledge. (b) w/o Local ACK-A, remove local ACK-A.

(c) w/o Global ACK-A, remove global ACK-A. (d) Local

CA, knowledge of different stages is conducted channel

attention independently. (e) Global SA, knowledge of

different stages is unified and conducted spatial attention

jointly. (f) w/o guidance, ACK-A is performed without

the guidance of the corresponding deep-stage knowledge.

(g) C-KD, the conventional feature-based knowledge distil-

lation method, namely the one-to-one method, is applied.

(h) Less stages, the number of stages of accumulation

knowledge is reduced, involving only adjacent stage. (i)

only w/ Lori , the student generator is trained with Lackd

and the original loss method in [17]. (j) w/o Lssim, remove

SSIM loss. (k) w/o Ltexture, remove Texture loss. (l) w/o

gt-free, besides Lackd, all supervision on other losses comes

from the ground truth.

According to the experimental results in Tab. 4, the

Table 4. The ablation study about the effective of ACK-A and

accumulation knowledge for self-distillation and compressing

parameters 82.5× on edges→shoes.

Tag Method Self-Distillation Compression

(a) w/o ACK-A 20.13 24.78

(b) w/o Local ACK-A 19.23 24.20

(c) w/o Global ACK-A 19.69 24.34

(d) Local CA 19.81 23.79

(e) Global SA 18.99 23.83

(f) w/o guidance 19.39 23.89

(g) C-KD 20.85 25.81

(h) Less stages 19.60 24.05

ours 18.47 22.10

Table 5. The ablation study about the loss methods for self-

distillation and compressing parameters 82.5× on edges→shoes.

Tag Method Self-Distillation Compression

(i) only w/ Lori 19.32 23.15

(j) w/o Lssim 18.90 22.84

(k) w/o Ltexture 19.02 22.96

ours 18.47 22.10

following observations and analysis can be drawn. The

performance of the model is degraded to different degrees

when ACK-A or some of its modules are removed or
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Figure 8. Qualitative comparisons for self-distillation. The second

column is the original teacher generator, while the third column is

the teacher generator obtained by self-distillation using ACKD.

Table 6. The ablation study about the gt-free for compressing

parameters 82.5× on edges→shoes.

Tag Method Compression

(l) w/o gt-free 47.38

ours 22.10

the implementation of some modules is modified. It

demonstrates that although accumulation knowledge is able

to help model training, a well-organized and appropriate

implementation is crucial for better utilization. When

the guidance of corresponding deep-stage knowledge is

removed, the experimental results decline as a consequence

of the absence of more targeted attention operations. The

experimental results degrades when the number of stages

decreases, suggesting that more accumulation knowledge

can be beneficial to the training of the model. Benefiting

from the teacher with improved performance, even the

compressed generator obtained by conventional knowledge

distillation method can still achieve a competitive result.

Nevertheless, compared to ACKD, the conventional knowl-

edge distillation shows significantly less improvement.

Tab. 5 presents the ablation study conducted on loss

functions. Notably, even when the model is trained using

only Lackd and the original loss in [17], there is still

a significant improvement for the performance of model,

thus demonstrating the effectiveness of ACKD for cGANs.

Additionally, both Lssim and Ltexture are capable of fur-

ther improving the performance, thereby it is beneficial to

incorporate these loss functions in the training process.

The experimental results for gt-free are reported in

Tab. 6. It is noteworthy that the performance of student gen-

erator exhibits a significant decline when the supervisions

of some losses switch from teacher generator to ground

truth. This observation indicates that when the number of

parameters of generator is small and its learning perfor-

mance is relatively low, the existence of a certain gap in

the supervision of different losses will exert a considerable

influence on the training of compressed generators.

4.2.3 Qualitative Results

In each of the three datasets, the model with the most pio-

neering advantages in our approache is selected to conduct

the qualitative analysis with other methods.Fig. 7 shows

that, on the map→aerial dataset, the images generated by

ACKD have superior texture effect of road, rivers and

buildings compared to other models, especially in the river

regions, where ACKD generates more realistic and clearer

rivers. On the edges→shoes dataset, the leather shoe images

achieved by ACKD have better leather material gloss and

fewer artifacts than other images. On the horse→zebra

dataset, ACKD generates images with better performance

on the black and white stripe texture of zebra skin compared

to other methods, and other methods preserve more of the

original horse skin color from the input images.

Fig. 8 illustrates the qualitative comparisons of the

teacher generator after performance improvement with self-

distillation using ACKD. It is evident that the images gener-

ated by our teacher generator have a tangible improvement

in the quality, including better texture effects and less

artifacts than the original teacher.

5. Conclusion

In this paper, a novel cGANs compression method is

introduced. The proposed ACKD not only facilitates the

training of the compressed generator but also improves

the performance of the teacher generator through self-

distillation. Experimental results demonstrate that efficient

and reasonable knowledge extraction from the intermediate

layers of the teacher generator can lead to promising results

in guiding the training of the compressed generator.
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