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Abstract

The demand for efficient processing of deep neural net-
works (DNNs) on embedded devices is a significant chal-
lenge limiting their deployment. Exploiting sparsity in the
network’s feature maps is one of the ways to reduce its infer-
ence latency. It is known that unstructured sparsity results in
lower accuracy degradation with respect to structured spar-
sity but the former needs extensive inference engine changes
to get latency benefits. To tackle this challenge, we propose
a solution to induce semi-structured activation sparsity ex-
ploitable through minor runtime modifications. To attain
high speedup levels at inference time, we design a sparse
training procedure with awareness of the final position of
the activations while computing the General Matrix Mul-
tiplication (GEMM). We extensively evaluate the proposed
solution across various models for image classification and
object detection tasks. Remarkably, our approach yields a
speed improvement of 1.25× with a minimal accuracy drop
of 1.1% for the ResNet18 model on the ImageNet dataset.
Furthermore, when combined with a state-of-the-art struc-
tured pruning method, the resulting models provide a good
latency-accuracy trade-off, outperforming models that solely
employ structured pruning techniques. The code is available
at https://github.com/Deeplite/activ-sparse.

1. Introduction
Deep neural networks (DNNs) have become the go-to

state-of-the-art solution in most domains of machine learn-

ing in recent years, like computer vision [27], natural lan-

guage understanding [47] and generative AI [26]. Oftentimes,

the computational footprint of DNN models limits their us-

age on low-resource embedded processors. Compression

and acceleration of such models is an active research area

aimed at bridging this gap [3] and could be generally catego-

rized into pruning [29, 34, 52], tensor decomposition [33],

quantization [7, 41], development of lightweight neural net-

works [21, 22, 37], and runtime optimizations [2, 15].

Pruning remains a prominent compression method, partic-

ularly evidenced by recent strides in structured weight prun-

ing, achieving state-of-the-art latency-accuracy trade-offs

across diverse computer vision tasks [8]. However, existing

research in pruning has predominantly focused on remov-

ing redundant model parameters, overlooking the potential

inherent sparsity within feature maps, commonly referred

to as activations. Activation sparsity is naturally intrinsic in

DNNs with ReLU-like activation functions to a certain ex-

tent [31,44]. Nevertheless, this sparsity, tied to the functional

form of the ReLU non-linearity, retains an unstructured na-

ture and lacks homogeneity across layers. Several methods

have emerged to artificially augment activation sparsity dur-

ing training, enhancing model generalization and robustness

through regularization techniques [10, 51]. However, such

methods selectively remove blocks of connected pixels solely

during model training, maintaining denseness at inference

time and consequently forfeiting opportunities for model

inference acceleration. In contrast, to achieve faster model

execution post-training, activation sparsity needs to extend

to inference time as well. A variety of works explored data-
dependent mechanisms to exploit activation sparsity at run-

time, dynamically selecting the pixels according to the com-

plexity of the input sample to process [5,43,46]. While these

approaches efficiently reduce computations with minimal

accuracy loss, effectively integrating them into low-power

embedded devices can be challenging due to the required

architectural modifications. In contrast, data-free strategies

employ custom regularization with proper hard-thresholding

to establish a fixed and constant sparsity pattern [9,28]. Such

a strategy guarantees consistent speedup across distinct in-

put samples. However, the absence of structured regular

patterns among zeroed elements confines these model accel-

eration benefits to dedicated sparse inference engines (e.g.,

DeepSparse [28]).

To tackle these challenges, we propose an efficient DNN

compression pipeline that consists of (i) a novel training

scheme that induces semi-structured sparsity in activation

feature maps and (ii) an easy-to-implement runtime modi-

fication that allows exploiting the semi-structured sparsity

of the network’s activations at inference time. The proposed

sparsity pattern for feature maps is structured in the channel

dimension, but unstructured in the spatial dimension. That is,

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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a set of individual pixels are zeroed across all channels of the

feature map. We suggest an effective way to construct such

sparsity masks during training and demonstrate how these

sparse masks can be used by the runtime during inference.

With XNNPACK [13] as an example library, we implement

a runtime modification that transforms the semi-structured

sparsity of activations into effectively structured sparsity,

resulting in reduced computational load through the use of

lower ranks in General Matrix Multiplication (GEMM).

To summarize, the primary focus of this study could be

outlined as follows:

• We propose a novel training scheme inducing semi-

structured activation sparsity in deep neural networks

via the propagation of random spatial masks.

• We show that sampling of random masks during train-

ing followed by mask freezing improves the perfor-

mance of DNNs under the constraint of semi-structured

sparsity in activations.

• We demonstrate the effectiveness of the proposed train-

ing scheme on image classification and object detection

tasks and show how it can be combined with structured

pruning to get a competitive accuracy-latency trade-off.

• We provide an example of an easy-to-implement run-

time modification on top of XNNPACK [13] that allows

obtaining latency speedup of up to 2× with relatively

low sparsity rates (under 50%).

2. Related Work
Over the past few years, significant progress has been

made in the field of deep learning model compression and

acceleration, aimed at improving the efficiency of deep neu-

ral networks during inference by reducing their memory

and computational requirements. Pruning [34, 52] focuses

on removing redundant connections or units in the model

architecture based on heuristic importance criteria, resulting

in streamlined models with improved efficiency. Quantiza-

tion [24,37] tackles model size compression by reducing the

numerical precision of weights and activations from standard

32-bit floating-point representations to lower bit-widths such

as 8-bit, or in more extreme cases, 2-bit or 1-bit. Knowledge

distillation [18, 50] involves transferring knowledge from

a larger, more complex network to a smaller one, allowing

the compact model to attain comparable performance to its

larger counterpart. Hand-crafted models, exemplified by ar-

chitectures like MobileNetV3 [20], EfficientNetV2 [45] and

ShuffleNetV2 [36], are often designed with custom oper-

ations and blocks optimized for faster inference, thereby

enhancing overall efficiency. Furthermore, apart from direct

model modifications, there are other strategies aimed at im-

proving the efficiency of deep neural networks. Graph order

rewriting involves transforming the network’s computational

graph to optimize its execution flow, thus enhancing over-

all performance [1]. Custom runtime optimization [2, 15]

aims to maximize model performance at the operator level,

harnessing the target hardware’s potential. It becomes in-

dispensable in cases where existing operators or processing

units cannot directly execute certain model structures, such

as unstructured sparse or low-bit quantized models, requiring

specific adaptations for seamless and efficient execution.

2.1. Pruning

Pruning methods can be usually categorized according to

their granularity [19] or to their importance policy. In terms

of granularity, pruning can usually operate with unstruc-
tured or structured sparsity patterns. Unstructured pruning

involves removing single connections in the network based

on their importance [16, 38]. Targeting individual weights

offers flexibility in achieving high accuracy but may lead

to challenges in efficient inference due to irregular memory

access patterns. A custom runtime with specialized sparse

kernels is often necessary to achieve speedup in case of

unstructured sparsity (e.g., DeepSparse [23]). Conversely,

structured pruning [30, 40] involves the removal of entire

channels or filters from the network, which can pose chal-

lenges during model training due to its more substantial

impact on accuracy. However, pruning at this level of gran-

ularity can significantly enhance model efficiency in many

existing runtimes, resulting in notable reductions in storage

requirements and accelerated inference latency.

Pruning policies encompass various schemes and criteria

for efficient model compression. Magnitude-based criteria

rely on the absolute weight values to identify less impor-

tant parameters [16, 35], while first-order methods leverage

gradients for importance ranking [4, 39]. Some approaches

involve one-time pruning followed by retraining [17], while

others adopt iterative pruning techniques [29]. Recent re-

search has explored the efficacy of various pruning methods,

offering valuable insights to enhance model compression

techniques [48]. Notably, DepGraph [8] introduced a novel

method for general structural pruning of arbitrary architec-

tures, efficiently removing coupled parameters for model ac-

celeration. The results demonstrate its superior performance

compared to many other techniques.

2.2. Activation Sparsity

Another crucial sphere of inquiry revolves around ex-

ploiting the inherent sparsity present within neural network

feature maps, particularly in the context of computer vision

applications. The induction of activation sparsity stands out

as a pivotal technique for latency reduction, providing a syn-

ergistic complement to weight pruning strategies. Sparsity

is naturally present in feature maps due to the presence of

ReLU-like activation functions which force feature maps
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Figure 1. Scheme of induced semi-structured activation sparsity with the proposed sparsity pattern in the in tensor vs. im2col spaces.

to become zero when their values fall below certain thresh-

olds [28, 31].

The majority of efforts in the literature have been di-

rected towards harnessing activation sparsity through data-
dependent mechanisms, tightly linked to input complexity.

This strategy entails an informed masking approach, where

the sparsity pattern is dynamically generated based on the

distribution of less informative pixels within the input sam-

ples. Consequently, a distinct sparsity pattern is generated

for each input. Some of these techniques necessitate archi-

tectural adjustments for on-the-fly pattern generation at run-

time [5, 43, 46]. Unfortunately, these requirements signifi-

cantly hamper their effectiveness when deployed on resource-

constrained devices. As a result of these constraints, many

of these works often lack real-world hardware validation or

predominantly demonstrate latency improvements on higher-

performance hardware configurations. For instance, the effi-

cacy of sparsity has been pronounced in GPU deployment

scenarios, yielding impressive latency enhancements such as

up to 1.88× acceleration on a ResNet50 architecture using a

Mali GPU [42]. Similarly, the work by Xu et. al [49] tailored

custom kernels for Nvidia GPUs, resulting in performance

acceleration of 3-4×.

In more recent investigations, novel regularization strate-

gies have emerged to induce activation sparsity featuring a

regular and consistent pattern, regardless of varying input

samples (data-free strategies). Georgiadis et. al [9] proposed

to combine sparsity, quantization, and entropy encoding of

activation maps to achieve up to 1.6× inference acceleration

and up to 6× reduction of the memory footprint for architec-

tures like InceptionV3 and MobileNetV1. Kurtz et al. [28] in-

troduced a new regularization technique and threshold-based

sparsification based on a parameterized activation function

to maximize sparsity with minimal accuracy drop. While

these works are the most similar to our approach, they pre-

dominantly emphasize unstructured sparsity among zeroed

elements. As a consequence, these model acceleration ben-

efits remain confined to dedicated sparse inference engines

like DeepSparse [28].

2.3. Low-Rank GEMM

The widely adopted im2col-based General Matrix Mul-

tiply (GEMM) technique converts feature maps into column-

wise matrices. This transformation paves the way for stream-

lined matrix multiplication with weight matrices, thus fos-

tering parallel computations and refining the convolutional

operations. Moreover, the low-rank GEMM approach fo-

cuses on reducing the number of rows (or columns) in one of

the two matrices, aiming to decrease computational complex-

ity and memory demands. Dong et al. [5] devised a trainable

module learning collaborative kernels to selectively skip ac-

tivation pixels during computation, yielding a 1.2× speedup.

Their analysis focused on two models and relatively simple

datasets. In the context of video processing, the Skip-conv

network [14] leverages residual images, creating sparsity

exploited by low-rank GEMM. This approach suits moving

objects, producing notable sparsity. Liu et al. [32] applied

sparse adaptive inference for super-resolution, more similar

to our approach, but just tailored to low-rank GEMM for

specific patches crucial in super-resolution tasks.

3. Methodology

GEMM-based implementation of the convolution oper-

ation is typically favored over the direct one as GEMM

enables faster and more efficient matrix operations, making
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it a preferred choice for deep learning inference engines.

Reducing the rank of the matrices in GEMM operations is

generally directly correlated with faster computation, espe-

cially on low-power CPUs. Our proposed technique aims

to reduce the rank of the input activation matrix (activation

feature map in the im2col space) to speed up model infer-

ence. This is pursued by inducing semi-structured sparsity in

the network at training time which will be exploited through

lower-rank GEMMs at inference time.

Figure 1 shows the convolution-as-GEMM implementa-

tion for convolutional layers, where both weights (green) and

activations (blue) are unfolded respectively from 4-D and

3-D tensors to 2-D matrices. The picture shows the standard

convolution operation both in the tensor space (i.e., the stan-

dard space before the reshaping) and in the im2col space.

Each of the n filters is reshaped into a row of k2c size, where

k is the kernel size and c is the number of channels. In the

same way, the input feature map is reshaped into a k2c× z
matrix, where each column is composed of all the pixels

of the input sliding window (k2c). The number of rows z
depends on the convolution parameters (e.g., stride, padding,

and dilation values). Then a standard matrix multiplication

of weights and activation matrices is computed to generate

an n× z output matrix.

In order to reduce the rank of the activation matrix, a sub-

set s < z of columns needs to be removed. These columns

correspond to elements covered by the sliding local tiles

(covering all channels) used during the convolution in the

tensor space. To remove the columns at compute time, during

each convolution, a subset s of the sliding local tiles needs

to be skipped: a binary mask with a im2col-based pattern

is used to apply hard thresholding to the activation tensors,

where the s sparse columns of the activation matrix will be

directly skipped during inference. In the two following sub-

sections, we show how to induce (at training time) and how

to exploit (at inference time) such semi-structured activation

sparsity.

3.1. Training

To induce activation sparsity with the im2col pattern,

we need to group activations in the tensor space according to

their final position after the im2col reshaping. We consider

this approach as semi-structured as it is unstructured in the

width × height space (spatial dimensions of the feature

map) but it is structured across the channel dimension.

Pruning activations with this pattern is a more delicate

procedure compared to standard unstructured weight prun-

ing, as the elements of the activation feature map cannot be

directly removed from the model. The sparsified elements in

the activations for one convolutional window/tile (i.e., one

im2col column) could be kept dense (unmasked) for the

next windows/tiles. Figure 2 demonstrates this concept for a

case when a single window (tile) is selected to be sparsified

� � � �
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Figure 2. Example of the im2col procedure: input activations

(left) and the activation matrix after transformation (right). Note

that masking (highlighted in black) a sliding tile of the convolution

affects only a single column in the reshaped matrix. In the first

column, pixels B and F are masked, while they remain non-zero

in the second column.

(masked). In this case, the pixels {A,B,C,D} are dropped

from the computation (including all the pixels/elements with

the same (width, height) coordinates in the other channels).

This results in the first column of the im2col matrix be-

coming zero, which reduces the rank of the matrices to be

multiplied. However, dropping (masking) this block from

the feature map altogether should also affect the second col-

umn of the matrix, which is not selected to be pruned. For

this reason, the pixels B and F will be masked for the first

column but will be kept non-zero in the second one.

Introducing activation sparsity in deep neural networks

for computer vision is challenging due to the varying posi-

tions of the regions of interest in images. Uniformly enforc-

ing sparsity with a fixed pattern across data samples can lead

to information loss for some images and retention for others.

Achievable sparsity levels (while keeping accuracy degra-

dation low) are often limited compared to weight sparsity,

due to the dynamic and context-dependent nature of activa-

tion patterns in different input images. It has been shown

that inducing structured sparsity through sampling random

masks [10] can act as a regularizer that enhances the model’s

generalization and robustness. We found sampling random

masks during training can reduce the accuracy loss when the

sparsity rates are kept relatively low. The random ranking

mechanism ensures that the selection of pixels to be masked

is unbiased, contributing to the robustness of the training

process. We propose a novel custom random masking ap-

proach, which involves randomly selecting a percentage of

pixels from the input image to be masked. The resulting

input image mask is then propagated consistently across all

layers (employing pooling operations when downsampling

is necessary). By propagating this initial random sparse pat-

tern layer-to-layer, we ensure the preservation of the same
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masking structure throughout the network. This guarantees

translation invariance across the feature maps of different

layers, even when they have varying resolutions. The pro-

posed custom random mask sampling is a crucial aspect of

our training procedure as it helps the model to prevent over-

fitting to specific patterns and encourage more generalized

learning, yet limiting accuracy loss. The generated binary

masks, specific to each sparsity level, enable the model to

adapt its weights during training, effectively promoting the

benefits of sparsity while maintaining crucial representa-

tional capacity. The training process comprises three key

stages: (i) initially, a few dense pretraining epochs are per-

formed; (ii) subsequently, our masking technique is applied

gradually according to a schedule, incrementing sparsity rate

until the desired target [52] is achieved; (iii) finally, the mask

freezing stage ensues, where binary masks for each layer are

fixed for the rest of the training process, allowing the model

to recover from accuracy loss through more precise updates.

Algorithm 1 outlines our sparse training pipeline. The

algorithm takes the fixed sparsity percentage s as an input

and returns the trained model with a binary constant mask

mask. The pruning scheduler (line 3) controls the switch

between dense (line 8) and sparse forward steps (line 6).

The updateMask (line 4) scheduler sets when to update

or freeze the masks through the getMask function (line

5). This mask is used by maskedForward to induce the

sparsity in the feature maps. At the end of the training, both

the model and the masks are returned (line 11). It needs to be

highlighted that model weights are kept fully dense, and no

weights are pruned. The getMask function plays a critical

role in our sparse training pipeline, as it is responsible for

generating a different binary mask for each forward step.

At first, a random 2-D score is generated according to the

input image resolution (line 13). This is propagated through

the layers, downscaling the resolution when needed (lines

15-16). At last, the function ranks the model’s score and

generates the binary mask (lines 17-19).

3.2. Inference

To accelerate the processing of the models with sparse

activation maps, we implemented custom modifications to

the XNNPACK [13] inference engine. We used TensorFlow

lite (TFLite) [12] built from source with XNNPACK [13] as

a delegate. Given a TFLite model, a binary mask, and layer-

wise sparsity levels as inputs, our inference engine computes

the convolution of sparse activations. Our modifications are

specific to convolutional layers only. The full pipeline con-

sists of three main stages: (i) custom im2col reshaping, (ii)

dense GEMM, and (iii) custom post-processing of the dense

GEMM output.

The first step consists of reshaping the tensors into a 2-D

matrix for activations, as shown in Fig. 1. Considering that

the XNNPACK [13] im2col routine is based on an indi-

Algorithm 1: Sparse Training

1 Function main(model, steps, s):
2 for t in steps do
3 if pruneStep (t) then
4 if updateMask (t) then
5 mask = getMask (model, s)

6 maskedForward (model, mask)

7 else
8 forward (model)

9 backward (model)

10 end
11 return model, mask

12 Function getMask(model, s):
13 score = randomScore2d (model.input res)

14 for layer in model do
15 ratio = input res // layer.res

16 layer score = avg pool2d (score, ratio)

17 idx = rankPixels (layer score)

18 mask = ones like (model)

19 mask[idx] = 0

20 end
21 return mask

22 return

rection buffer [6], we developed a custom transformation to

facilitate the skipping of rows of an indirection matrix. After

this is done, the compute range of the GEMM is downsized

to output size − (sparsity ∗ output size) to enable a

low-rank GEMM in the following step. In the second stage,

standard GEMM is employed, utilizing a low-rank matrix of

activations. However, the subsequent layer assumes dense

activation, necessitating an efficient post-processing stage.

In this implementation, zeroed elements are inserted into

the GEMM output based on the binary masks used in the

initial stage. These modifications follow a consistent pattern

across different inference engines, all designed to work with

commonly used general-purpose processors. For more de-

tailed information on the runtime modifications, please refer

to Appendix A.

4. Results
4.1. Training Setup

The proposed pipeline was validated on several image

classification and object detection datasets, including CI-

FAR100, Flowers102, Food101, and ImageNet for classifica-

tion and PASCAL VOC and Global Wheat for object detec-

tion (further details in Appendix B). We have performed

experiments on ResNet18, ResNet50, and MobileNetV2

architectures for the image classification task, and used

YOLOv5n [25] as a base architecture for the object detection

experiments. Note that a few of the base architectures we
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Sparsity ResNet18 ResNet50 MobileNetV2

Fl
ow

er
s1

02 0% 92.00 92.50 92.57

10% 91.20 (-0.80) 91.80 (-0.70) 91.46 (-1.11)

20% 90.25 (-1.75) 91.02 (-1.48) 90.11 (-2.46)

30% 88.89 (-3.22) 90.13 (-2.37) 88.52 (-4.05)

Fo
od

10
1 0% 82.20 86.17 77.20

10% 81.07 (-1.13) 85.10 (-1.07) 82.35 (-1.77)

10% 80.27 (-1.93) 84.10 (-2.07) 81.04 (-1.32)

30% 78.59 (-3.61) 82.40 (-3.77) 79.32 (-4.80)

C
IF

A
R

10
0 0% 77.20 78.00 73.10

30% 76.37 (-0.83) 77.26 (-0.74) 71.30 (-1.80)

30% 75.30 (-1.90) 75.80 (-2.20) 70.57 (-2.53)

30% 74.11 (-3.09) 74.78 (-3.22) 68.60 (-4.50)

Table 1. Top-1 accuracy result (%) for different architectures on

Flowers102, Food101, and CIFAR100 datasets. The relative infer-

ence speedups are reported in Fig. 3.

Sparsity ResNet18 MobileNetV2
0% 70.53 72.19

10% 70.48 (-0.05) 70.43 (-1.76)

20% 69.42 (-1.11) 69.94 (-2.25)

30% 67.88 (-2.65) 67.92 (-4.27)

Table 2. Top-1 accuracy results for different architectures on Im-

agenet dataset. The relative inference speedups are reported in

Fig. 3.

Sparsity VOC Global Wheat
0% 80.20 96.38

10% 78.08 (-2.12) 96.00 (-0.38)

20% 76.63 (-3.57) 95.49 (-0.89)

30% 74.13 (-6.07) 94.80 (-1.58)

Table 3. mAP50 results for YOLOv5n on VOC and Globat Wheat

datasets. The relative inference speedups are reported in Fig. 3.

used (e.g., MobileNetV2, YOLOv5n) were initially designed

as lightweight efficient architectures, which makes it more

challenging to obtain competitive latency speedup with low

accuracy degradation.

For image classification, we used the training code pro-

vided by Ultralytics [25] with default values of hyperparame-

ters except for the number of epochs (Adam optimizer, initial

learning rate 10−4, 400 epochs, batch size 64). ImageNet

pre-trained weights were used for model initialization for

both the dense baseline as well as for sparse training. We

set the dense training stage to stop at 10% of the training

steps and the freezing stage to start at 90% of the steps. For

object detection experiments, the training code provided by

Ultralytics [25] was also used with default values of hyperpa-

rameters. COCO pre-trained weights were used to initialize

the models both for the dense baseline as well as for sparse

training.

4.2. Sparse Model Deployment

The latency speedup from using semi-structured activa-

tion sparsity was measured on a Raspberry Pi 4B [11] device,

featuring a quad-core ARM Cortex-A72 processor operat-

ing at 1.5GHz, with 4GB of RAM. We ran Ubuntu 18.04

64-bit OS on this platform and GNU gcc version 11.0 for

compilation. For deployment, we used TFLite [12] inference

engine built with XNNPACK [13] delegate with custom

modifications for sparse inference.

4.3. Sparse vs. Dense Model Performance

In this section, we evaluate the efficacy of the semi-

structured activation sparsity approach for enhancing DNN

speed, prioritizing high-speed improvements at the expense

of marginal accuracy degradation.

4.3.1 Low Accuracy Loss Regime

Using the same sparse training procedure, we in-

duced the activation sparsity at three different levels

S = {10%, 20%, 30%}. Table 1 shows that the accuracy

loss is low (under 2.5%) for the first two sparsity rate levels

in image classification tasks, while it is close to 3% for the

highest sparsity rate chosen (30%) depending on the archi-

tecture. ResNet models are found to be more resilient to

activation sparsity compared to MobileNetV2, in fact, they

have an average 1.81% of accuracy loss instead of 2.72% for

MobileNetV2. On the more challenging ImageNet dataset

(Table 2), ResNet18 at 10% sparsity rate provides almost

the same accuracy (−0.05%) as the dense counterpart. For

clarity, we included further details on the training procedure

in Appendix B. To evaluate the generalization capabilities

of our proposed compression pipeline, we carried out ex-

periments for the object detection task using the YOLOv5n

model. The obtained results on VOC and Global Wheat

datasets are summarized in Table 3, showcasing the impact

of compression on accuracy. Notably, results for object detec-

tion appear to be comparable to those of image classification,

with limited mAP50 degradation on a simpler dataset (Global

Wheat) and higher accuracy loss observed on a more large-

scale task (VOC). These findings highlight the effectiveness

of our compression techniques in preserving model accuracy

across different tasks.

4.3.2 High Speedup Regime

In our findings, we observe a consistent trend where ac-

tivation sparsity contributes to notable and reliable speed

improvements throughout the network layers, with the mag-

nitude of the speedup roughly proportional to the degree of

activation sparsity achieved. To visually depict and quantify
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Figure 3. Speed-up vs. sparsity rate for ImageNet, CIFAR100, and VOC datasets on different architectures. Flowers102 and Food101

speed-up results are identical to those of ImageNet.

these results, we present Fig. 3, which illustrates the end-to-

end speedup outcomes for four distinct models: ResNet18,

ResNet50, MobileNetV2, and YOLOv5n.

ResNet18 exhibits a nearly linear relationship between

the sparsity percentage and the speedup for all the sparsity

levels. For, ResNet50, MobileNetV2, and YOLOv5n, due

to the larger amount of layers and complexity, experience a

slightly diminished speedup when compared to ResNet18.

This slight reduction in speedup can be attributed to the

presence of additional steps that involve custom im2col
and post-processing transformations, which offset the gains

obtained from reduced GEMM computations. For ResNet50,

the speedup achieved is approximately 1.75×, while Mo-

bileNetV2 and YOLOv5n attain speedups of around 1.44×
and 1.46×, respectively, all based on 50% sparsity.

In summary, our findings indicate that activation sparsity

within the network layers leads to consistent and significant

improvements in inference latency. The overall trend sug-

gests that activation sparsity offers a valuable approach to

enhancing the efficiency of deep learning models across a

variety of architectures.

4.4. Ablation Study

To comprehensively evaluate the efficacy of our proposed

sparse training scheme, we conducted two ablation studies

focusing on the custom features involved to reduce accuracy

loss: mask propagation and mask freezing. For both studies,

we trained ResNet18 on the Flowers102 dataset using the

same hyperparameters described in the Subsection 4.1.

Mask Propagation Figure 4 depicts the comparison of

accuracy and sparsity achieved by the ResNet18 model with

and without mask propagation. The plot clearly demonstrates

the advantages of employing the mask propagation method,

revealing a significant improvement in the model’s resilience

to sparsification. The use of mask propagation provides up to

Figure 4. Ablation results for mask propagation and mask freezing

for ResNet18 on Flowers102 dataset.

1.28% of accuracy boost at 30% sparsity rate and an average

of 0.83% for the three tested sparsity levels.

Mask Freezing The mask freezing approach ensures that

the binary masks used for sparsity remain fixed during the

last training epochs, thereby allowing the model to recover

from accuracy loss more effectively with precise updates.

This mechanism, widely used in literature [52], is crucial for

our training scheme where the masks are randomly changed

after each step. Figure 4 shows the clear advantage of inte-

grating the mask freezing method into the training process:

the model trained with mask freezing showcases up to 0.96%
higher accuracy than the one without.

4.5. Weight Pruning vs. Activation Sparsity

In this section, we conduct a comprehensive compari-

son of our activation sparsity method with a state-of-the-art
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Figure 5. Latency-accuracy trade-off distribution for structured weight pruning with and without activation sparsity (ResNet18, Flowers102).

A detailed table with all the numerical values is available in Appendix B.

structured weight pruning technique represented by Dep-

Graph [8]. By utilizing DepGraph as a robust baseline, we

aim to thoroughly assess the effectiveness and potential of

our activation sparsity approach in comparison to leading

compression techniques. While the work by Kurtz et al. [28]

appears conceptually aligned with our approach, we refrain

from direct comparison due to the need for a custom sparse

kernel to achieve the desired latency boost. Moreover, their

research primarily focuses on higher-performance platforms,

such as AWS C5.12xlarge CPU and NVIDIA K80 GPUs,

rather than exploring embedded CPUs, limiting the scope of

direct comparison with our solution.

Since structured weight pruning and activation sparsity

can be applied independently, we decided to apply activation

sparsity on models pruned using DepGraph to see the impact

on performance. Figure 5 depicts the latency vs. accuracy

trade-off achievable by structured pruning with and without

our proposed activation sparsity technique. We performed

these experiments on ResNet18 with the Flowers102 dataset.

The pruned models were obtained using the original code-

base provided by DepGraph authors with different values of

the speedup proxy parameter (MACs count ratio) from 2.0×
to 10.0× [8]. Then, we induced activation sparsity in the

pruned models for four different sparsity levels (5%, 10%,

20%, 30%), using the Ultralytics training code for image

classification [25]. The same training code was also used to

further finetune the pruned models (without sparsity) for fair

comparison. The experimental results show that while the

solely structured pruning is Pareto optimal for lower speedup

rates, a combination of both techniques becomes more fa-

vorable for beyond 3.5× speedup. Furthermore, while struc-

tured pruning offers high scaling ability, activation sparsity

acts as a fine-grained control knob in the accuracy vs. latency

solution space. Latency measurement experiments carried

out on the Raspberry Pi 4B [11] showcase a significant dif-

ference between the real and theoretical speedup of pruned

models. A detailed table with all the different speedups is

available in Appendix B.

Activation sparsity applied to pruned models shows no-

table performance improvements, especially for high pruning

ratios. This behavior can be attributed to the understanding

that models pruned beyond a certain limit may experience

reduced capacity and subsequently degraded performance.

In such cases, activation sparsity proves to be an effective

approach by capitalizing on zeros in the activation maps,

which remain independent of the model’s capacity, leading

to optimal results.

5. Conclusion

This paper presents an efficient DNN compression

pipeline leveraging semi-structured activation sparsity to

reduce inference latency. The proposed training procedure

induces activation sparsity through the propagation and freez-

ing of random spatial masks, being cognizant of element

positions during GEMM-based convolutions. Additionally,

we provide an illustrative example of a practical runtime

modification integrated into XNNPACK to measure latency

speedup on a Raspberry Pi 4B device. Our experimental

results showcase the impact of activation sparsity on accu-

racy and speedup across diverse test cases encompassing

image classification and object detection tasks. Furthermore,

we demonstrate the potential to combine our compression

pipeline with other structured pruning algorithms, offering

enhanced accuracy-speed trade-offs, especially for high com-

pression ratios. In future work, we plan to explore advanced

regularization techniques to determine optimal sparsity lev-

els across layers.
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